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Abstract

An immediate report of the source focal mechanism with full automation after a destructive earthquake
is crucial for timely characterizing the faulting geometry, evaluating the stress perturbation, and
assessing the aftershock patterns. Advanced technologies such as Artificial Intelligence (Al) has been
introduced to solve various problems in real-time seismology, but the real-time source focal mechanism is
still a challenge. Here we propose a novel deep learning method namely Focal Mechanism Network
(FMNet) to address this problem. The FMNet trained with 787,320 synthetic samples successfully
estimates the focal mechanisms of four 2019 Ridgecrest earthquakes with magnitude larger than Mw
5.4. The network learns the global waveform characteristics from theoretical data, thereby allowing the
extensive applications of the proposed method to regions of potential seismic hazards with or without
historical earthquake data. After receiving data, the network takes less than two hundred milliseconds for
predicting the source focal mechanism reliably on a single CPU.

Introduction

Mitigating the damaging level of earthquake hazards has been a long endeavor in seismology'=. When a
destructive earthquake occurs, real-time reporting of the earthquake parameters is of crucial importance
for immediate destruction assessment and emergency evacuations. Recent efforts have been refined
towards applying Al technologies to estimate the source parameters because of its full automation, high
efficiency, and human-like capability*®, which has been remarkably demonstrated in numerous seismic
processing tasks such as earthquake detection’#, seismic phase picking®'!, magnitude estimation'?,
and other tasks'3’. Besides reporting the three basic parameters of an earthquake (i.e., origin time,
location, and magnitude), it is also exceedingly important to derive the source focal mechanism in time to
better understand various aspects of the earthquake. For example, we can use source focal mechanisms
to characterize faulting geometry and faulting mechanism'%2%. A group of focal mechanisms can be
used to invert the spatial stress field distribution?'23. We can also use the focal mechanism of the
mainshock to calculate the static Coulomb stress changes?42¢ for examining the earthquake triggering
theory of the aftershocks?’2°. Furthermore, the timely derived source focal mechanism can provide
significant additions such as fault orientation and slipping mode to the point-source ground motion
prediction model that is currently in practice3?32 and thus has the potential to help improve the predicted
ground shakings for early warning purpose. The immediate determination of the source focal mechanism
is therefore of great importance to monitor and assess seismic hazards.

Compared to determining other source parameters of an earthquake (i.e., origin time, location, and
magnitude), the estimation of the source focal mechanism usually requires much more human
interactions and it is lack of full automation and efficiency. Approaches for conventionally resolving the
focal mechanism mainly have three categories based upon the waveform information used, such as first
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motions of P-waves®334 amplitudes of P- and/or S-waves3°3°, and full waveforms3/:38. After receiving
the seismic data, these conventional methods usually take minutes to tens of minutes for retrieving the
focal mechanism solution and hence incapable of realizing the real-time reporting. Recent progress that
took advantage of an advanced search engine was performed?® to estimate earthquake source
parameters in less than one second. Although this approach reduces the time cost significantly, its
implementation may be infeasible and impractical since it requires a tremendous search database
(~hundreds of Gigabits) for each upcoming search. Besides, the search engine approach needs to
reorganize the recorded waveforms as one-dimensional (1D) super trace and it is infeasible in
implementation. Hence, the challenge remains in the full automation and practical implementation for
real-time determination of the source focal mechanism.

In this study, we leverage the powerful advances in deep learning and propose a novel deep convolutional
neural network (FMNet) for estimating the source focal mechanism rapidly using full waveforms. Unlike
common applications, in which the training of supervised neural network models demand voluminous
real data, the proposed FMNet here can be trained with synthetic data at first and then applied to real
data directly. FMNet learns the universal characteristics of waveforms concerning the source focal
mechanisms from the synthetic training data. This considers the scenarios without enough historical
source focal mechanisms for training the neural network model, especially for those regions with limited
seismicity but having the potential seismic hazards. For generating the large training dataset, we
discretize the three-dimensional (3D) grid space of the study area of interest. We simulate theoretical
waveforms with a variety of focal mechanisms at each spatial grid point. We train the FMNet model with
the synthetic dataset and then apply it to predict the focal mechanisms of four real earthquakes with
magnitudes larger than 5.4 of the Ridgecrest sequence which occurred in July 2019 in southern
California. Additionally, we produce a by-product of the encoder, which is a sparse representation of the
input waveforms, to analyze the working mechanism and robustness of the FMNet.

Results

Study area and data preparation. The study area is located in the region of Ridgecrest in southern
California (Fig. 1), where a damaging earthquake sequence proceeded by an Mw 6.4 foreshock and
followed by an Mw 7.1 mainshock in July 2019. Four moderate-to-large earthquakes (Mw>5.4) in the
sequence are selected for this study. We collect the three-component (3-C) seismograms from 16
seismometers that are deployed by Southern Californian Seismic Network (SCSN) around the Ridgecrest
area. They are utilized as the testing data for examining the validity of the proposed FMNet. Before the
applications of the FMNet model, sufficient training data are vital for assuring a well-trained neural
network. Here, instead of using the historic data, we simulate hundreds of thousands of synthetic data as
training data since there are very limited source focal mechanisms of historical earthquakes available in
this area.
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As shown in Fig. 1, the study area is discretized from 35.4° to 36.2° in latitude direction, from -118.0° to
-117.2° in longitude direction, and from 2 km to 20 km in depth. The intervals are 0.1°,0.1°, and 2 km for
latitude, longitude, and depth, respectively. We have 9 9 10 = 810 virtual grid locations in 3D space.

1

Assuming a double-couple source model*? and a 1D velocity model of southern California*!, we simulate

the 3-C waveforms at 16 seismic stations by adopting the Thompson-Haskell propagator matrix*2. For
each virtual 3D grid, we simulate synthetic waveforms for all combinations of the strike, dip, and rake
angles in the ranges of 0° to 360°, 0° to 90°, and -90° to 90°3/, respectively. The used intervals of the strike,
dip, and rake angles are 30°, 10°, and 20°, respectively. Hence, we have 12 9 9=972 focal mechanisms for
each virtual grid and overall 810 972=787,320 synthetics as training samples, of which each sample
contains the 3-C waveforms of 16 seismic stations with the time length of 128 seconds. We use 1 second
as the sampling rate in all the simulations. Therefore each training sample has the size of 48 (three
components by 16 stations) 128 (data length). Additionally, we have prepared another 1,000 synthetic
samples as validation dataset. The validation dataset serves as unseen data to evaluate the trainig
performance.

The training samples are processed by filtering between 0.05 Hz to 0.1 Hz, aligning with the theoretical P-
wave first arrivals, and normalizing to the maximum amplitude. These preprocessing procedures are
important because they help us get rid of the effect from other source parameters such as location and
magnitude and mitigate the dependence on the heterogeneity of velocity medium. Considering the real
data may present noise and picking errors, we resemble realistic scenarios by adding realistic noise and a
random time shift (<10 s) to the synthetics (Supplementary Fig. S1). We process all the synthetic data in
the same way and use them to train the network. After the FMNet is well trained, in case that one real
earthquake is identified with the existing algorithms of automatic detection and phase picking’™"?, we first
remove their instrument responses and then perform the bandpass filtering, arrival-time alignments, and
amplitude normalizations on the data prior to feeding them to the FMNet.

FMNet training and prediction. The framework of the real-time determination of the source focal
mechanism is presented in Fig. 2. It consists of two parts: FMNet training and prediction. For the training
part, we train the FMNet with the synthetic data prepared previously along with the corresponding training
labels. We describe the architecture of the FMNet, training labeling, and the associated training
parameters in the method section. In the training process, both the training and validation losses, and the
goodness of fitting between true and predicted labels of validation data are viewed as metrics to evaluate
the performance of the training process (Supplementary Fig. S2 and Fig. S3). The stabilized training and
validation loss curves after 50 iterations with sufficiently low resultant values and the high fitting level of
between true and predicted labels both indicate that the FMNet has been stably trained. When it comes to
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the prediction part, we can directly feed the processed recordings of a real earthquake into the trained
FMNet to predict the source focal mechanism. The time cost of the training process may take hours to
days, which depends on the size of the training samples, the complexity of the neural network, and
computer capability. However, once well-trained, the designed FMNet can output a focal mechanism
solution in only 196 milliseconds on a single CPU. Moreover, the trained network model can be deployed
to estimate the source focal mechanisms in areas of interest permanently.

FMNet prediction results. The source focal mechanisms of four large earthquakes (Mw>5.4) in the
Ridgecrest sequence are estimated with the trained FMNet. We show these results as red beach balls in
Fig. 3. The predicted focal mechanisms generally reveal the strike-slip faulting with very steeply dipping
fault planes. Among them, the three focal mechanisms in the southern region, including the Mw 6.4
foreshock and Mw 7.1 mainshock, demonstrate pressure axes in the north-south direction and tension
axes in the east-west direction. The other one in the northernmost region shows a slight rotation in the
fault plane azimuth. For comparison, we also plot the focal mechanism results from the SCSN moment
tensor catalog as reference solutions (in black) in Fig. 3. We can see that the predicted focal mechanisms
by the FMNet and the reference focal mechanisms from the SCSN catalog are essentially consistent for
the three earthquakes in the southern region, considering the differences in methods, parameterization,
velocity model, and the amount of recording stations used. The northernmost event is not included in the
SCSN catalog for comparison. For this event, we conduct the widely used generalized Cut-and-Paste
method (gCAP)38 to invert its focal mechanism as shown in grey. We observe that the inverted focal
mechanism and the predicted focal mechanism match well for this event. Moreover, the slight rotation of
fault azimuth is consistent with the distribution pattern of the aftershock event locations (grey dots).
Comparing to other studies regarding this earthquake sequence?22343 the predicted focal mechanisms
by our FMNet are essentially consistent with previous results. All these results demonstrate that the
proposed FMNet enables us to determine the source focal mechanisms effectively. Additionally, the
trained FMNet only takes 196 milliseconds with a minimum requirement of computing resources and
memory storage, which outperforms both the conventional methods and the fast search method.

The comparison of waveforms is the most straightforward way to evaluate the predicted results. For this
purpose, we simulate the synthetic waveforms using the predicted source focal mechanisms by our
FMNet and analyze the similarity between real waveforms and synthetic waveforms (Supplementary Fig.
S4). After comparison, we find that both the amplitude and phase information of waveforms across
different seismic stations are overlapped well and the computed cross-correlation coefficients reach 0.86,
which indicates that the FMNet has learned the ability to recognize the waveforms and mapping them to
the corresponding source focal mechanism solution reliably.

Page 5/19



Interpreting the FMNet using the encoder. To further investigate the working mechanism of our FMNet, by
adopting a similar idea in face recognition of which the network learns a mapping from face images to a
compact Euclidean space where distances directly correspond to a measure of face similarity*44°,
output the extracted features to analyze the reliability and robustness. The last layer of the compression
part of the FMNet is exported as a by-product of the encoder (see Fig. 6 and Method section for details).
After training, this encoder can take any training input with the size of 1 48 128 and output the extracted
feature with the size of 128 1 1. With the encoder, we verify the hypothesis that a measure of feature
similarity in feature domain is equivalent to a measure of waveform similarity in data domain through
adopting the following steps: first, we calculate the extracted features using the encoder for the whole
training dataset to build an encoded database in feature domain. Then, we calculate the extracted
features of the data that records a real earthquake. Finally, we measure the L2-norm misfits between the
encoded database of training data and the encoded features of the real data in feature domain. For
comparison, we also calculate the L2-norm misfits in data domain measuring the waveform differences
between real data and training database. By finding the smallest L2-norm misfit, if the retrieved best
solution in feature domain corresponds to the best solution retrieved in data domain, we can therefore
validate the above hypothesis.

we

We take the Mw 6.4 foreshock as an example. With the steps illustrated above, we display the
comparison of L2-norm misfit distributions that are calculated in data domain (in red) and in feature
domain (in black) in Fig. 4a, after ranking in ascending order. Since the whole training dataset is too large,
we plot only the first 5,000 smallest misfits for clarification. We can see that the L2-norm misfit
distributions calculated in data domain and feature domain present a similar shape. Meanwhile, Fig. 4b,
4c, and 4d show the corresponding training labels of the strike, dip, and rake angles for the L2-norm
misfits in feature domain (the black curve in Fig. 4a). By finding the smallest L2-norm misfit, the retrieved
best solution of the strike, dip, and rake angles in feature domain are highlighted as magenta circles.
Then we compare the best solutions retrieved in data domain and feature domain as shown in Fig. 5. We
can observe that the best solution retrieved in feature domain (in magenta) matches well with the best
solution that is retrieved in data domain (in red). These analyses and comparison results validate our
hypothesis that the extracted features in feature domain maintain the essential information of the
original waveforms in data domain under the least-square sense, thus the extracted features are sufficient
to identify its corresponding source focal mechanism. Moreover, the 10 best solutions (in magenta and
black) retrieved in feature domain are generally consistent with minor variations, which illustrates the
stability of the trained network.

From the above analysis, the compression part of our FMNet (i.e., the encoder) can be interpreted as a
sparse transformation of the input waveforms, where the input data have been compressed from 1 48
128 t0 128 1 1 in size by a decreasing factor of 48 times while keeping the key information in the data.
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The encoder also provides an alternative way to rapidly retrieve the best-matched source focal
mechanism by searching in the dataset with encoded features that are prepared with the training data in
advance. The expansion part of the FMNet mainly takes these extracted features to reconstruct a
mapping function that yields the Gaussian distributions to represent the three angles of a focal
mechanism. We address all these analyses presented in this section are for understanding the working
mechanism of the FMNet and also for robustness analysis. When the proposed deep learning
methodology is applied in a real case, we can directly feed the real data into the well-trained FMNet and
output the focal mechanism rapidly. The intermediate output of the extracted feature maps can be used
to further evaluate the reliability of the solution.

Discussions

The proposed FMNEet is a novel deep-learning-based intelligent algorithm that allows us to estimate the
source focal mechanism in less than 200 milliseconds after receiving the data with full automation.
Compared to currently available algorithms, the proposed FMNet can not only determine the focal
mechanism much faster but also independent of the heavy database for searching. The FMNet extracts
and learns the essential features of the waveforms from the training dataset, thereby memorizing all the
information into the neural network, and hence re-visiting the database is unnecessary. The proposed
FMNet only stores the neural weights of a few Megabytes for the memory usage, which makes the FMNet
much more feasible and applicable for automatic real-time applications. Our study also reveals that we
can train the FMNet on the synthetic dataset and it is independent of historical earthquake data, which
shall allow the extensive applications of the proposed method to areas with low seismicity but high risks
of potential earthquake hazards. Besides, the successful application of Al in determining source focal
mechanism shows that advanced Al technologies can handle much more complex data patterns other
than those in detection, picking, location, etc.”!"
resolving the complexity of earthquake process.

, and hence it may significantly provoke further studies in

Although our case study has used the long-period waveforms, the proposed deep learning method can be
theoretically extended to early P-waves with a finer 3D earth structure and an accurate modeling tool for
preparing the training data of early P-waves, which shall make this method more practical in real-time
monitoring or early warning applications. Increasing the size of the monitoring area or increasing the
number of recording stations will certainly increase the training time, but it will not increase the
computation time significantly in prediction since the FMNet only requires extremely few computing
resources for implementing the prediction. Combining with current efficient algorithms’-": 1516 for other
source parameters (i.e. detection, location, and magnitude), we are able to estimate all the source
parameters at once for real-time seismic hazard assessment.
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Beyond the point-source assumption used, adopting the advanced modeling techniques*®8, we may
also use the finite-fault rupture model to simulate the theoretical waveforms of larger earthquakes ( 6.5)
to train the network. Similarly, the trained network could have the potential to rapidly recognize the finite-
fault mechanism and retrieve valuable information of the rupturing process such as the slip velocity, fault
dimension, and rupture directivity*>>" in real-time. The proposed methodology may provide an alternative
way to largely accelerate the timeliness of solving these parameters and hence help predict the expected

ground shakings more accurately for issuing an early warning.

Rather than other deep learning applications’'® where numerous earthquakes are tested, the current
FMNet is only evaluated on four earthquakes with magnitudes larger than 5.4. This results from the
limitation of historical moderate-to-large earthquakes that occurred in the study area. Hundreds of
earthquakes below Mw 5.4 could not be used for testing because of their low-quality signal in the used
frequency band. These smaller earthquakes generally contain higher frequencies and it is challenging to
model the high-frequency theoretical waveforms with a simple 1D velocity model. After testing, we find
the conventional methods (such as gCAP) also fail to invert the source focal mechanisms with a 1D
velocity model for these smaller earthquakes. With a finer 3D velocity structure and an efficient waveform
modeling tool?3, our method shall be extended to smaller earthquakes as long as the synthetic training
data can be well modeled to match the real data. Nonetheless, moderate-to-large earthquakes (Mw>5)
especially those that might cause destructive damages are our main target of this study. Besides, the
reliability toward evaluating the FMNet output is very important for reporting source focal mechanisms.
We have used the by-product of the encoder to interpret the working mechanism of the network and we
find the network is explainable. We can employ the encoder analysis as introduced previously to monitor
the effectiveness and robustness of the FMNet. We are further able to assess the predicted solutions of
FMNet through the waveform comparison between the real and synthetic data in practice.

In the proposed method, the FMNet does not require the pre-knowledge of the location or depth of a real
earthquake as long as it is within the monitoring area, since we have included all 3D grid locations in the
training data. After testing, we find that it is currently challenging for the proposed FMNet to recognize the
focal depth. This is mainly because the waveform differences concerning different focal depths are much
smaller than concerning different source focal mechanisms. Variations of earthquake depth cause very
minor changes in waveforms (Supplementary Fig. S5). The designed FMNet learns the general energy
pattern in the waveforms, but it is currently not able to recognize the minor waveform differences to
distinguish different focal depths. Determining the best focal depth via deep learning would require an
independent effort and it is out of the scope in this study.

Method
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FMNet architecture. The neural network we design is in the category of Fully Convolutional Network
(FCN). FCN is a supervised deep learning network mainly based on convolutional layers but without fully
connected layers and it has the merit of fewer model parameters and high computing efficiency®?. Fig. 6
shows the architecture of the FMNet containing a bunch of Convolutional layers, MaxPooling layers,
UpSampling layers, and also with some necessary operations such as LeakyRelu and
BatchNormalization. There are 16 trainable layers. The input to the FMNet is a two-dimensional (2D)
array representing the 3-C waveforms from 16 seismic stations. The output of the FMNet is three
Gaussian probability distributions of the three angles of the focal mechanism. FMNet consists of two
parts: a compression part that extracts the features of the input waveforms and an expansion part that
transforms the extracted features to yield the output label of the focal mechanism.

In the compression part, the FMNet gradually compresses the input data from the size of 48 (three
components by 16 stations) 128 (data length) to 1 1, by downsampling the input data layer by layer. At
the same time, the number of filter channels gradually increases from 1 (channel of input) to 128. The
data size has been changed from 1 (channel of input) 48 (three components by 16 stations) 128 (data
length) to 128 (channels after compression) 1 1. The compression part of the FMNet can be regarded as
an encoder process that compresses the data size by a factor of 48 times. The encoder is also exported
as a by-product in this study for interpreting the FMNet. The encoder can take any waveform as input and
output the extracted data features with the size of 128 (Supplementary Fig. S6). On the contrary, in the
extension part, the FMNet gradually expands the extracted features by upsampling the features layer by
layer. The upsampling operation is only carried out in the first dimension of the data, thus the size of the
data in each channel is expanded from 1 1 to be 128 1. Meanwhile, the number of filter channels
gradually decreases from 128 to 3. For the expansion part, the data size has been altered from 128
(channels after compression) 1 1 to 3 (channels) 128 (output length) 1. Each output channel has a size
of 128 1, representing a 1D Gaussian distribution. All layers use the same configuration when employing
convolutional and pooling operations. Filter sizes are 3 3 for the compression part and 3 1 for the
expansion part since we only expand along the first dimension of data.

FMNet labeling and training parameters. We design the network as a regression problem. The training
label is three Gaussian probability distributions, in which the maximum probability of each distribution
corresponds to one component of the source focal mechanism (i.e. strike, dip, and rake). Thus the output
training label has a size of 3 128 1 (Supplementary Fig. S7). The predicted focal mechanism of the real
data can be retrieved by finding the peak values of the three output Gaussian probability distributions.
This formalization of training labels greatly helps the convergence when training the network and the
standard deviation of the Gaussian probability distribution affects the training convergence'®. After
testing, we find the standard deviation of 10 achieves a stable training convergence for our neural
network and thus is used in this study.
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Since we have designed the network as a regression problem, the Mean Square Error (MSE) option is

chosen as the training loss function®3. For the training process, the Adam method®* is tested to be
effective in our FMNet and thus it is chosen as the optimizer, though other optimizers may also work
decently. Totally 50 iterations with the batch size of 16 are implemented during the training. Besides, the

learning rate is another crucial parameter that affects the level of final convergence®>. We test different
learning rates and keeping other factors the same (Supplementary Fig. S8). The performance of each
learning rate is evaluated by the final training loss after the same training iterations. After testing, we find
the learning rate of 0.001 achieves the smallest convergence and is therefore used for the training in this
study.
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Figures

Figure 1

Grid discretization of the study area. The study area locates in the Ridgecrest region of southern
California. The range of monitoring area is about 100 km by 100 km in both latitude and longitude
directions. The 3D grid discretization has a depth range from 2 km to 20 km. 16 seismic stations (black
triangles) within 150 km are used to model the 3-C synthetic training data. Red star denotes the
mainshock in the Ridgecrest sequence.
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3D discretization to model synthetic data

Deep learning

Figure 2

Schematic flowchart illustrating the framework of determining source focal mechanism via deep
learning. First, we discretize the monitoring area of interest into 3D grids and simulate the theoretical
waveforms as training data to train a designed FMNet. Then, when a real earthquake occurs, we directly
feed the recorded waveforms into the well-trained FMNet and output the earthquake focal mechanism

directly.
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Figure 3

The application results to the July 2019 Ridgecrest sequence in southern California. Four large
earthquakes with magnitudes larger than 5.4 (red stars), including the foreshock of Mw 6.4 and the
mainshock of Mw 7.1, are tested. The determined focal mechanisms from FMNet are shown in red, and
the reference solutions from SCSN moment tensor catalog are shown in black for comparison. The
northernmost focal mechanism (grey) is inverted using gCAP method since it is not included in SCSN
Moment Tensor Catalog. Grey dots show background seismicity.
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Figure 4

Interpreting the neural network using the encoder. a The comparison of the L2-norm misfit distributions
that are calculated in data domain (in red) and feature domain (in black) for the Mw 6.4 foreshock, which
are ranked in ascending order. For clarification, only the first 5,000 smallest misfits are plotted. b, ¢, and d
The corresponding training labels represented in the discretized strike, dip, and rake angles, for the L2-
norm misfit distribution in feature domain as shown in the black curve in a. The best solutions of the
strike, dip, and rake angles retrieved by finding the smallest L2-norm misfit are highlighted in magenta
circles.
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Figure 5

The comparison of best solutions retrieved in data domain (in red) and feature domain (in magenta). The
10 best solutions (in magenta and black) with the smallest L2 norm misfits retrieved in feature domain
are also shown for comparison after ranked in ascending order.
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Figure 6

The FMNet architecture. The designed FMNet contains 16 trainable layers as well as MaxPooling,
UpSampling, LeakyRelu, and BatchNormalization layers. The input data have the size of 1 (channel of
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input) x 48 (3-C waveforms of 16 seismic stations) x 128 (trace length). The left part of the FMNet
gradually compresses the input data from 1x48x128 to 128x1x1, and then the right part of the FMNet
gradually expands the extracted features from 128x1x1 to 3x128x1 as the output of three Gaussian
probability distribution representing the three angles of the focal mechanism. The intermediate layer of
the encoder, with the size of 128x1x1, is also exported as a by-product to interpret the neural network.
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