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Abstract—There is an accumulating evidence that driver’s 

distraction is a leading cause of vehicle crashes and incidents. In 

particular, it has become an important and growing safety 

concern with the increasing use of the so-called In-Vehicle 

Information Systems (IVIS) and Partially Autonomous Driving 

Assistance Systems (PADAS). Thereby, the detection of the driver 

status is of paramount importance, in order to adapt IVIS and 

PADAS accordingly, so avoiding or mitigating their possible 

negative effects. The purpose of this paper is to illustrate a 

method for the non-intrusive and real-time detection of visual 

distraction, based on vehicle dynamics data and without using the 

eye-tracker data as inputs to classifiers. Specifically, we present 

and compare different models, based on well-known Machine 

Learning methods. Data for training the models were collected 

using a static driving simulator, with real human subjects 

performing a specific secondary task (SURT) while driving. 

Different training methods, model characteristics and feature 

selection criteria have been compared. Based on our results, SVM 

has outperformed all the other ML methods, providing the 

highest classification rate for most of the subjects. Potential 

applications of this research include the design of adaptive IVIS 

and of “smarter” PADAS.  
 

Index Terms — Accident prevention; artificial intelligence and 

machine learning; driver’ distraction and inattention; intelligent 

supporting systems.  

 

I. INTRODUCTION 

RIVER’S inattention and driver’s distraction do not have a 

generally accepted definition: the related terms are 

frequently discussed in the literature, very often they are 

inconsistently defined and the relationship between them is 

unclear [1]-[2]. In addition, neither the extent to which driver 

distraction is responsible for accidents is completely 

understood. So, Wang et al., [3] estimated that 13.3% of 

crashes involve what they considered distraction and 9.7% 

were in a category called “looked but did not see”. Such a 

percentage can even increase (+2.6%) if drowsiness is 

considered as well. The 100-Car Naturalistic Driving Study 

found that almost 80% of all crashes and 65% of all near-
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crashes involved driver distraction [4]. In fact, it is well-known 

that the majority of road accidents (surely > 80%) are due to 

human error [5], or anyway human (wrong) behavior, with an 

increasing evidence that driver distraction and driver 

inattention are major contributing factors in car and truck 

crashes and incidents, with the National Highway Traffic 

Safety Administration (NHTSA) estimating  that, in 25% of all 

crashes, some form of inattention (including distraction) is 

involved [6]-[9]. Based on this picture, crashes due to driver 

distraction, result in as many as 5000 fatalities and $40 billion 

in damages each year (studies carried out in USA from 

NHTSA, but also European ones confirm such values, see, 

e.g., the European projects AIDE and D3COS, 

http://www.aide-eu.org, or http://www.d3cos.eu/) [10]-[12]. 

Notwithstanding the ambiguity in its definition and actual 

impact, it seems that the scientific community agrees on one 

thing: driver distraction – and inattention – is an important 

safety concern [13]. All in all, driver’s distraction is not a new 

problem in road safety: we may say that it has been around for 

as long as people have been driving cars.  

It is likely that the problem will increase as more wireless or 

mobile technologies find their way into vehicles [4], [9], [14]. 

Although in the last few years many European countries have 

prohibited the use of – for example – mobile phones when 

driving, nonetheless it should not be expected that the amount 

of driving distraction will necessarily decrease. In fact, even 

without the distraction caused by mobile devices, the use of 

the so-called In-Vehicle Information Systems (IVIS) – e.g. 

navigation systems – can be additional sources of potential 

distraction. One method, followed by many car-manufacturers 

and automotive suppliers, aims at minimizing the risk of 

crashes rather than distraction (as pointed out by Wöllmer et 

al. in [9]) by means of the development of dedicated 

supporting systems: the so-called Advanced Driving 

Assistance Systems (ADAS) and Partially Autonomous 

Driving Assistance Systems (PADAS), such as lane-keeping 

assistance system, forward collision warning system, 

emergency braking system, etc. However, it is also true that 

such PADAS may induce themselves some forms of 

distraction.  

In this context, allowing drivers to take benefits from the 

use of these IVIS and PADAS without diminishing safety is a 

big and important challenge. One promising strategy to deal 

with such a problem involves the classification of driver’s 

status – distracted driver, in this case – in real time and then 
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using this classification for a twofold goal: i) the adaption of 

IVIS technologies, in order to mitigate the effects of 

distraction, and ii) the adaption of PADAS strategies, in order 

to minimize the effects of distraction on the driving task. 

Machine Learning (ML) and Data Mining (DM) 

technologies may be able to provide the right algorithms to 

cope with such a challenge. In fact, ML is the technique of 

searching large volumes of data for unknown patterns. It has 

been successfully applied in business, health care and other 

domains [15]-[16]. In particular, this technology can be 

applied to build a discrimination model that captures the 

differences in behavior when people drive normally and when 

they are distracted. 

The main goal of this paper is to present a non-intrusive 

approach for a real-time system to detect and classify driver’s 

distraction, applying ML algorithms (comparing different 

methods) and using only vehicle dynamic data as inputs to the 

model. In particular, here we mainly address the driver visual 

distraction that has been considered an important aspect in the 

investigated maneuvers. In this context, looking away for a 

short while (at least 1.8 seconds) can be considered as a driver 

visual distraction from her/his main activity. 

The paper is organized as follows. Section 2 provides the 

definition of driver’s distraction, based on the current 

discussion in literature. Then, Section 3 will briefly describe 

the investigated ML techniques to model driver’s distraction. 

The experimental set-up will be illustrated in Section 4, while 

Section 5 shows the main results achieved. Finally, Section 6 

aims at critically discussing these results, comparing ours to 

the most important ones obtained by similar works in this area 

and pointing out the differences, our innovations and 

weaknesses as well as highlighting possible future activities.  

Finally, Section 7 concludes the paper with a summary of the 

main points of interest in this research.  

II. DISTRACTION DEFINITION 

As mentioned in the introduction, is it possible to reliably 

detect – and recognize – driver’s state, so that the system (such 

as the PADAS) would give just as much assistance as the 

driver needs? For instance, the intervention of a forward-

collision assistance system can be triggered, based on the 

driver state: if distraction is detected the function strategies 

can be adjusted accordingly (e.g. braking is modulated 

differently or warning signals are anticipated). On the contrary, 

if the system detects that the driver is not distracted, but 

intended to overtake, the warning can be delayed or 

suppressed, even in case of approaching the vehicle ahead. 

Such a smart assistance, which recognizes driver’s intention 

and state, would allow for a greater safety margin, without 

irritating the driver with false alarms or inappropriate 

interventions in normal driving conditions, so enhancing the 

user acceptability. Therefore, in recent years, several methods 

have been published, which aims at estimating driver’s 

distraction (for example [17]-[20]) or also which concentrate 

on the detection and modeling of fatigue or stress as 

fundamental causes for driver’s inattention (like [21]-[22]). 

However, in literature, there is not a unique and commonly 

agreed definition of distraction, but several ones very often 

overlapped and mixed with inattention or with other driver’s 

states, such as drowsiness and workload. For what concerns 

the definition of distraction adopted in our research, we have 

considered the taxonomy proposed by Regan et al. [2] and by 

Lee et al. [23]. In particular, we start from the following 

definition: 

“Driver distraction is the diversion of attention away 

from activities critical for safe driving toward a 

competing activity”. 

 This has been extended by Regan et al., adding the concept 

of Driver Inattention, which means insufficient or no attention 

to critical activities for safe driving toward a competing 

activity. 

It is worth to note that such a definition suffers from 

hindsight bias, since it is really difficult to say if the driver is 

distracted until after something dangerous happens and then it 

will be too late for the system to intervene (Regan mentions 

this fact in his article). Given that, the same Regan points out 

that “How to develop taxonomy of driver inattention without 

the benefit of hindsight is an important theoretical and 

practical challenge beyond the scope of this paper”, so this is 

still an open-point in literature (and for sure, this is definitely 

beyond the scope of our paper). Although this statement is 

absolutely true, nevertheless it would almost be impossible to 

use the concept of distraction without some preliminary 

assumptions; even if the situation does not bring to an accident 

100 times but it does on the 101st time – even though the 

behavior is not different – however these are potentially 

critical situations and we want that our systems can prevent 

such risky conditions (because we don’t know which ones can 

lead to an accident). In fact, in these situations, drivers are not 

ready to react appropriately to any unexpected event and thus 

the accidents are more likely. 

To sum up, distinct from other forms of driver inattention, 

distraction occurs when a driver’s attention is diverted away 

from driving by a secondary task that requires focusing on an 

object, event, or person not related to the driving task. 

Although existing data is inadequate and not representative of 

the driving population, it is estimated that drivers engage in 

potentially distracting secondary tasks approximately 30% of 

the time their vehicles are in motion (conversation with 

passengers is the most frequent secondary task followed by 

eating, smoking, manipulating controls, reaching inside the 

vehicle, and cell phone use.). Accordingly to that, we have 

considered visual distraction as the diversion of visual 

attention away from the road. This category of “driver 

distraction” is also the one used by Lee et al. [23].  

III. MODELING DRIVER’S STATE 

Given the current state of the art and with reference to our 

previous works (see [19] and [24]) we have selected a widely 

used ML technique and some other methods not deeply 
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investigated in literature to model the driver’s state: Support 

Vector Machines (SVM), two types of Neural Networks, static 

(Feed-Forward Neural Networks FFNN), and dynamic (Layer 

Recurrent Neural Networks LRNN), and Artificial Neural-

based Fuzzy Inference Systems (ANFIS).  

A. Description of the SVM Method 

Support Vector Machines (SVMs) are arguably one of the 

most important developments in supervised classification of 

recent years. Firstly proposed by Vapnik in 1998, SVMs are 

based on a statistical learning technique and can be used for 

pattern classification, as well as inference of non-linear 

relationships between variables [25]-[26]. This method has 

been successfully applied to a wide variety of domains, such as 

image processing (e.g. face recognition), text and speech 

recognition, bioinformatics (e.g. protein classification) [27]. 

SVMs often achieve superior classification performance 

compared to other learning algorithms across most domains 

and tasks; they are fairly insensitive to the curse of 

dimensionality and are efficient enough to handle very large-

scale problems in both sample and variables. The “classical” 

application of SVMs concerns a binary classification task. The 

main idea of SVMs is to implicitly map data to a higher 

dimensional space via a kernel function and then solve an 

optimization problem to identify the maximum-margin hyper-

plane that separates training instances. The hyper-plane is 

based on a set of boundary training instances, called support 

vectors. New instances are classified according to the side of 

the hyper-plane they fall into. The optimization problem is 

most often formulated in a way that allows for non-separable 

data by penalizing misclassifications. 

B. Description of the FFNN Method 

Artificial Neural Networks, or simply Neural Networks 

(ANN or NN), are an information processing system, which is 

inspired by biological nervous system (the brain) and that 

consists in a large number of highly interconnected processing 

elements, working together to solve specific problems [28]. In 

a neural network, signals are transmitted through connection 

links, characterized by an associated weight, which is 

multiplied by the incoming signal (the input of the net) for any 

typical neural net. The output signal of a unit is obtained by 

squashing the net input into an activation function. One of the 

most important types of NNs – used within our research – are 

the Feed-forward Neural Networks (FFNNs). FFNNs have a 

layered structure, where each layer consists of units receiving 

their input from units from a layer directly below and sending 

their output to units in a layer directly above the unit. There 

are no connections within units of the same layer. FFNNs are 

considered static networks, since they have no feedback 

elements and contain no delays; the output is calculated 

directly from the input through feed-forward connections. 

C. Description of the LRNN Method 

Besides the Static (Feed-forward) NNs (whose topology 

corresponds to acyclic directed graphs), there are also the 

Dynamic (Recurrent) NNs, where the output depends not only 

on the current input to the network, but also on the previous 

inputs, outputs, or states of the network. The Layer-Recurrent 

Neural Networks (LRNNs), which were introduced by Elman  

[29] in an earlier simplified version, are a specific type of 

dynamic networks 

All in all, recurrent networks are artificial neural networks 

that apply to time series data and that use outputs of network 

units at time t as input to other units at time t+1. Under this 

viewpoint, they support a form of directed cycles in the 

network. In the LRNNs, there is a feedback loop, with a single 

delay, around each layer of the network except for the last 

layer. In particular, this type of networks are used when the 

prediction of an output y(t+1) – for example the next day’s 

stock market average, based on the current days economic 

indicators [30] – depends not only on the input value x(t), but 

also on earlier valuesx(t-i), i ∈ {0,1,…,t}I. 

In order to train a LRNN, a simple variant of the back-

propagation method is used. In practice, however, LRNNs are 

more expensive to train than networks with no feedback loops. 

D. Description of the FIS and ANFIS Method 

The starting point for talking about Fuzzy Logic (FL) is the 

consideration about the relative importance of precision: 

sometimes, a logic based on only two truth values, True and 

False, can be inadequate when describing human reasoning. 

FL uses all values inside the interval [0,1] (where 0 is regarded 

as False and 1 as True) to describe human reasoning and 

therefore it is a fascinating area of research because it does a 

good job of trading-off between significance and precision: 

this is something that humans have been managing for a very 

long time. In this sense, FL has the ability to mimic the human 

mind to effectively employ modes of reasoning that are 

approximate rather than exact.  

In more “mathematical terms”, Fuzzy Logic is a way to map 

an input space to an output space. In particular, since a Fuzzy 

Logic System (FLS) is able to handle simultaneously 

numerical data and linguistic knowledge, it is a non-linear 

mapping of an input data (feature) vector into a scalar output 

(i.e. it maps numbers into numbers). Between the input and 

output we can put a “black-box” that does the work and inside 

it, we can find any number of things, from FLS to expert 

systems, from linear systems to Neural Networks, and so on.  

One of the key-concept of FL is the Fuzzy Set(s), which is a 

set without crisp, clearly defined boundaries. It contains 

elements with only a partial degree of membership: the truth of 

any statement becomes a matter of degree. In this context, the 

Membership Functions (MFs) are curves that define how each 

point in the input space is mapped to a membership value (also 

called degree of membership) in the interval [0, 1]. There are 

several types of MF, but in most cases a Triangular or a 

Gaussian shape is used. 

Fuzzy sets and fuzzy operators can be regarded as the 

subjects and verbs of fuzzy logic, but in order to say anything 

useful we need to make complete sentences. So the conditional 

statements, if-then rules, are the things that make fuzzy logic 
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useful.  

Even if the output of each rule is a fuzzy set, in general we 

want the output for an entire collection of rules to be a single 

number. To achieve this, firstly the output fuzzy sets for each 

rule are aggregated into a single output fuzzy set. Then the 

resulting set is defuzzified, or resolved to a single number. 

Many defuzzification techniques have been proposed in the 

literature. Perhaps the most popular defuzzification method is 

the centroid calculation, which returns the center of area under 

the curve. For details on FIS, see [31]-[32]. 

In traditional FIS, the MFs are fixed and somewhat 

arbitrarily chosen. Moreover, fuzzy inference is applied to 

modeling systems whose rule structure is essentially 

predetermined by the user’s interpretation of the characteristics 

of the variables in the model. Hence, one of the key-points in 

Fuzzy Set Theory is the choice and tuning of membership 

functions, which are done very often arbitrarily and manually. 

One possibility is to use the architecture and learning 

procedure called ANFIS (Adaptive-Network-based Fuzzy 

Inference System), which is a fuzzy inference system (FIS) in 

the framework of adaptive networks. An adaptive network is a 

superset of all kinds of feed forward neural networks with 

supervised learning capability. In particular, it is a network 

structure consisting of nodes and direct links through which 

the nodes are connected. Part or all of the nodes are adaptive, 

which means that each output of these nodes depends on the 

parameter(s) pertaining to the node itself; the learning rule 

specifies how these parameters should be changed to minimize 

a given error measure. Since the basic learning rule focuses on 

the gradient method which is notorious for its slowness and 

tendency to become trapped in local minima, Jang et al. [33] 

have proposed a hybrid learning rule which can speed up the 

learning process substantially. 

Nowadays, ANFIS has been used in several fields, with 

well-founded applications to automatic control and signal 

processing. The nonlinearity and structured knowledge 

representation of ANFIS are the primary advantages over 

classical linear approaches in adaptive filtering and adaptive 

signal processing, such as identification, inverse modeling, 

predictive coding, adaptive channel equalization, adaptive 

interference (noise or echo) cancelling, etc. [34] 

IV. DESCRIPTION OF THE EXPERIMENTS 

The data related to distraction and vehicle dynamic have 

been collected by means of dedicated experiments using a 

static driving simulator.  

A. Subjects 

Twenty participants with a previous experience on the 

driving simulator have been selected and divided into two 

groups: ten drivers in the age between 20 and 25 and ten 

between 30 and 45. A minimum amount of driver experience 

was required, in particular at least 2 years of driving license 

and 6000 km driven per year. Driver’s gender was not an 

investigated variable (anyway, there were 3 females and 7 

males in each group). 

B. Experimental Set-up 

As mainly done in other works studying distracted driving, a 

driving experiment has been conducted on a driving simulator,  

because of safety issues and better control of the environment, 

as well as for logistic and economic reasons. In particular, a 

ScanerII (www.scaner2.com) car simulator has been used: it is 

a fixed based system that comprises a mock-up of a car with 

real driving controls (i.e. seat, steering wheel, pedals, gear, 

handbrake), a digital simulated dashboard displaying a 

traditional instrumental panel and a frontal projection screen 

where the simulated environment is displayed to the driver 

(see Figure 1). Distraction has been induced by means of a 

secondary visual research task, called SURT (SUrrugate 

visual-Research Task, a methodology developed by S. Mattes 

in the project ADAM), reproduced on an in-vehicle display 

system (7’’ TFT touch screen installed on the right-hand side 

of the car cabin) [50]. Figure 1 shows the situation. 

 

 
Fig. 1: SURT display on the right part of driving simulator cockpit. 

 

SURT was chosen with the aim of evaluating the 

interferences caused by a generic visual search task rather than 

a specific IVIS (In Vehicle Information System), which can be 

“simulated” in such a way. Like most commercial In-Vehicle 

Information Systems, it requires visual perception and manual 

response: such activities, according to Wickens’ multiple 

resources model [35], requires the same mental resources of 

the driving task and is therefore more likely to interfere, 

possibly causing a degradation of driving task performances. 

Of course, each IVIS has a different potential distraction, as a 

function of its position, size, HMI, working conditions, etc. 

However, authors believe this is really relevant in real 

vehicles. Unlike Jiménez et al. investigated in [51], we did not 

have the possibility to install a real IVIS device in the driving 

simulator; in the next step of our research, where we will use 

datasets from real-world, the SURT methodology will be 

replaced by the use of specific IVIS (such as the navigation 

system, as done in [9]). All in all, for this type of study based 

on driving simulator, we think SURT can be effective in 

modeling the distraction of the drivers. 

C. Procedure 

Participants performed a practice drive in the driving 

simulator of 15 minutes. Then, they were asked to drive for 
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approximately 50 minutes on a simulated three lanes highway: 

the driving task consisted in keeping the lane and driving at an 

average speed of 100 km/h at safety distance from the vehicles 

encountered ahead. For the moment, we have considered a 

motorway scenario for a couple of reasons: firstly, it represents 

a more structured and controlled environment; secondly, it is 

more suitable for the integration with the ADAS application 

under investigation, the Adaptive Cruise Control (ACC). 

During this driving phase, each participant was asked to 

complete 16 secondary task sessions, each one lasting three 

minutes. When SURT is activated the display shows a black 

screen with 30 symbols (each 1.4 cm high), specifically: 14 

blue circles, 15 red squares and 1 red circle. The screen is 

equally divided into two vertical sides and each time the 

SURT is presented, the driver is asked to touch the side where 

the red circle is located. The time interval between two 

consecutive screens was pseudo-randomized between 3 and 9 

seconds. 

D. Data Collection and Processing 

Data of distraction constitute the target set, since we have 

adopted a supervised learning method. In this methodology 

using SURT, the eyes-position of subjects has been extracted 

from videos with a video-processing laboratory software and 

transferred to a log file as Boolean values (1: eyes on the 

SURT; 0: eyes on the frontal screen). Then, the change of 

SURT status, from 0 to 1 and from 1 to 0, has been considered 

as the key factor to understand if the driver was distracted or 

not. In fact, from literature ([36]-[37]), if the drivers look away 

from the road for an interval between 1 and 2 seconds, they 

can be regarded as distracted. The switches of SURT status 

identify the period where drivers were engaged with secondary 

task completion. The number of correct answers together with 

drivers’ reaction time on the SURT (i.e. the difference between 

the instant the task is presented and the touch of the driver) 

have been recorded. 

Since we consider a supervised learning approach, we 

needed to define a target-set for the training of the classifiers; 

this target-set has been built in a post-processing phase, as 

follows.  

An IR camera, with a precision of 25 frames/s, was pointed 

to the face of the subject and the experimenter visualized on a 

display if the user was looking at the road or at the SURT. To 

limit the possible false positives, the experimenter used 

another camera (same precision), which pointed to the SURT, 

in order to check if the subject was interacting with it (e.g. 

click on the SURT display). Every time the experimenter saw 

that the subject was interacting with the SURT device (so 

looking away from the road scene), he pressed a “1” on the PC 

keyboard, otherwise a “0”, writing these values into the log-

file of the simulator. 

Given the log-file, the experimenter has considered all the 

sequential ones (1) in it, for a period of time equal to at least 

1.8s. From literature, this is a good time-period over which a 

driver can be regarded as visually distracted. When we found 

this situation, an instance in the target-set was labeled driver 

distracted, otherwise it was labeled driver not distracted.  

For what concerns the vehicle dynamic data, the following 

variables have been collected and used: 

• Speed [m/s]  

• Time To Collision [s]  

• Time To Lane Crossing [s]  

• Steering Angle [deg]  

• Lateral Position [m]  

• Position of the accelerator pedal [%]  

• Position of the brake pedal [%]  

These values are directly available on the prototype vehicle 

CAN bus (the same one installed on a real vehicle). The 

frequency of data collection was 20 Hz (1 data-point each 

0.05s), which is the output rate of the simulator. Values are 

then averaged over a period of 1.8s in order to be consistent 

with the target variable (distracted or not-distracted).  

It is worth to note here that these variables constitute the 

only inputs to the classifiers: the eye-movements data do not 

appear, since they have been used by the experimenter only to 

label the target set, as explained before.  

Following the ordinary procedure for supervised learning, 

each data set has been split in three different subsets: 

• Training data (around 60% of the whole dataset), 

which are used to train the classifiers. 

• Verification data (around 15% of the whole dataset), 

which are used to measure classifier generalization 

and to halt training when generalization stops 

improving. 

• Testing data (around 25% of the whole dataset), which 

have no effect on training and so provide an 

independent measure of learning performance after 

training. 

Because of the way the experiment is designed, we consider 

here the visual distraction (eyes off the road). Although we 

cannot directly address other types of distraction (e.g. 

cognitive) by this experiment, nonetheless visual distraction 

has been shown to be of greatest concern in naturalistic driving 

studies, as stated in [8] and [56], where both have showed 

texting (visual distraction) is associated with greater odds to 

crash-relevant conflict than cell phone conversation (cognitive 

distraction). 

V. DATA ANALYSIS AND RESULTS 

In our previous work [24], we had shown an “inter-subject” 

analysis, where we followed a “leave-one-out” approach: one 

model has been trained on the data from 9 out of 10 subjects, 

and tested on the data of the left out subject (in turn, on every 

subject) and results averaged. Unfortunately, the results were 

not really satisfactory, since the best obtained performance 

was around 75% of instances correctly classified (this is a very 

poor result, meaning that such a classification rate is rarely 

accepted by users). Very likely, this is due to the fact that the 

response to distraction is highly personal and subjective, so the 

normal behavior of one driver can be similar (= too similar for 

a model) to the distracted behavior of another driver. 
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Therefore, in this paper we present an “intra-subject” 

analysis, where one model for each participant is created and 

the performances of every classifier have been compared, in 

order to assess how a specific model can fit a specific subject 

(very interesting for the personalization).   

To measure the performances of each classifier, we have 

considered the following indexes: 

• Correct Rate (CR), that is the number of instances 

correctly classified. 

• Sensitivity (SENS), that is the correctly classified 

positive instances or True Positive instances.  

• Specificity (SPEC), that is the correctly classified 

negative instances or True Negative instances. 

 

 In the following, the best model is the one with the highest 

CR value, a “good model” is a model with CR > 90% and an 

“acceptable model” is a model with CR > 80% (these values 

are inferred reading similar works in literature and based on 

our personal experience). 

Finally, we used the MATLAB Neural Networks Toolbox 

for the FFNN and the LRNN models, the MATLAB Fuzzy 

Logic Toolbox for the ANFIS model, the MATLAB Bio-

informatics Toolbox for the SVM model, and WEKA 3: Data 

Mining Software in Java for the Logistic Regression model 

 (http://www.cs.waikato.ac.nz/ml/weka/).  

The reported values are averaged over 5 runs with the same 

parameter configuration. 

A. Performances for FFNN Distraction Classifier 

Different network configurations and topologies have been 

analyzed for each subject, with different characteristics. The 

chosen (winning) network has the following characteristic: 

• training method = Scaled Conjugate Gradient Back 

propagation  

• number of layers = 2 layers topology has been chosen: 

one Hidden Layer (HL));  and one Output Layer (OL) 

• transfer function = a Sigmoid transfer function has 

been used for both the HL and OL. 

It is very rare the case in which more than one HL is 

needed; a NN with only a HL can approximate any continuous 

function. A NN with 2 or more HL can approximate even non 

continuous functions (in principle, we did not know if the 

classification function is continuous or not). In the HL, 

different numbers of Hidden Neurons (HN) have been tested. 

The Mean Square Error (MSE) has been used to evaluate the 

performances and as stop-criterion: training automatically 

stops when generalization stops improving, as indicated by an 

increase in the MSE on the validation set (that, we remind, is 

the 15% of the dataset). 

As Table I shows, in only 3 out of 20 subjects we obtained a 

good model, and in other 7 out of 20 subject an acceptable 

model. The best performance has been obtained for subject 1, 

with a CR equal to 94.4%. In this case, the training time was 

88.2s.  

 

 

TABLE I 
PERFORMANCES OF DIS CLASSIFIER BASED ON FFNN 

Subject HN CR MSE 

1 100 94,42 0,050978 

2 50 79,8 0,149205 
3 20 80,42 0,137353 
4 50 82,7 0,119556 
5 20 84,70 0,115148 
6 20 90,32 0,115148 
7 50 78,5 0,147561 
8 50 85,5 0,109982 
9 50 75,8 0,160155 

10 50 78,9 0,143094 
11 20 79,4 0,138827 
12 10 81,4 0,143814 
13 10 91,70 0,006357 
14 50 79,02 0,142892 
15 10 80,2 0,138723 

16 50 78,7 0,146673 
17 50 74,04 0,165458 
18 50 79,02 0,142098 
19 10 84,3 0,119444 
20 20 76,5 0,156445 

 Average 81,77 0,121688 

HN represents the number of neurons in the hidden layer; CR is the correct 
rate; MSE is the mean squared error. 

B. Performances for SVM Distraction Classifier 

For what concerns SVM, several kernels and different 

values of their parameters have been tried: 

• Linear (LIN)  

• Quadratic (QUAD)  

• Polynomial (POL)  

• Radial Basis Function (RBF)  

• Multi-Layer Perceptron (MLP).  

The results are reported in Table II. 

 
TABLE II 

PERFORMANCES OF DIS CLASSIFIER BASED ON SVM 

Subject Kernel Parameters CR 

1 RBF sigma = 0.3 96,89 
2 RBF sigma = 0.2 94,96 
3 RBF sigma = 0,5 96,44 
4 POL order = 5 94,24 
5 RBF sigma = 0.3 94,77 
6 RBF sigma = 0.3 94,92 
7 RBF sigma = 0.3 94,14 
8 RBF sigma = 0,3 96,00 
9 RBF sigma = 0,3 93,79 

10 RBF sigma = 0.4 93,87 
11 RBF sigma = 0,3 93,09 
12 RBF sigma = 0,5 96,62 
13 RBF sigma = 0.2 95,87 
14 POL sigma = 0.3 94,97 
15 RBF sigma = 0.3 94,36 

16 POL order = 5 97,95 

17 RBF sigma = 0.3 97,34 
18 RBF sigma = 0.2 95,05 
19 RBF sigma = 0.3 95,92 
20 RBF sigma = 0.3 94,22 

  Average 95,27 

Kernel is the type of Kernel function used; Parameters represent the value 

of the parameters associated with the specific kernel; CR is the correct rate. 
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As Table II shows, the RBF has proven to be the best 

Kernel function in 17 cases out of 20. Its expression is: 

 

where xi and xj represent the data-points and σ is a 

predefined positive scaling factor parameter. 

The RBF is a very robust kernel function, for which it is 

possible to implement both linear and nonlinear mapping by 

manipulating the values of its parameters. Moreover, the RBF 

can reduce numerical difficulties and ends to obtain more 

robust results than other kernels, such as polynomial and linear 

(also confirmed by results in [38] ). 

As shown in Table II, SVM produces good models from 

every subject. In particular, the best results are obtained for 

subjects 16 and 17, which have a CR > 97%. The former uses 

a polynomial kernel, while the latter uses a RBF kernel.  

C. Performances for ANFIS Distraction Classifier 

In our experiments, we used the Sugeno-type Fuzzy 

Inference System, which is similar to the Mamdani method in 

many respects: the first two parts of the fuzzy inference 

process, input fuzzification and application of the fuzzy 

operators (see Section III-D), are exactly the same; the main 

difference between Mamdani and Sugeno is that the Sugeno 

output membership functions are either linear or constant. 

For the creation of this Sugeno-type fuzzy inference 

systems, there are two main methods for partitioning the input 

data: the Grid partition and the Sub-clustering. We have 

selected the second one, which generates an initial model for 

ANFIS by first applying subtractive clustering to the data. 

Different values of the clustering centers and radius have been 

tested, as Table III shows. Best results are achieved with 

values not exceeding 0.11, in order to have an acceptable 

trade-off between training time and performances. 

The rule extraction method first uses the sub-clustering 

function to determine the number of rules and antecedent 

membership functions, then it uses linear least squares 

estimation to determine each rule's consequent equation. This 

function returns a FIS structure that contains a set of fuzzy 

rules to cover the feature space. For this type of FIS structure, 

Gaussian type membership functions have been used.  

In order to optimize membership function parameters, our 

ANFIS model used a combination of the least-squares method 

and the back-propagation gradient descent method.  

Finally, the training process stops whenever a given number 

of epochs is reached or the training error goal is achieved.  

Table III reports the results obtained by the ANFIS 

classifier. It achieved very good results, too, producing 

acceptable models for 7 out of 20 subjects, and good models 

for the others, with the best performance for subject 1, topping 

at 96.58% of instances correctly classified.  

 

 

 

 

TABLE III 
PERFORMANCES OF DIS CLASSIFIER BASED ON ANFIS 

Subject Radius CR Fuzzy Rules 

1 0,1 96,5851 192 

2 0,08 88,9288 95 
3 0,11 89,711 32 
4 0,1 93,7912 92 
5 0,08 88,15 47 
6 0,08 91,0008 43 
7 0,08 90,1585 149 
8 0,11 90,1278 12 
9 0,08 86,9299 65 

10 0,08 91,2409 227 
11 0,06 91,8674 209 
12 0,08 94,1251 141 
13 0,08 92,5853 50 
14 0,08 91,6188 106 
15 0,11 85,0032 24 

16 0,08 89,3123 64 
17 0,08 91,9695 186 
18 0,08 85,7577 85 
19 0,08 95,2097 225 
20 0,08 92,0561 159 

 Average 90,8064  

Radius is the value of the radius used for the clustering of data; CR is the 

correct rate; Fuzzy Rules represent the number of rules used for the FIS 

creation. 

D. Performances for LRNN Distraction Classifier 

All in all, LRNNs are similar to FFNNs, except that each 

layer has a recurrent connection with a tap delay associated 

with it. The training function updates weight and bias values 

according to the BFGS quasi-Newton method (using the 

algorithm implemented in the trainbfg routine of MATLAB).  

For the adaptation learning function, we have used the gradient 

descent with momentum weight and bias learning function. 

As done with FFNNs, we tried different number of hidden 

neurons and report results obtained using only one hidden 

layer (HL), with 20, 50 and 100 neurons. For the HL neurons, 

we used a tangent-sigmoid transfer function, while for the 

output layer (OL) neurons we used a linear one. 

Also in this case, the MSE error has been used as the 

performance measure for training the network. 

For this type of NN, we only considered 10 subjects, due to 

the very long training time of the LRNNs (more than 12 hours 

for each subject) and the poorer results obtained (compared to 

the other methods). It is worth to note here that LRNNs were 

an interesting case study, since they have infinite dynamic 

response and hence time history can be taken into account very 

easily. The results are reported in Table IV. 
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TABLE IV 

PERFORMANCES OF DIS CLASSIFIER BASED ON LRNN 

Subject Epochs HN CR 

1 6 100 94,42 

2 2 50 79,8 
3 6 20 80,42 
4 5 50 82,7 
5 6 20 84,70 
6 6 20 90,32 
7 2 50 78,5 
8 2 50 85,5 
9 2 50 75,8 

10 1 50 78,9 
  Average 83.11 

Epochs is the number of cycles/epochs used by the NN for the training; 

HN represents the number of neurons in the hidden layer; CR is the correct 

rate.  

LRNN produced a good model only in 2 cases out of 10, for 

subjects 1 and 6, with a CR > 90%. The best performances are 

obtained again for subject 1, and are almost comparable to the 

other methods. 
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Fig. 2.  Performances of different classifiers (see legend). The measure of 
performance, the Correct Rate which gives the number of correct instances, is 
shown for each subject and for each type of classifier. 

E.  Comparison between the different Distraction 

Classifiers 

We show here some comparison plots, that report the 

Correct Rate, Sensitivity and Specificity for every subject, for 

each classifier. In addition, we report the performance indexes 

obtained by a Logistic Regression (LR) classifier, in order to 

get a feeling of what we have gained using more complex 

nonlinear models. 

Figure 2 presents the correct rate (CR) of the tested models 

on the first ten subjects (so LRNN can be included). 

The SVM classifier outperforms all the others, even if 

ANFIS achieves very similar performances. LRNN model 

provide quite good results, even if not as good as the ANFIS 

and the SVM. Anyway, it should be pointed out that, LRNNs 

outperform the FFNN models. The LR classifier presents the 

worst performances, confirming the fact that using nonlinear 

models provide valuable gain. This is also confirmed by the 

sensitivity and specificity plots, as shown in Figures 3 and 4. 

From Figure 3, SVM confirms to outperform all the other 
classifiers in terms of Sensitivity, even if in this case LRNN 

and ANFIS obtain very good results. Much worst the behavior 
of FFNN model, which provides results similar to LR in many 
cases. 

This is also true for the Specificity index in Figure 4, where 
SVM, ANFIS and LRNN deliver a good capacity to recognize 
the negative instances as such, while the FFNN and LR give 
the worst results (LR the least values absolutely). 
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Fig. 3.  Performances of different classifiers (see the legend) concerning the 
Sensitivity parameter, which measures the proportion of actual positives 
which are correctly identified as such. This is shown for the first ten subjects, 
to include LRNN as well. 
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Fig. 4.  Performances of different classifiers (see the legend) concerning the 
Specificity parameter, which measures the proportion of negatives which are 
correctly identified. This is shown for the first ten subjects, to include LRNN 
as well. 

 
It is worth noting that the performances of SVM are quite 

stable for different subjects, while for the other method they 
vary quite a lot from subject to subject. 

Table V provides a summary of the average performances 
obtained on all the subjects by the different classifiers, 
including CR, Sensitivity and Specificity. 
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TABLE V 

AVERAGE PERFORMANCE INDEXES FOR THE DIFFERENT DIS CLASSIFIERS  

Type of 
Classifier 

CR Sens. Spec. 

SVM 0.95 0.96 0.95 

ANFIS 0.90 0.89 0.92 

LRNN (0.89) (0.87) (0.91) 

FFNN 0.81 0.81 0.81 

LR 0.75 0.78 0.72 

Performance Index (CR), Sensitivity (Sens.) and Specificity (Spec.). 
LRNN values are computed on the first 10 subjects only (in brackets). 

 

SVM shows the better performances, with respect to all the 
performance indexes; it is worth to note here that there is a 
good balance between Sensitivity and Specificity, meaning 
that the model is able to recognize and classify both positive 
and negative instances (this is really important, because in 
real-world, the driver is not distracted most of the time). This 
tendency can be found also for the other classifiers, even if 
ANFIS and LRNN show higher values for specificity rather 
than for sensitivity. 

Let’s consider now other parameters, in addition to 
performance. The training time for the best performances of 
FFNN model took about 99.89s on average for the whole 
dataset , while the training time of SVM models took 47.06s . 
Similarly, for LRNN, we have 148408.7s on average and 
13804s for ANFIS. 

Although SVM training time is the lowest, nonetheless also 
response time is crucial and under this viewpoint, the NN-
based models are usually better. In fact, while SVM has to 
compute a Kernel function every time, neural networks have 
an infinitesimal response time, once the weights and the 
topology have been defined. So, the delay coming from data-
reduction and response time of the models, has to be 
evaluated, since the final choice can depend also on the 
application.  

VI. DISCUSSION 

The idea to use ML techniques to detect driver’s distraction 

is not completely new. In particular, [9] and [38] suggest that 

there are basically three approaches to such a recognition 

problem: monitoring driver’s perception; monitoring driver’s 

steering and lane keeping behavior; recognizing driver’s 

involvement in a given secondary task. Despite the fact that 

different classification methods can be found in literature to 

detect distraction or inattention while driving, nevertheless, 

since the mental state of the driver is not directly observable, 

no simple measure can weight distraction precisely and 

thereby all traditional methods show some limits [41].  In this 

context, the predominant approach is to use ML techniques, 

which seem to be much more appropriated for this type of 

classification problem. From a more “philosophical” point of 

view, one of the most ambitious goals of automatic learning 

systems is to mimic the learning capability of humans and 

humans’ capability of driving is widely based on experience, 

particularly on the possibility to learn from experience. From a 

more technical point of view, data collected from vehicle 

dynamics and external environment are definitely non-linear. 

From literature, several studies have proved that in such 

situations ML approaches can outperform the traditional 

analytical methods. Moreover, also human’s driver mental and 

physical behavior is non-deterministic [42]-[45].  

On the other hand, vehicle dynamics data are user, road and 

situation dependent and therefore the classifiers, based on ML 

techniques, are strongly tailored to the conditions and situation 

that are selected for the training phase. In fact, we suggest to 

build a specific model for each driver, and for each situation. 

How to adapt and generalize such a model to other situations 

is still an open problem worth to be investigated. 

In our opinion, the most representative works are [1], [9], 
[46], [48], [41] and [24], since more strongly related to our 
research and they have been a source of inspiration for us.  

In particular, the predominant approach is to use static 

classifiers such as support vector machines (SVMs). Liang et 

al. developed real-time methods for distraction classification 

using Support Vector Machines [46] and Bayesian Networks 

[48]. Their results are comparable to ours, since in [46] they 

achieved a best performance of more than 95%, while in [47], 

modeling the dynamic of driver’s behavior by using a 

Dynamic Bayesian Network (DBN), led to accuracies of about 

80.1% on average. However, here, the authors pointed out that 

time dependencies are highly relevant when predicting the 

current state of a driver. Our best case was > 96%, so – 

considering also the differences in the experiments, even if 

both carried out in a driving simulator – absolutely comparable 

with their best result of 95%. By the way, it is worth noting 

here that such comparisons can only be indicative, since the 

datasets are different for each case and also the methods and 

the tools used for training are not the same. 

Similar approaches toward driver behavior or driver state 

estimation that model contextual information via DBNs or 

Markov models can also be found in [17] and [49]. Another 

promising approach can be found in [41], where SVMs are 

used to detect driver distraction based on data captured under 

real traffic conditions, resulting in accuracies of 65%–80%. 

Features are thereby computed from fixed-length time 

windows, i.e., the amount of context that is incorporated into 

the classification decision, is predefined.  

Other classification strategies include the application of 

fuzzy logic or neural networks ([34], [37] and [38]). 

In addition, it is worth to mention here two specific and 

recent works: in the former [1], Ersal et al., propose a 

framework to study the individual effects of secondary tasks 

and classify driving behavior. They illustrate that the different 

effects of secondary tasks on different drivers can be studied 

using a model-based approach. Furthermore, they point out 

that using the model-based framework in conjunction with 

SVMs helps systematically classify driving behavior as 

distracted or non-distracted. In details, this SVM classifier is 

used with a radial-basis neural-network-based modeling 

framework, developed to characterize the normal driving 

behavior of a driver when driving without secondary tasks. 
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Such a developed model is then used in a scenario of driving 

with a secondary task to predict the hypothetical actions of the 

driver: the difference between the predicted normal behavior 

and the actual distracted behavior gives individual insight into 

how the secondary tasks affect the driver. When this 

framework is used together with SVM, it can help 

systematically classify normal and distracted driving 

conditions for each driver. So, what is really interesting here is 

that authors consider a model-based approach, where eye-

tracker or gaze data are not present; however, in order to build 

the target-set, they state: “for the purposes of the classification, 

all the instances in normal driving are labeled as vigilant and 

all the instances in driving with secondary task are labeled as 

distracted”. This seems to be inadequate to our scenarios. 

In the second [9], Wöllmer et al., introduce a framework 

and a technique for online driver distraction detection based on 

modeling contextual information in driving and head tracking 

data captured during test drives in real traffic. Their approach 

is based on long short-term memory (LSTM) Recurrent Neural 

Networks (RNN), exploiting their ability to capture the long-

range temporal evolution of data sequences, in order to 

reliably detect inattention and can be seen as a basis for 

adaptive lane-keeping assistance. The amount of contextual 

information that is used for classification is thereby learned by 

the LSTM network itself during the training phase. This 

LSTM recurrent neural networks enable a reliable subject-

independent detection of inattention with an accuracy > 95%. 

Thereby, they claim that LSTM framework significantly 

outperforms conventional approaches such as support vector 

machines (SVMs). 

There are two aspects for which this activity is very 

interesting for us. Firstly, it is based on data collected on real-

car prototype vehicles, while our data are acquired from a 

driving simulator. Secondly, they address the distraction 

caused by IVIS (visual and manual), so similar to ours, 

obtained by SURT. Even though a real comparison on the 

same data has not been done, we obtained similar results with 

SVM on the same task, so as they claim LSTM outperforms 

SVM, it would be interesting to try their approach on our data. 

With respect to all these works, our adequate and significant 
contribution is twofold. The first concerns the comparison of 
different classification techniques, many of them not 
considered enough in literature (e.g. ANFIS). The second 
mainly concerns a different use of input features for the 
classifiers. In fact, most of the aforementioned works used eye-
tracker information as inputs to the classifier. When using the 
simulator, it is relatively easy to have eye-tracker data, but in a 
real-time application in the car, this is extremely difficult, 
since there are several limitations. The first concerns the 
problem of integration: a dedicated camera and related ECU is 
needed and has to be integrated into the cockpit of the vehicle 
(with the associated problems of design and costs). Second, 
although the information provided by eye-tracker device are 
absolutely useful, nonetheless they require – for example – that 
the drivers do not wear sunglasses or glasses, or eye make-up, 
because these conditions may negatively affect tracking 

accuracy [46]. Moreover, there is the problem to obtain 
consistent and reliable sensor data. Eye trackers may lose 
tracking accuracy when vehicles are traveling on rough roads 
or when the lighting conditions are variable. Of course, the use 
of other physiological measures (such as heart rate or 
respiration rate, skin conductance, etc.) can provide other 
excellent indicators, but they are even more intrusive and 
difficult to use in real-time in the ordinary cars. In this context, 
our challenge was to provide a data-mining based method, 
which does not require the mandatory use of eye-tracker 
information (or other physiological measures) for the 
classification phase, but it is based only on vehicle dynamic 
data. 

In addition, this research has proved an excellent method to 
personalize the model; on one side, a “generic” distraction 
classifier is easier to be extensively applied and trained; 
however, on the other side, the performances obtained with the 
application of specific model for each driver are definitely 
better. Perhaps, this is a direction to take into account in the 
distraction classification field, since different drivers respond 
to external or internal stimuli – which are responsible of 
distraction – in very different manner, as our data proved. 

Finally, with respect to our previous research [24], we have 
extended the analysis both in terms of the ML classification 
techniques investigated (more models) and in terms of the 
number of subjects for the experiments (more data-points). In 
such a way, the results and – above all – the comparisons are 
much more representative and meaningful. 

All in all, some limitations are anyway present in this 

research. First, with reference to the works of Liang and 

Wöllmer ([47] and [9]), it would be interesting to explore in 

more details the approach based on modeling the dynamics of 

driver behavior, rather than the static network, in order to 

possibly improve the generalization capability of the classifier 

itself. So, one of the next steps of our research will involve the 

use of Dynamic Bayesian Networks and/or of Hidden Markov 

Models. Furthermore, a deeper investigation of the LRNN 

classifier will be carried out, due to the very promising results 

achieved by [9]. In particular, the use of different methods to 

cluster the data can be considered (e.g. different values for the 

moving average and also to use the window length as an 

optimization parameter for the classifier as well), despite the 

fact that such networks have been extremely long to train. In 

fact, one key point to consider, as highlighted by [55], consists 

in taking the time history into account. This has been already 

done in some way in the pre-processing phase of this research, 

but as future steps, this information can be included already in 

the features, in order to benefit all ML approaches.  

A second fundamental aspect concerns the need to collect 

and then to perform tests directly on road data coming from a 

real prototype car. We have proved that our model can run in 

real time, but we have assessed it using a driving simulator. In 

fact, as pointed out by [52] and [53], it is necessary to attempt 

validation of such research by making comparisons of 

simulated driving with real road driving. An absolute 

validation study of driver distractions during real road driving 

compared to simulated driving would require a comparison of 
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different levels of distractions, using the road characteristics of 

the real roads in the simulator and running the same subjects 

under simulated and real conditions. This activity is foreseen 

as future research for us and if we could use online data, it 

would be really interesting to compare our results with those 

achieved by Wöllmer et al. In addition, as mentioned in [54], 

Greenberg et al. indicated that motion cueing may have a 

strong impact on lateral driving PIs when disturbances 

(secondary tasks) are present. This point has to be consider as 

well, in order to verify if the features we used are meaningful 

in real driving situations. Currently, we can say that other 

works, such as [9], have already considered and used them.  

Finally, we want to test our distraction classifier in a more 

diverse set of conditions and scenarios (in simulator or real-

traffic); in this work we have mainly investigated the 

motorway, but we want to extend the experimental phase in 

urban scenarios above all, which is a fundamental step in order 

to assess the generality of our results.  

VII. CONCLUSIONS 

This paper presented an overview of different driver’s 

distraction classifiers based on ML techniques. We explored 

the performances of several models: SVM, FFNN, LRNN and 

ANFIS. All have been proved to constitute a viable means of 

detecting driver’s inattention, whose cognitive and visual 

distractions are particular forms. In the current research we 

pointed out the personalization aspect, with one specific model 

for each subject. With reference to the results illustrated in 

Section V, SVM outperformed all the other classifiers, for 

which we have obtained an accuracy comparable to the one in 

literature. Our major innovative aspect consists in not using 

eye-movements or head-movements information as inputs for 

the classifier.  

The European co-funded Integrated Project D3COS 

(http://www.d3cos.eu/), started in March 2011, allows us to 

investigate at least some of the future activities mentioned in 

the previous section. 
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