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ABSTRACT This study proposes a new real-time diagnosis method for an in-wheel motor (IWM) of an

electric vehicle (EV) based on dynamic Bayesian networks (DBNs). Since the electrical signal of the vehicle

power supply is unstable because of the interference resulting from the EV’s frequent acceleration and

deceleration, the IWM’s vibration signal is focused. Symptom parameters (SPs) in the time and frequency

domains are used to represent different features of the vibration signals in the actual operating conditions

of the EV. To select highly sensitive SPs, stable average discrimination rate (SADR) is proposed, which

consists of the average discrimination rate (ADR) and the stability coefficient of the group (SCG). Moreover,

DBNs are employed to establish amodel for the real-time diagnosis of the IWM’smechanical faults, in which

the parameter of road-speed-time slice (RSTS) is used to solve the problem that the state transition probability

distribution between two continuous time slices cannot be obtained. Finally, the effectiveness of the proposed

methods is verified by experiments using the IWM test bench.

INDEX TERMS Dynamic Bayesian networks, electric vehicle, in-wheel motor, real-time diagnosis, road-

speed-time slice.

I. INTRODUCTION

Because of environmental pollution caused by conventional

fuel vehicles, the development of efficient and environmen-

tally -friendly alternative energy vehicles has been upgraded

to the national strategic level [1]–[4]. Due to outstanding

advantages such as simple and compact structure and high

transmission efficiency, electric vehicles (EVs) powered by

multiple in-wheel motors (IWMs) have become a research

focus in the field of alternative energy vehicles [5]. IWM

technology is one of the core technologies of EVs. However,

an IWM is installed in a small hub space, resulting in sig-

nificant impacts on its performance, such as magnetic field

saturation, torque ripple, and load mutation [6], [7]. Further-

more, variable vehicle driving conditions and complex road

conditions can lead tomechanical faults in IWMs, resulting in

vibration intensification, efficiency reduction, and tempera-

ture increase. If an IWMoperates long term undermechanical

The associate editor coordinating the review of this article and approving
it for publication was Dong Wang.

faults, damage such as performance degradation of the insula-

tion material and friction between stator and rotor may occur

and cause secondary faults such as wire winding damage,

inter-turn circuit, and interphase short circuit faults, which

affect driving safety. Therefore, it is necessary to conduct

real-time monitoring of the IWM’s operating condition and

fault diagnosis to improve the accuracy and timeliness of

identifying the IWM’s faults.

In conventional motors, electrical signals have been used to

monitor the motor’s operating condition and diagnose some

faults. However, the electrical signal of the vehicle power

supply is unstable because of the interference resulting from

the EV’s frequent acceleration and deceleration; therefore,

the IWM’s vibration signal is focused. Moreover, vibration

signals contain abundant state information of the equip-

ment and have the advantages of strong anti-interference

ability, as well as the ability to provide information on

slight faults [8]–[10]. Methods for monitoring and diag-

nosing the operating conditions of mechanical equipment

based on vibration signals have developed rapidly in recent
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years [11]–[15]. In 2014, an intelligent diagnostic method

based on the characteristic signals of the best fault fre-

quency region extracted from vibration signals using sta-

tistical filtering, support vector machine, possibility theory,

and Dempster–Shafer (D-S) evidence theory was proposed to

conduct a fault diagnosis of a centrifugal pump system [16].

In 2017, a novel machine learning method called artificial

hydrocarbon network was used to extract fault features from

vibration signals for the fault diagnosis of sealed deep groove

ball bearings [17]. Besides, another intelligent diagnostic

system based on the optimal set of feature parameters with

a support vector machine was developed to identify different

faults in the same year [18]. In 2018, a step-by-step fuzzy

diagnostic method based on the symptom parameters (SPs) in

the frequency domainwas proposed for the diagnosis of struc-

tural faults of a rotating machine using trivalent logic fuzzy

diagnosis (TLFD) [19]. Moreover, a signal feature extraction

and fault diagnosis method based on a statistic filter (SF),

the moving-peak-hold method (M-PH), wavelet package

transform (WPT), and decision tree was proposed for the

fault diagnosis of low-speed rotation machinery [20]–[25].

To some extent, these methods promoted the development

of on-line monitoring methods to determine the status of

rotating machinery. However, the recognition rate for the

operating conditions of IWMs is lower than expected because

of the complex running environment of IWMs and the large

fluctuation in the vehicle power supply used in EV; therefore,

existing methods do not meet the requirements for the safe

operation of the vehicle.

Dynamic Bayesian networks (DBNs) combine multiple

features related to target types at different moments and

represent a tool for the modeling and inferring of dynamic

uncertain events; this method thus overcomes the limitations

of relying on a single feature [26]–[28], [29]. DBNs have

been applied in the area of fault diagnosis in recent years.

For example, an innovative approach based on the DBN

framework was introduced for the fault detection, identifica-

tion, and recovery (FDIR) of autonomous spacecraft and the

approach was implemented using onboard software architec-

ture in 2014 [30]. In 2016, an electronic equipment health

diagnosis system was established based on a three-stage

amplifier circuit Bayesian evaluation model of three health

states [31]. Also, a fault diagnosis approach using DBNs was

proposed to identify the component faults and distinguish the

fault types of an electronic system in 2017 [32]. Additionally,

a DBN model was developed to obtain the temporal and

spatial correlations of intelligent connected vehicles (ICVs)

for accurate real-time or historic fault detection and repair in

2018 [33]. In this paper, a new real-time diagnosis method

based on DBNs is proposed to determine the mechanical

faults of an IWM and the stable average discrimination rate

(SADR) is presented to select multiple highly sensitive SPs

that are regarded as the IWM’s running states as an input

to the diagnosis model. In Section II, the IWM test bench

is introduced; it simulates the actual operating condition of

the IWM in the EV and includes the IWM’s installation

position, vehicle power supply, road shock, and vertical loads.

In Section III, the SADR is defined and the performance of

four highly sensitive SPs in the time and frequency domains is

described. In Section IV, a Gaussian mixture model (GMM)

and different transition probability distributions of two road-

speed-time slices (RSTSs) are used to develop a real-

time diagnosis model; the model performance is verified

using practical experiments under different speed and road

conditions.

II. IWM TEST BENCH FOR FAULT DIAGNOSIS

A test bench based on the actual operating conditions of

the IWM in an EV was designed, as shown in Fig. 1.

The main structure consists of an electric wheel clamp,

a shock absorber, an electric wheel (IWM mounted in a

housing), a drum roller support, an INSTRON single channel

electro-hydraulic servo test system, a pressure sensor, and

an acceleration sensor. The acceleration sensor is used to

acquire vibration signals of IWM and the placement is shown

in Fig. 1. The test data were collected using an LMS multi-

function data acquisition instrument with sampling frequency

of 12.8 kHz and sampling time of 45 s. In the experiment,

the hydraulic vibration platform is raised to contact the roller

support frame. When the double rollers on the support frame

are in contact with the electric tire surface and the pressure

reaches a predetermined value for simulating the vertical

load of the vehicle on the electric wheel, the electric wheel

starts working. After the speed of the electric wheel reaches

a certain value, different levels of the road load spectrum are

input to the INSTRON single-channel electro-hydraulic servo

test system for simulating the operation of the electric wheel

on the road surface. Then three road levels of A, B and C are

set for the IWM test. To ensure that the bench test closely

approximates a real vehicle test, the power supply system

provided by the EV is used to supply electricity and control.

In practical application, there are many mechanical faults

of the IWM [34]. In this paper, bearing outer race fault of the

IWM is selected as a typical fault, and the fault was artificially

made by awire-cuttingmachine. The degree of bearing defect

was the width of 0.5 mm and the depth of 0.5 mm, as shown

in Fig. 2.

In real operation, the vibrations of IWM contain the

noises from changing environment such as the disturbance of

dynamic load over suspension of the vehicle. Then, an inter-

ference source with a frequency of 250 Hz is attached close

to the IWMbearing to cause interference vibration signals for

simulating the noises.

In the study, the RIICH M1-EV weighing 1060 kg is used

as the research prototype. The operation of the test bench is

simulated by assuming that the EV is operated by a driver

weighing 60 kg on different road levels including levels A,

B, and C. The predetermined value of the pressure sensor is

280 kg, which is one-quarter of the total weight of the vehicle

and the driver. Moreover, the power supply and inverter of

the EV are used to obtain different speeds of the IWM.

In the experiment, the normal and abnormal states of the
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FIGURE 1. IWM test bench.

FIGURE 2. Bearing outer race fault.

IWM at speeds of 10 km/h, 20 km/h, 30 km/h, and 40 km/h

were set based on the rotating speed of the IWM. Certainly,

the relationship between the vehicle speed and the rotating

speed of the IWM is as follows:

v = πd × 3.6n

60
(1)

where v is the vehicle speed. d = 0.565m, which is the

diameter of the tyre, n is the rotating speed of the IWM,which

is inputted artificially. Concretely, the corresponding values

of the vehicle speed and the rotating speed of the IWM are

shown in Table 1.

TABLE 1. The corresponding values of the vehicle speed and the rotating
speed of the IWM.

III. SELECTION OF HIGHLY SENSITIVE SPs FOR

FAULT DIAGNOSIS

The vibration information obtained during the operating

period of the IWM represents its operating conditions.

Therefore, it is vital to select and extract highly sensitive SPs
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from the vibration signals for fault diagnosis and fault-type

recognition [35]. However, the mechanical fault features of

the IWM are often concealed by the effect of different speeds

and different road levels; therefore, it is necessary to conduct

a comprehensive analysis of the normal and abnormal states

in order to obtain highly sensitive SPs. In this study, the

vibration signals are preprocessed using a bandpass filter with

100-2000 Hz to calculate 10 SPs in the time and frequency

domains. The SADR method is proposed for the selection of

sequentially highly sensitive SPs.

A. SYMPTOM PARAMETERS OF VIBRATION SIGNAL

The time-domain signal is the original basis for fault diag-

nosis. SPs in the time domain are used to identify differ-

ent types of faults because there are many parameters for

the operating information and they are intuitive and easy to

understand. The frequency-domain signal, which is a type

of time-domain signal, reflects the changes in the frequency

of the mechanical equipment’s operating status caused by

mechanical faults. Small mechanical faults can be quickly

identified by analyzing the composition and amplitude of the

frequency components. Therefore, it is necessary to analyze

the vibration signals simultaneously in the time and frequency

domain [36]–[38]. In this study, 10 SPs are pre-selected in the

time and frequency domain, respectively. P1-P5 are defined

in the time domain and P6-P10 are defined in the frequency

domain, as follows.

P1 = 1

σ 4

N
∑

i=1

(xi − x̄)4 (2)

P2 = 1

Npσ

Np
∑
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∣

∣ (3)

P3 =

√

√

√

√

1

N

N
∑

i=1
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∣ (5)

P5 =

∣

∣

∣

∣

∣

∣

1

σ 3
p

Np
∑

j=1

(xpj − xp)
3

∣

∣

∣

∣

∣

∣

(6)

where {xi} (i = 1 − N ) is the digital data of the vibration

signal. N is the number of xi. x is the mean value of {xi},

x =
N
∑

i=1

xi

/

N . σ is the standard deviation of {xi}, σ =
√

N
∑

i=1

(xi − x)2
/

(N − 1). {xpj}(j = 1 − Np) is the peak

value of {xi}. Np is the number of xpj. xp is the mean value

of {xpj}, xp =
Np
∑

j=1

xpj

/

Np. σp is the standard deviation

of {xpj}, σp =

√

√

√

√

Np
∑

j=1

(xpj − xp)

/

(Np − 1).

P6 = 1

σ 3
f I

I
∑

i=1

(fi − f̄ )3 · F(fi) (7)

P7 = 1

σ 4
f I

I
∑

i=1

(fi − f̄ )4 · F(fi) (8)

P8 =

√

√

√

√

I
∑

i=1

f 4i · F(fi)
/

I
∑

i=1

f 2i · F(fi) (9)

P9 =
I

∑

i=1

F(fi) (10)

P10 =

√

√

√

√

I
∑

i=1

F2(fi) (11)

where {fi} (i = 1 − I ) is the frequency sequence. I is

the number of half of the sampling frequency. F(fi) is

the spectrum value of fi. f is the average frequency,

f̄ = (
I

∑

i=1

fi · F(fi))
/

I
∑

i=1

F(fi) . σf is the standard variance,

σf =
√

1
I

I
∑

i=1

(fi − f̄ )2 · F(fi).

B. SELECTION OF HIGHLY SENSITIVE SPs

The sensitivity of the SPs reflects the ability of the SPs to

distinguish among different operating states of the equip-

ment. The sensitivities of different SPs are different even

if the mechanical equipment is in the same operating state.

In addition, the sensitivity of the same SP is different when the

mechanical equipment operates in different states. However,

the more sensitive the SPs are, the easier it is to distinguish

between normal and fault states. Otherwise, it is difficult to

distinguish between different states if the sensitivity of the

SPs is low. In order to select highly sensitive SPs, manymeth-

ods have been proposed such as the Principal Component

Analysis (PCA) and the distinguish index (DI) [39], [40].

The idea of PCA is to map n-dimensional features to

k-dimensional (k < n), which is a completely new orthog-

onal feature. This k-dimensional feature is called principal

component. Considering this, PCA is a good way to select

SPs. However, due to the complex driving conditions of

vehicles, the model that reduce from n-dimensional space to

k-dimensional space cannot be determined only. So the time-

liness of the PCA method is poor, which cannot meet the

requirement of the real-time diagnosis. Besides, the DI-based

method has been widely applied. The DI is defined by the

following equation:

DI = |µ2 − µ1|
√

σ 2
1 + σ 2

2

(12)

114688 VOLUME 7, 2019



H. Xue et al.: Real-Time Diagnosis of an In-Wheel Motor of an Electric Vehicle Based on DBNs

whereµ1,µ2 represent the average value of state 1 and state 2

of an SP and σ1, σ2 represent the corresponding standard

deviations, respectively. The discrimination rate (DR), which

is the ability of an SP to distinguish between two states,

is defined by (12) and is based on the DI value. The relation-

ship among the DI value, the DR value and the sensitivity of

a SP is shown in Table 2 [41]. It is apparent that the larger the

value of the DI, the larger the value of the DR is, therefore,

the more sensitive the SP is.

DR = 1 − 1√
2π

∫ −DI

−∞
e−

x2

2 dx (13)

TABLE 2. The relationship among DI, DR and sensitivity of a SP.

When using the DI-based method, it is very effective

and quick to select only one SP for distinguishing between

two states. However, the operating conditions of mechanical

equipment are complex and changeable and many faults with

different degrees can occur under any condition; therefore,

a single SP cannot provide sufficient information on the

vibration signal. Misdiagnosis may occur if one relies on only

one parameter. Therefore, multiple highly sensitive SPs need

to be selected concurrently for a more accurate diagnosis but

the performance of the DI-based method is unsatisfactory for

this purpose. In order to select multiple highly sensitive SPs at

the same time, a new method is proposed in this study; it uses

a parameter called the SADR, which consists of the average

discrimination rate (ADR) and the stability coefficient of the

group (SCG) based on the DR. Multiple highly sensitive SPs

can be selected in the following two steps using this method.

Step 1: Preliminary selection based on the ADR. The ADR

is defined as follows:

ADR = 1

R · V · G

R
∑

r=1

V
∑

v=1

G
∑

g=1

DRrvg (14)

where R is the number of different road levels. V is the

number of different speeds. G is the number of fault types.

In this study, three road levels, four speeds, and a typical

fault are considered so that R, V , and G are 3, 4, and 1,

respectively. For the description, specific symbol with the

information of road type and speed level is used to express

each IWM operating state, as shown in Table 3. DR of each

IWM operating state is shown in Fig. 3. The ADR values of

the 10 SPs are shown in Table 4.

TABLE 3. Corresponding relation of specific symbol and each IWM
operating state.

If the DR of an SP is 95%, the SP is highly sensitive to the

two operating states, as shown in Table 2. The same applies

to the ADR. That is to say, if the ADR of an SP is 95%, the SP

is highly sensitive to multiple operating states. Therefore, the

SPs in the preliminary selection are P3, P4, P6, P7, P8, P9,

and P10. However, it is crucial to maintain a balance between

the time domain and frequency domain when selecting the

SPs for better results. In this study, four highly sensitive SPs

FIGURE 3. DR of each IWM operating state.
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TABLE 4. ADR values of the 10 SPs.

are required, which means that two SPs are selected in the

time domain and two are selected in the frequency domain.

It is evident that the highly sensitive SPs in the time domain

are P3 and P4 in the preliminary selection. The problem is

the selection of highly sensitive SPs in the frequency domain;

therefore, a secondary selection is performed in step 2.

Step 2: Secondary selection based on the SCG

The stability of the SP to identify faults in different oper-

ating states can be assessed through the standard deviation

of the DR of the SP. The smaller the value of the standard

deviation, the more stable the SP is. Therefore, the SCG is

proposed to assess the stability of the whole group; it consists

of the standard deviations of the selected SPs. The SCG is

defined as follows:

SCG =
Q

∑

q=1

√

√

√

√

1

H − 1

H
∑

h=1

(DRhq − ADRq)2 (15)

where Q is the number of the required highly sensitive SPs.

H is the number of the operating states and equals R · V · G
in step 1. Therefore, Q and H are 2 and 12 respectively in the

subsequent selection of highly sensitive SPs in the frequency

domain. The SCG values of the different groups with the two

SPs are shown in Table 5.

TABLE 5. SCG values of different groups with two SPs.

The value of the SCG of the 5th group is the minimum

value and the selected highly sensitive SPs are P7 and P8
in the frequency domain. Therefore, P3, P4, P7, and P8 are

confirmed as the diagnostic SPs.

IV. REAL-TIME DIAGNOSIS OF THE MECHANICAL

FAULTS OF THE IWM BASED ON DBNS

The diagnosis of the mechanical faults of the IWM is a

dynamic process in an actual operation. Since the oper-

ating conditions vary continuously and there are many

interference factors, it is important to use a parameter to

determine whether the IWM’s operating condition is nor-

mal or not. DBNs are used to obtain dynamic probability

inference [42], [43]. This is achieved by the DBNs’ initial

network and transfer network. Since the SPs are continuous

and follow a Gaussian distribution, a GMM is used to develop

the real-time diagnostic model of the mechanical faults of

the IWM.

A. DYNAMIC BAYESIAN NETWORKS BASED ON A

MIXTURE OF GAUSSIAN OUTPUTS

DBNs usually consist of a limited number of time

slices (TSs), each of which consists of a directed acyclic

graph (DAG) and conditional probability tables (CPT) [44].

The transition probability distribution P(C t |C t−1) between

two TSs and the probability distribution of the observ-

able variables P(X t |C t ) [45] are required when DBNs are

used to for the identification and diagnosis of operating

states. Gaussian mixture output dynamic Bayesian networks

(GMODBNs) can be developed based on a GMM, which

is a special type of DBN, in which the probability distribu-

tion of the observable variables is represented by a Gaus-

sian mixture [46]. The GMODBNs in two TSs are shown

in Fig. 4.

FIGURE 4. GMODBNs in two time slices.

In the t th TS, the parent nodeC t contains the information of

N operating states of the system, C t
1, C

t
2, . . . , C

t
N . The mixed

weight node Mt contains the information of K mixed com-

ponents of the mixed model. The mixed weights mt1, m
t
2, . . . ,

mtK are reflected by the CPTs of nodeM t . The child node X t
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is a multivariate Gaussian node containing the observable

information of W features, X t1, X
t
2, . . . , X

t
W .

In the t-1th TS, the system status node is represented as

C t−1
i (1 ≤ i ≤ N ) while in the TS t , the system status node

is represented as C t
j (1 ≤ j ≤ N ) and the observable feature

node is represented asX t including all the featuresX t1,X
t
2, . . . ,

X tW . Then, the probability distribution of observable variables

can be obtained with the following equation:

P(X t |C t
j ) =

K
∑

k=1

P(X t |M t
k ,C

t
j )P(M

t
k |C t

j ) (16)

The posterior probability of the system status node in the

TS t can be calculated by the following equation based on the

Bayesian formula [47].

P(C t
j |X t ,C t−1

i ) =
P(X t |C t

j )P(C
t
j |C

t−1
i )

N
∑

n=1

P(X t |C t
n)P(C

t
n|C t−1

i )

(17)

The conditional probability distribution P(M t
k |C t

j ) of the

mixed components, the Gaussian mixture conditional proba-

bility distributionP(X t |M t
k ,C

t
j ), and the transition probability

distribution P(Ct |Ct−1) can be obtained by Bayesian param-

eter learning methods based on the sample data or expert

knowledge [48].

B. THE DIAGNOSITIC MODEL OF THE IWM AND THE

REAL- TIME DIAGNOSTIC METHOD

Traditional DBNs are unrolled in limited TSs and the transi-

tion probability distribution is the link between two adjacent

TSs [49], [50]. However, there is no iron link between the

operating state of the IWM in the previous TS and the

operating state in the current TS because of variable speed

and uncertain road levels, i.e., the transition probability

distribution between the two adjacent TSs is impossible to

obtain.When the EV driven by the IWMoperates on the road,

a sudden speed increase and higher road level will increase

the vehicle turbulence, thereby increasing the change in the

dynamic load and impact on the IWM bearing so that local

deformation of the IWM bearing can easily occur and lead

to mechanical faults [51]. If the vehicle operates on a lower

road level at lower speed, there is still a certain probability

of failure in spite of the reduced impact on the IWM bearing.

Therefore, the changes in the IWM operating state can be

described as a series of snapshots that change with the vehicle

speed and road levels. Each snapshot obtains the information

of the IWM’s operating state at a specific speed on a specific

road level in a specific TS. This snapshot is referred to as

the RSTS.

Fig. 5 is the transformation process from TS to RSTS.

Here, a cuboid is used to express the multi-dimensional

spaces of the vibration-based SPs at some road level

and speed level. For detailedly introducing the transfor-

mation from TS to RSTS, the state vectors of speed si,

load condition r i and vibration vi in the ith snapshot are

FIGURE 5. Transformation process from TS to RSTS.

given as

si =
[

s(i−1)1t+1, s(i−1)t+2, · · · si·1t
]

(18)

r i =
[

r(i−1)1t+1, r(i−1)t+2, · · · ri·1t
]

(19)

vi =
[

v(i−1)1t+1, v(i−1)t+2, · · · vi·1t
]

(20)

where si, ri and vi are the ith sampling point in time-series

signals of speed s(t), load condition r(t) and vibration v(t),

respectively. 1t is time interval of each snapshot. Then the

information set of the ith TS can be expressed as

TSi =
{

si, r i, vi
}

(21)

Since si, r i and vi flow through time, and the actual operat-

ing state of IWM is fickle, TSi is a transient vector. In order

to weaken the timeliness of TSi, si, r i and vi are analyzed to

extract the features. The average values s̄i and r̄ i are used to

express the features of si and r i, respectively. Some highly

sensitive SPsPij (j = 1, 2 . . . J0) selected by SADR are used to

represent the vibration vi, and J0 is the number of the selected

SPs. Then TSi can be abstracted as

TSi =
{

s̄i, r̄ i, Pi1,P
i
2, · · · ,PiJ0

}

(22)

However, the IWM’s speed and load condition vary con-

stantly, s̄i and r̄ i are still continuous variables. The class-

dependent discretization [52] and the road model parameters

of road level evaluation are borrowed to disperse s̄ and r̄ for
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multiple discrete intervals, as follows

ŝ = {m |s̄ ∈ [10 · m− 5, 10 · m+ 5) } (23)

r̂ = {n |ρr̄ ∈ [37.5 · (n− 1), 37.5 · n) } (24)

where ρr̄ is the standard deviation of vertical vibrational

acceleration. ŝ is speed level. If the speed fluctuates in the

range of 5 km/h above and below the fixed value, the fixed

value shall be regarded as the speed level. Especially, when

the vehicle speed is lower than 5 km/h, whichmeans the IWM

runs in a low speed state, the speed level is considered as

0 since the characteristic signal is not obvious. In general,

the maximum value of m is 12. r̂ is road level that is divided

into A, B, C and D. Here, the numbers 1, 2, 3 and 4 are used

to denote road level, and the smaller the value, the higher the

load level. Then TSi with discretization and digitization is

shown as

TSi =
{

mi, ni, Pi1,P
i
2, · · · ,PiJ0

}

(25)

In order to weaken the timeliness of TS, speed level m and

load level n are regarded as independent variables, and some

SPs of vibration information are considered as dependent

variables, then three-dimensional RSTS is reconstructed as

RSTSi =
{

(P1,P2, · · · ,PJ0 )
i
k1,k2

|k1 ∈ M , k2 ∈ N
}

(26)

whereM and N are the sets of independent variablesm and n,

respectively. (P1,P2, · · · ,PJ0 ) is the array of all selected SPs.

For three-dimensional RSTS, the variables of speed level

and load level are given priority. The first consideration of

two adjacent RSTSs is whether they are in the condition

with the same speed level and load level. If so, the transition

probability distribution is obtained by expert knowledge [53]

on the basis of the experimental data from the IWM test.

If not, expert knowledge is only considered to construct the

DBNs in the process of determining the transition probability

distribution. In the study, the IWM test with 4 speed levels

and 3 load levels has been performed, and P3, P4, P7, and P8
are confirmed as the diagnostic SPs. Moreover, the length of

a TS is 3 s. The signal of vehicle speed is obtained from the

controller area network (CAN) of the vehicle communication

system, and the road level is identified based on the vertical

vibrational acceleration from the acceleration sensor by the

method proposed in reference [54]. Then the IWM mechani-

cal fault diagnosis model has been created based on the DBNs

in the same condition. Fig. 6 shows the unrolled mechanical

fault diagnostic model of the IWM in two RSTSs.

FIGURE 6. Unrolled mechanical fault diagnosis model of the IWM in
two RSTSs.

In the ith RSTSi, S i represents the IWM’s operating state

node. S i1 represents the normal operating state and S i2 rep-

resents the fault operating state. Z i is the node containing

the information of 24 types of vibration signals. The corre-

sponding road level, speed level, and operating state (nor-

mal or fault) of Z i1-Z
i
24 are shown in Table 6.MT

i is the mixed

weight node in the time domain and each vibration signal

to be diagnosed is considered to be composed of 24 mixed

components in the time domain. MFi is the mixed weight

node in the frequency domain and each vibration signal to

be diagnosed is considered to be composed of 24 mixed

components in the frequency domain. PTi is the multivariate

Gaussian node of the highly sensitive SPs includingPi3 andP
i
4

in the time domain. PFi is the multivariate Gaussian node of

the highly sensitive SPs including Pi7 and P
i
8 in the frequency

domain. PTi and PFi are the observed nodes of the model.

The CPT of each node is obtained by parameter learning

and the transition probability distributions between the two

adjacent RSTSs are obtained by expert knowledge; the results

are shown in Table 7. Subsequently, the group of mechanical

fault diagnosis models of the IWM in the two RSTSs is

developed based on the conditional probability distribution of

TABLE 6. The corresponding road level, speed level, and operating state of Zi
1
-Zi

24
.
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TABLE 7. State transition probability distribution between two continuous RSTS in the IWM’s diagnostic model.

the nodes in a single RSTS and different transition probability

distributions. The Bayesian network of a single RSTS is the

same and the only difference between the diagnostic models

is the transition probability distribution.

With the establishment of IWM’s fault diagnosis models in

any two RSTSs, real-time diagnosis system is built to achieve

real-time diagnosis and monitoring of the IWM’s operating

states, as shown in Fig. 7.

FIGURE 7. Real-time diagnosis system for IWM.

Firstly, TSi in current state is transformed to RSTSi accord-

ing to the previous method, and the speed levels and load

levels between RSTSi−1 and RSTSi are examined to select

the corresponding diagnosis model i. Secondly, the array of

the selected SPs in RSTSi and the result of RSTSi−1 are

input into the diagnosis model i for diagnosing the current

state. Finally, the diagnosis result of RSTSi is output as the

diagnosis result of TSi, and is input into the diagnosis model

i + 1 as the previous diagnosis result, and so on, the IWM’s

operating states is monitored real-timely. Certainly, in real-

time diagnostic system, the first RSTS’s result is obtained

on basis of the Bayesian network of the single RSTS. The

operating state of the second RSTS is obtained by combin-

ing the result of the first RSTS and the diagnostic model

selected from the diagnostic system. For the other continuous

RSTSs, the previous RSTS’s result is the state input of the

latter RSTS. Each RSTS corresponds to only one TS so that

the result of each RSTS can be matched to the related TS.

Eventually, the IWM’s operating state in each TS is judged in

the real-time diagnostic system.

For ensuring the robustness of the real-time diagnostic sys-

tem, a rule has been set that the final diagnostic result of the

IWM’s operating state is determined only when considering

the results in three consecutive TSs synthetically.

C. DIAGNOSIS AND VERIFICATION

To verify the proposed methods, each type of experiment has

been repeated 15 times in the same state such as the same

control speed and load level, and the length of each TS is

set as 3 s. Then each set of experiment data has 15 TSs.

Moreover, according to the classification standards of speed

level and road level, the normal and abnormal states of

the IWM are combined to obtain 24 types of experimental

data. Firstly, the experimental data have been divided into

15 portions, and each portion is a TS. Secondly, vibration,

road and speed signals of each TS in each state have been

processed into highly sensitive SPs of P3, P4, P7, and P8,

road level, speed level, and to transform into RSTS. Finally,

the first 13 samples of each type of experiment have been

selected to build the training data, and the remaining 2 sam-

ples have been used to compose the test data. Fig. 8 is

the schematic diagram of experimental signals, training data

and test data. Fig. 9 shows the spatial distributions of P3,

P4, P7, P8 between normal state and fault state from the

first training data. Here, rhombus and roundness are used

to express normal state and fault state, respectively. Each

state has 15 RSTSs. P3, P4, and P7 correspond, respectively,

to three directions in a three-dimensional diagram. The values

of P8 are expressed by the color depth.

For establishing a uniform standard of diagnosis system,

the normal and fault states of the IWM are labeled with

1 and 2, respectively. When the training data with the cor-

responding labels are input into IWM’s diagnosis system

altogether, the information of road level and speed level is

invoked firstly, the training data with the same conditions are
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FIGURE 8. The schematic diagram of experimental signals, training data, and test data.

TABLE 8. Test samples with different time slices, speeds levels, road levels, and operating conditions of the IWM.

grouped together to train the corresponding diagnostic model.

When 24 diagnostic models have been trained successively,

the diagnosis system has been established.

Then 24 types of the test data is processed into RSTSs,

then these RSTSs are input the diagnosis system one by

one for simulating the process of real-time diagnosis. For

introducing the performance of the diagnosis system, 4 TSs

of 12 types of test samples are shown in Table 8. Certainly,

speed levels and road levels in Table 8 are the results

processed by Formula (23) and (24), and even if speed levels

and road levels are same, there are large differences in the

actual operating conditions. Then the corresponding vibration

information such as P3, P4, P7, and P8 has large differences,

as shown in Fig. 10. Obviously, the features of 4 TSs are

that speed level escalates and road level gradually worsen.

Certainly, other 12 types of test samples are not shown, but

the features are opposite that speed level degrades and road

level gradually ameliorate.

114694 VOLUME 7, 2019



H. Xue et al.: Real-Time Diagnosis of an In-Wheel Motor of an Electric Vehicle Based on DBNs

FIGURE 9. The spatial distributions of P3, P4, P7, P8 between normal state and fault state from the first training data.

TABLE 9. Recognition rate of the mechanical fault diagnosis of the IWM.

When the 1st RSTS of each test sample is input, single

RSTS is used to recognize the probability of each state. Here,

S1 and S2 represent the normal and fault states of the IWM,

respectively, and the labels are saved in the diagnosis system.

If the probability of S1 is bigger, the corresponding state

of TS is normal; otherwise, the state is abnormal. Then the
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FIGURE 10. 12 types of test samples and the corresponding diagnosis results.

corresponding states of the 3rd, 6th, 9th, and 12th test samples

are judged to be abnormal, and other states are normal. These

diagnosis results and the initial states are in good agreement.

When the 2nd RSTS of each test sample is input, the cor-

responding RSTS and the 1st diagnosis result are considered

together to decide the probability. And so on, the information
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TABLE 10. List of all abbreviations in the paper.

of RSTSi and the i-1th (i > 1) diagnosis result are used to con-

firm the probability of the ith state. The diagnostic results with

the corresponding test samples as shown in Table 8 are shown

in Fig. 10, the diagnostic probabilities are listed in Table 9.

Comparing the original state of each test RSTS, two of the

diagnosis results are inconsistent, as shown in Fig. 10 with

red box.

In order to analyze the recognition rate of test TSs, the diag-

nosis results of other 672 TSs are checked one by one,

the states of 28 TSs are only misjudged. Therefore, for single

TS, the recognition rate is 95.8%. Moreover, all erroneous

judgement TSs with the front and back TSs are synthetically

analyzed to find that most of these TSs are in the early stage

of IWM fault, and the cases of multiple consecutive TSs

misjudged are fewer. There are 7 cases that two consecutive

TSs are misjudged, and there are 2 cases that three consec-

utive TSs are misjudged, while other cases are single TS is

misjudged. According to the rule for ensuring the robustness

of the real-time diagnostic system, there are 2 times that the

system results are incorrect, and the accuracy of the real-time

diagnostic system is 99.7%.

V. CONCLUSION

Highly sensitive SPs were selected intelligently by using the

SADR to represent the features of the vibration signal in

the IWM for different road levels and vehicle speeds. The

signal features were extracted under the condition of multi-

ple interference factors. The proposed method is especially

applicable to the field of intelligent diagnosis and real-time

monitoring.

TSs of DBNs were applied flexibly to determine the

RSTSs, which contain additional information on the road

level and speed, to develop the RSTS-based diagnosticmodel.

The method effectively deals with the problem that the transi-

tion probability distribution between two adjacent TSs cannot

be obtained and promotes the development and application

of diagnostic techniques in a complex and variable operating

environment.

A real-time diagnostic method was proposed by targeting

the IWM’s mechanical faults. The practical experiments per-

formed using the IWM test bench verified the effectiveness

of the proposed method. The diagnostic results showed that

the recognition rate of the mechanical faults of the IWM

was 95.8% for single TS, and was 99.7% for the real-time

diagnostic system. Because of the complexity and variability

of vehicle driving conditions, the current research focuses on

whether the fault state can be identified. In the future, the

early fault of IWMs will be deeply studied. Moreover, the

distributed drive system of an EV will be focalized, which

usually includes even a number of IWMs, to investigate the

effective monitoring of the real operating conditions and

diagnose system faults.

APPENDIX

See Table 10.
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