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ABSTRACT 
Due to their real time nature, microblog streams are a rich source 
of dynamic information, for example, about emerging events. 
Existing techniques for discovering such events from a microblog 
stream in real time (such as Twitter trending topics), have several 
lacunae when used for discovering emerging events; extant graph 
based event detection techniques are not practical in microblog 
settings due to their complexity; and conventional techniques, 
which have been developed for blogs, web-pages, etc., involving 
the use of keyword search, are only useful for finding information 
about known events. Hence, in this paper, we present techniques 
to discover events that are unraveling in microblog message 
streams in real time so that such events can be reported as soon as 
they occur.  We model the problem as discovering dense clusters 
in highly dynamic graphs. Despite many recent advances in graph 
analysis, ours is the first technique to identify dense clusters in 
massive and highly dynamic graphs in real time. Given the 
characteristics of microblog streams, in order to find clusters 
without missing any events, we propose and exploit a novel graph 
property which we call short-cycle property. Our algorithms find 
these clusters efficiently in spite of rapid changes to the microblog 
streams. Further we present a novel ranking function to identify 
the important events. Besides proving the correctness of our 
algorithms we show their practical utility by evaluating them 
using real world microblog data. These demonstrate our 
technique’s ability to discover, with high precision and recall, 
emerging events in high intensity data streams in real time. Many 
recent web applications create data which can be represented as 
massive dynamic graphs. Our technique can be easily extended to 
discover, in real time, interesting patterns in such graphs. 

1. INTRODUCTION and MOTIVATION 
Microblogging sites such as ����������	 have become a rich source 
of information about any “event”, ranging from breaking news 
stories to earthquakes or information about local concerts. 

Empirical studies �[10]�[11] show that (i) Twitter is often the first 
medium to break important events such as earthquakes, often in a 
matter of seconds after they occur and more importantly (ii) they 
highlight the need to discover all such events (and not just events 

related to earthquakes �[10]) in real time from microblog streams. 
Note that by ‘real time’ we mean that events need to be 
discovered as early as possible after they start unraveling in the 
microblog stream. Such information about emerging events can be 
immensely valuable if it is discovered timely and made available. 
_____________________________ 
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One obvious way to find information on microblogging sites is to 
use keyword search. There are many microblog search engines 
which allow users to find real-time microblogs relevant to a 
keyword query (e.g., twitter search). These search engines allow 
users to register their (continuous) keyword queries and return a 
stream of events, trends or news items relevant to the query. 
However, these search techniques do not help the user to 
“discover” the event but can be used to gather follow up 
information about the event. One could argue that the event could 
have been discovered by a continuous query with a keyword, say, 
“earthquake”. However, note that a user would have to register a 
large number of such keyword queries to discover all possible 
types of events, something that is clearly not feasible.  

The major challenge in achieving the goal of building a real time 
event discovery and tracking system lies in correlating the right 
microblog messages, among the hundreds of thousands of 
messages that are continuously being generated. The problem is 
exacerbated by the fact that the keywords used to describe the 
event might vary from one user to another and could also change 
over time due to the evolving nature of real time events. Hence 

classifier �[10] or keyword search techniques may not be practical. 
This paper addresses these problems and presents a technique for 
discovering events in a microblog stream in real time.  

Whenever an event happens, there will be a few keywords which 
will show burstiness (display a sudden jump in frequency). Hence 
a simple and obvious way to discover events is to keep track of 
the most popular words, something that is already done by twitter, 
and displayed as trending topics. A keyword (or a pair of 
consecutively occurring words) is recognized as a trending topic 
by Twitter if it is popular over a period of time. However, as 
reported in �
���
��������	, several thousand tweets over a 
relatively short period of time are needed to identify an event as 
trending topic. Therefore, (1) using keywords appearing in 
‘trending topics’ does not serve the purpose of discovering events 
in ‘real time’ (as by then the event would no longer be an 
emerging event) and (2) it is not necessary that all important 
events do become trending topics. Further, once a set of keywords 
becomes popular, they would remain so for a long time thereby 
overshadowing any new emerging events. Moreover, rather than 
reporting individual keywords or a pair of consecutive keywords 
it might be more meaningful and insightful to identify a set of 
correlated keywords (not necessarily occurring consecutively).  

In order to identify an emerging topic, we need to identify a set of 
keywords which are temporally correlated, i.e., they show 
burstiness at the same time and are spatially correlated, i.e., they 
co-occur in temporally correlated messages from the same user. In 
order to capture these characteristics we use a dynamic graph 
model which uses the moving window paradigm and is 
constructed using the most recent messages present in the message 
stream.  An edge between two nodes -- representing two keywords 
-- indicates that messages from a user within the recent sliding 
window involve the respective keywords. We use these properties 
to formulate our problem as that of cluster discovery in a dynamic 
graph. Figure 1 shows a partial graph induced by 6 real twitter 
messages (comprising 12 keywords). 6 of these keywords show 
burstiness (e.g., at least 2 occurrences). Keywords co-occurring 
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together in messages from a user (within 6 messages) share an 
edge. We discover the cluster “earthquake struck eastern Turkey” 
in the graph, denoting an event. Two other keywords (“massive” 
and “moderate”) were also bursty within the graph but they are 
not part of cluster (due to weak spatial correlation). When the 
window is moved at a fixed rate (oldest 2 messages expire and 2 
most recent messages are added), a new keyword (“5.9”) gets 
added to the cluster (denoting the intensity of earthquake).  

 
Figure 1: Event cluster embedded in a graph drawn on Twitter data 

The example above highlights several issues central to our 
problem, specifically a) the cluster definition should be able to 
capture the imperfect correlation among keywords belonging to an 
event. Not all keywords are used by all the users (there is no edge 
between ‘eastern’ and ‘struck’); b) we should be able to capture 
the evolving nature of events in a highly dynamic environment 
(‘5.9’ joined the cluster later); and, c) the identified events should 
truly be categorizable as emerging real-world events by filtering 
out spurious and unimportant events.  

The graph is highly dynamic and complex, i.e., keywords (and 
associated edges) present in the graph get added and deleted at a 

fast pace; (Twitter reports more than 2300 tweets/sec �[12] with 
potentially multiple simultaneous events present); the technique to 
identify the emerging events needs to be highly scalable. 
Specifically, it should be able to identify and maintain the events 
in a massive and highly dynamic graph. 

1.1 Problem Formulation, Solution Ingredients 
Let Si represent a set of keywords (potentially spread over 
multiple messages) from a unique user i in a time window that 
spans from time (t - �.w) to current time t, where � represents unit 
time called quantum and �.w is the length of the time window. Let 
Sw

t={S1…Sm} be a set of keywords sent by m unique users in the 
microblog stream in a given time window. As we are interested in 
discovering emerging events, Sw

t contains the messages from a 
sliding window (of size �.w) over the message stream. Time unit � 
denotes the fixed rate at which the window is moved. 

Correlated Keyword Graph (CKG) captures the properties of 

microblog contents. We represent all the keywords, after 
removing stop words, appearing in the messages in the current 
window as nodes in an undirected graph, CKG (we use the terms 
node and keyword interchangeably in this paper). CKG is a 

dynamic graph whose state at time t, is Gt = (Vt, Et) where Vt  is 

the subset of keywords appearing in message set Sw
t. Thus, two 

keywords are said to be temporally correlated iff they appear in Vt 
and are said to be spatially correlated if they have an edge 
between them in Et. An edge links two keywords iff they both 
appear in a keyword set Si belonging to a user i. 

Thus using the sliding window paradigm, a keyword is present in 
CKG if the keyword appears in at least one message in the current 
window. Since the window moves forward with time, CKG is 
highly dynamic where nodes and edges appear and disappear in 
real time. Further, a node in CKG can be either in a “high” state 
or a “low” state. A node moves into high state if there is a sudden 
increase in the frequency of its occurrence in the message stream.   

Each edge in CKG is associated with a weight which signifies the 
probability of the words associated with the edge appearing in 
temporally correlated messages from a set of users. One of the 
challenges in working with highly dynamic microblog data is the 
size of the generated CKG. We overcome this challenge by 
constructing a much smaller Active CKG (AKG) from the original 
CKG such that (1) the clusters discovered in AKG are no different 
from those discovered in the CKG and (2) it is orders of 
magnitude smaller than the original CKG.  

Emerging events are identified by discovering clusters in CKG. 
Given CKG, our problem of discovering emerging events can be 
mapped to identifying significant properties of the graph. For 
example, the burstiness of the keywords is captured by the state 
associated with a node. Temporal correlation can be captured by 
the moving window and spatial correlation can be identified by 
the weight associated with the edges. Using these properties, at a 
high level, our problem of event identification is similar to 
discovering a “cluster” within CKG. The cluster would consist of 
a set of keywords (e.g., “earthquake”, “struck”, “Turkey”) where 
each keyword would be bursty and would exhibit temporal and 
spatial correlation with the other words in the cluster.  

   CKG is an undirected graph, i.e., is a tree of its biconnected 
components. A graph is said to be biconnected if for any pair of 
nodes in the graph there are at least two independent paths 
between them. Two paths are independent if they do not have any 
nodes in common except the end points. In a connected graph, 
two biconnected clusters can be connected with each other with 
just one path (had there been more paths between two clusters, 
they will merge into one cluster). We assume that nodes within 
biconnected components are more likely to be associated with the 
same event compared to nodes across components.  

   Biconnected components are the most encompassing forms of 
clusters in an undirected graph, next only to a connected graph 
itself being considered to be a cluster. However, if we choose to 
consider all biconnected components as our clusters, we may end 
up discovering massive and more often meaningless clusters in a 
large and dynamic graph. The other option is to consider only 
complete cliques, wherein each node is connected with all the 
other nodes in the clique, as clusters of interest to us. Complete 
cliques are more likely to represent interesting real world events 
but considering only complete cliques as clusters does not suit our 
scenario because a) different users may use different sets of 
keywords to describe the same event and b) keywords associated 
with an event change rapidly in the microblogging stream due to 
the evolving nature of real time events. 

Considering ½-quasi cliques (MQCs) as clusters of interest 
contributes to good precision and recall of discovered events. As 
noted above, identifying events from the biconnected components 
in a CKG is likely to result in high recall (i.e., identify more real 
world events) but low precision (i.e., identify many non events as 
real-world events); the opposite is likely to be true for complete 
cliques. Therefore instead of finding either complete cliques or 
just biconnected components, we focus on ½-quasi cliques as our 
clusters of interest. A cluster is a �-quasi clique if each node in the 
cluster is adjacent to at least �.(N-1) nodes in the cluster where � 
is a number between 0 and 1 and N is the cluster size. When � is 
1, the cluster is a complete clique. A biconnected component has 
�=2/N-1. For a connected graph, the minimum value of � can be 
1/N-1. As explained above, none of the two extreme values of � is 
suitable in our environment. Therefore a natural choice is to set � 
to their mean in order to balance precision and recall. Hence, in 
order to discover meaningful clusters in a dynamic environment, 
we identify those components of a graph as clusters that have � > 

moderate 

massive 

eastern 

struck 

Turkey 
5.9 

earthquake 
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(1/2+1/N-1) or � �1/2. We call these cliques majority quasi 

cliques (MQCs) since each node of the cluster is connected with a 
majority of the remaining nodes in the cluster. 

Exploiting short cycle property (SCP) of MQCs makes event 

discovery a tractable and local problem. It has been shown �[14] 
that discovering ½ -quasi cliques is an NP-complete problem even 
for static graphs. Fortunately, we are able to show that ½-quasi 
cliques possess a unique property which we call short cycle 

property (SCP): any edge in the cluster has at least one cycle of 
length at most 4 within the cluster. (In Section 4, we define the 
short-cycle property formally and show that (1) SCP is a 
necessary but not sufficient condition for MQC, (2) SCP is a 
sufficient but not necessary condition for bi-connected 
components, and, (3) SCP can be exploited to identify events by 
discovering clusters which possess the short cycle property (called 
approximate MQCs (aMQCs)). 

The key advantage of using SCP for defining clusters is that we 
can discover dense clusters (aMQCs) efficiently and locally 
without using any global state information. For a dynamic graph, 
a cluster is said to be locally processable if for each incoming or 
departing node (or edge) to the graph, the cluster can be 
discovered by processing only its adjacent edges and nodes. Since 
these computations are local in nature, they are efficient, a pre-
condition for discovering clusters in a highly dynamic graph. 
Further, multiple independent additions and deletions are allowed 
simultaneously on the graph. On the other hand, any processing 
which needs the graph to be stable (i.e., no addition or deletion is 
allowed in the graph during the course of computation) is called 
global processing. We believe that ours is the very first attempt to 
develop a technique to discover dense clusters in a highly 
dynamic graph. We propose efficient algorithms for discovering 
and maintaining the clusters in a dynamic graph as nodes and 
edges get added and deleted due to the moving window. We prove 
the correctness of our algorithms and experimentally show that 
our use of aMQC to define clusters helps us to discover emerging 
events correctly and efficiently.  

Globally consistent ranking of events can be achieved by 
exploiting local properties of clusters. In order to consume 
events, a ranking function is needed such that important events are 
ranked higher compared to spurious or less important news. 
However, due to the highly dynamic environment and real time 
considerations, no ranking function which needs any global 
information can be used.  We present a novel and highly efficient 
ranking function that ranks events by just exploiting the local 
cluster properties corresponding to each event, yet delivers a 
globally consistent ranking in a best effort manner. 

Suppose two clusters discovered by us pertain to the same event 
but they could not get merged into a single event because (1) 
users used synonymous keywords to describe the event; (2) users 
indeed used different keywords, providing different perspectives 
about the same event; (3) the messages are posted in different 
languages. All these cases can be addressed by pre-processing the 
messages or post-processing the discovered clusters. For instance, 
one can use dictionary/thesaurus to address issues (1) and (3). For 
(2), clusters pointing to the same event should show temporal 
correlation. Therefore, one can post-process the discovered 
clusters (within a given time window) to correlate such clusters.  

Further, suppose there is an ongoing discussion among tweeters 
about a controversial topic (resulting in many messages) but it is 
not a real world event. Typically, such “events” are ranked low 
compared to real world events due to their slow rate of spread. We 
may want to report even those events if they are ranked 
sufficiently high, but often one may want to ignore such events by 

post-processing the discovered clusters to identify such events. 
Post/pre-processing of keywords and discovered clusters and 
event categorization are orthogonal to the technique presented in 
this paper. It can be used to further enhance our technique and is 
part of our future work.  

1.2 Research Contributions  
• We present a new technique to discover and maintain dense 

clusters in massive and highly dynamic graphs in real time. 
In contrast, other clustering techniques, such as those based 
on data mining, are not only inherently slow in such 
environments they are also not suitable (details in Section 2).  

• In Section 3 we present our strategy to construct a much 
smaller Active CKG (AKG) from the original CKG to help 
us efficiently discover and maintain the clusters, which is 
imperative in a dynamic environment.  

• We model the problem of discovering the emerging events in 
real time in microblog streams as discovering approximate 
½-quasi cliques, which possess the short-cycle property. This 
property is especially useful in highly dynamic microblog 
environments as it helps us maintain the clusters locally 
without using any global state information. We also prove 

the correctness of the algorithms (Section �4).  

• We propose efficient algorithms for maintaining the clusters 
locally even under numerous additions and deletions of 

nodes and edges (Section �5). 

• In Section �6, we present our ranking function such that more 
important events are highly likely to be ranked higher by just 
using local cluster properties.  

• Through an experimental study of our technique using real 
twitter data, we demonstrate its ability to (1) discover the 
emerging events in real time -- with high precision and 
recall; (2) process at almost double the rate of current Twitter 
intensity on a machine of moderate configuration; (3) 
discover emerging events around the same time or much 
before it is seen on Google headlines; (4)  discover additional 

events which do not appear in Google headlines (Section �7). 

Discovering dense clusters in highly dynamic graphs efficiently 
and in real time has many applications in social networks, IP 
networks, telecommunication networks and for real time business 
analytics. Extant algorithms to discover dense clusters in dynamic 

graphs work on snapshot based techniques �[2] and have severe 
limitations with regard to real time analytics. Our technique to 
discover clusters in massive and highly dynamic graphs in real 
time improves upon the state-of-the-art and can be easily extended 
for many such applications.  

2. RELATED WORK 
The notion of time evolving graphs where some communities 
show a burst in their behavior at certain points in time was first 

developed in �[1]. This work, done in the context of blogs, 
developed techniques to study the evolution of connected 
component structures in time evolving graphs.  A technique to 
find proximity between two nodes in time evolving bipartite 

graphs is proposed in �[3].  

In �[2], authors propose a technique to discover keyword clusters 

in blogs �[2] to identify a topic.  The key difference between �[2] 
and our work is that we discover keyword clusters in microblog 
streams which are very dynamic and under stringent real time 

constraints. The technique presented in �[2] requires global 
computation of clusters in the graph where graphs are updated not 
in real time but on a daily basis.  Similarly, there is a large body 
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of work on analyzing the structure of communities and their 

evolutions in social networks �[4]�[5]. These communities comprise 
humans (and not keywords), hence the real time constraint in this 
body of work is at a totally different scale compared to our 
problem setting. Hence our problem warrants a new approach.  

Recent work on identifying emerging topics on Twitter data �[13] 
�[17]�[18] has a problem statement similar to ours. These 
techniques use ‘bursty keywords’ in recent set of messages as 
seeds to identify emerging events. In �[18] the authors describe a 
series of heuristics to identify ‘emerging terms’. The technique is 
computationally expensive for real time analysis due to the 
iterative method that is employed to compute an ‘authority score’. 
Further, the concept of user's authority to identify emerging terms 
may not be applicable in most real world situations. �[13] reports a 
pair of keywords (based on correlation) as an emerging topic. At 
least one of these two keywords should be among the ‘bursty 
keywords’. �[17] reports a cluster of keywords (at least one of them 
has to be ‘bursty’). However, both the techniques suffer from 
multiple limitations; 1) the performance is highly sensitive to the 
value of keyword burstiness threshold; 2) in the presence of 
multiple events, identifying co-occurring disjoint subsets from all 
the bursty keywords �[17] or identifying co-occurring pairs based 
on time series analysis �[13] are computationally expensive 
techniques. Events are not ranked in �[17] therefore making the 
consumption of events untenable in the presence of multiple 
events. Further, the methods in �[13]�[17]�[18] are not able to 
capture the evolution of an event as all these techniques use seed 

keywords to identify events. These techniques are essentially 
based on post-hoc analysis but they highlight the importance of 
identifying keywords (nodes) and their correlation (edges among 
keywords) as the basis for identifying an emerging topic.  

3. REDUCING GRAPH SIZE: CKG to AKG 
Due to the high rate of arrival of messages in microblogs, the 
CKG generated from the microblog stream can quickly become 
very large. Hence we first generate a manageable sub-graph, 
AKG, from the original CKG so that our cluster discovery 
problem becomes tractable.  

3.1 Identifying AKG Nodes 
We use a ‘hysteresis’ based approach. Let the CKG be denoted by 
Go. Each node in this graph represents a keyword in the data 
stream (after removal of stop words). As we are interested in 
finding the emerging events, a natural way is to pick only active 
keywords in Go which show an upward trend in their burstiness, 
i.e., frequency of their occurrence across different messages 
during a quantum, crosses a given threshold. Towards that end, 
we construct a subgraph, called AKG using only the active 
keywords and ignoring all the other keywords and their associated 
edges. Let G be the AKG induced by Go after removing the non-
bursty keywords. Notice that threshold in our case is set to 
identify keywords that need to be excluded from G and hence it is 
significantly low. However, given a properly set threshold, G will 
still be significantly smaller in size as compared to Go, since only 
a small number of keywords would show burstiness. Because the 
burstiness threshold is low, the graph G contains all the keywords 
associated with an emerging event. We can subsequently use G to 
identify the events without impacting precision and recall.  
In order to identify bursty keywords, we use a two-state 
automaton where each keyword is either in a low state or a high 

state. A keyword moves from low state to high state (i.e., added in 
AKG) if during a quantum it shows burstiness, i.e., it appears in 
more than � different users’ messages. We call � the high state 

threshold (HST). All other keywords are in low state. A keyword 

in high state may remain bursty or may become non-bursty in 
subsequent quanta. As we are interested in finding emerging 
events, we are specifically interested in finding keywords which 
are moving from low to high state.  

In order to discover meaningful clusters in G, we need relative 
stability in the graph. Hence, a keyword which has moved to AKG 
remains in AKG as long as it is part of an event cluster 
irrespective of its frequency of occurrence in subsequent quanta 
However, as we maintain the graph over a sliding window, we 
remove all the stale keywords, i.e., those keywords which have 
not occurred in any of the last w quanta, from AKG.  

For the keywords present in AKG, we update their status (i.e., 
remove them from AKG) using a lazy update principle, if needed, 
for only those nodes which are (1) in AKG and also occur in the 
messages present in the current quantum and (2) nodes adjacent to 
nodes identified in (1), as their correlation can change. One can 
see that in a given quantum only these nodes can be removed from 
a cluster (due to change in correlation). A departing keyword from 
a cluster is removed from the AKG if it is not part of any other 

event cluster. Notice that, as we explain in Section �3.2, a keyword 
which is not part of any cluster cannot become part of another 
cluster unless it exhibits a high frequency behavior. At that point, 
the keyword is moved into AKG anyway.  

The above technique helps us to smooth the movement of 
keywords from high to low state or vice-versa and is more 
efficient and scalable compared to the time series analysis as 

required in �[13]. We can compute the state of each arriving 
keyword at the end of the quantum in O(1) time. Once the nodes 
in the sub-graph have been identified, the next step is to find the 
edges between these nodes.   

3.2 Identifying AKG Edges 
The guiding principle for creating an edge between two nodes in 
the sub-graph G is that, in the current time window, messages 

from a significant number of users should have both the 

keywords. Therefore, we associate a correlation measure with the 
edge connecting the two nodes and place an edge between the two 
keywords (present in AKG) if the correlation between them is 
above a threshold. The correlation is computed by associating a 
set of user ids with each keyword.  This set U1 (called the id set) 
associated with a keyword n1, contains the ids of all those users 
who used this word in the current window. Given sets U1 and U2 
for a pair of nodes n1 and n2, we can find their correlation by 
using the Jaccard coefficient, which is defined as the size of the 
intersection divided by the size of the union of the two sets:       
|U1 � U2 |/|U1 U U2 |. We call it edge correlation (EC). Notice that 
a high value of the EC would imply that the two keywords have 
been used together by a large proportion of users and would hence 
imply a strong correlation. We use user ids as opposed to message 
ids so as to avoid the case of a single user flooding the same 
message multiple times leading to high correlation  between nodes 
of the message. However, if we use user id, the strict message 
based spatiality is not valid (it is not necessary for a user to 
mention all the keywords in the same message). Hence, spatial 
correlation is not confined to a message but to a user and 
keywords from a user may be spread over multiple messages 
albeit within a given quantum of size �.  

Since AKG contains all the keywords in the high state, it would 
be costly to compute the correlation of all pairs of nodes in AKG. 
Hence, we next address the following challenges: (1) Identify 
those pairs of nodes whose correlation is likely to be above the 
threshold and; (2) Find the correlation of the selected nodes. 
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3.2.1 Identifying node pairs for EC Computation 
As mentioned earlier, each keyword is associated with an id set. 
For keywords appearing in the last quantum, we construct two 
sets with the aid of id set; (1) Keywords that are in the high state 
(the size of the associated id set is � �) and (2) keywords that were 
already in AKG and have also appeared in at least one of the 
messages that arrived in the last quantum. Note that a keyword 
may appear in both the sets. For all the keywords in set (1), we 
compute the correlation only among them. If the EC threshold is � 
and if the correlation between two keywords is above �  we place 
an edge between them. It is intuitive to see that new keywords, 
entering into AKG do not have temporal and spatial correlation 
with any other keyword present in the AKG except those in set 
(1). For all the keywords identified in set (2), we update their 
correlation with their neighbors. Any other pairs of keywords 
would not have their correlation changed. 

Thus, using this mechanism we drastically reduce the number of 
EC computations that we need to do at the end of each quantum. 

As described next, we use the Min-Hashing scheme �[6] to 
compute the EC efficiently.   

3.2.2 Efficient computation of EC 
We assign a hash value to each unique user in a quantum.  
Assuming that the number of unique users per quantum is no 
more than 2n, we choose the hash value for each message 
independently and uniformly from a range (0, 22n) so as to avoid 

the birthday paradox (hash collision) �[8].  For each keyword, we 
then keep track of the minimum hash value (Min-Hash) among all 
the user ids present in its id set.  Now, for each pair of nodes n1 
and n2, the probability of both n1 and n2 having the same Min-

Hash value is exactly equal to their Jaccard similarity coefficient 

�[7] or EC. The reasoning is as follows: The Min-hash value will 
be the same if the id with minimum hash value is common to both 
the id set nodes, i.e., it belongs to the set |U1 � U2 |. Since the 
total size of both the sets is |U1 U U2 |, the probability of having 
the same min-hash value is |U1 � U2 |/|U1 U U2 |. However, in 
order to avoid false negatives, instead of keeping track of only a 
single Min-Hash value for a node, we keep track of p Min-Hash 

values (i.e., the p minimum hash values amongst all the user ids in 
the union of id set). We add an edge between two keywords in G 
if there is at least one common entry in their p Min-Hash values.  
The value of p depends on the EC threshold � and high state 

threshold �; for a uniform distribution, the expected number of 
trials before a match occurs is 1/p.�. Value of p is set to 
min(�/2,1/�). Due to this mechanism, we can compute the 
correlation between two nodes in an efficient manner with a very 

small probability of false negatives and false positives �[7].  

In summary, we first significantly reduce the number of pairs of 
nodes whose correlation needs to be computed and then for the 
identified pairs we find their Jaccard coefficient efficiently in 
O(p.log(p)) time where p is a constant.   

Thus, the tunable parameters and thresholds affecting the AKG 
are �, �, � and w* �. One can argue that it is imperative to set the 
thresholds (� and �) correctly to include an edge and a node in the 
AKG. The discovery of an event ultimately depends on what 
nodes and edges are present in the graph, which in turn depends 
on these threshold values. For timely discovery of events these 
thresholds are kept low and they are just the qualifying thresholds 
for any edge or node to be in the AKG. If the � is high, only very 
popular keywords reach the high state. It compromises our ability 
to identify the emerging events in a timely manner. Further, since 
not all keywords are used by all the users, the threshold for each 
individual keyword has to be low. For the same reason, � has to be 

relatively low. Therefore, thresholds are set such that they just 
filter out completely unwarranted nodes and edges and not tuned 
such that nodes and edges left in the graph automatically result in 
events. However, with low threshold, many more keywords move 
into high state. Therefore, the events are identified by discovering 
a particular class of clusters (aMQCs) as explained in Section 4.  

4. CLUSTER DISCOVERY 
Once the graph is in place, we can use many standard cluster 

finding algorithms �[2] to find a cluster of keywords corresponding 
to an emerging event. However, approximation algorithms for 
finding dense clusters in a graph operate on the entire graph (i.e., 
graph needs to be stable during the computation) and are not 

efficient �[2]. We hence propose the novel short cycle property 

(SCP) in Section �4.1 which helps us discover dense clusters (i.e., 
aMQC cliques in our case) efficiently and in real time.  

In Figure 1, a cluster with 4 keywords (“earthquake”, “struck”, 
“eastern”, “turkey”) exists at time t. At time t+�, we could update 
the cluster with keyword “5.9” since it was forming a cycle of 
length 3 with nodes (“earthquake”, “turkey”). If the edge between 
“earthquake” and “turkey” would not have existed, even then 
keyword “5.9” would have joined the cluster due to the formation 
of cycle of length 4, via keywords “eastern” or “struck”. Hence, 
due to the existence of a short cycle within the nodes of the 
cluster, we could update the cluster without re-computing it on the 
entire graph. As the graph changes, SCP ensures that only 
incremental computations are performed for those nodes and 
edges which need to be updated, while simultaneously ensuring 
the correctness of result. We provide the analysis and correctness 

of our approach in Section �4.2 and Section �4.3 respectively.  

4.1 Short-cycle property 
A graph is said to possess the short-cycle property if for any two 
adjacent nodes n1 and n2 in the graph, in addition to the direct 
edge between n1 and n2, there exists at least one more path of 
length at most 3 between n1 and n2, i.e., n1 and n2 are part of a 
cycle of length at most 4. More formally, short-cycle property in a 

cluster C(V,E) in graph G is defined as follows: if )(},{ CVvv ji ∈  

and )(),( CEvv ji ∈  then )( ji vv →∃  s.t., 3||1 ≤→< ji vv . 

Definition 1: The diameter of a graph G(V, E) is defined as 

D(G)= )},({max )(, vudGVvu ∈  where d(u,v) is the distance 

between any two nodes u, v, belonging to the graph. The diameter 
of a complete clique is 1.  

Theorem 1 states that SCP is a necessary property for MQCs. 

Theorem 1: For a majority quasi clique G(V,E) with � � ½ , 

)(GVv ∈∀ , v participates in a cycle of length at most 4.  

Proof: Let us denote the neighbor set of node u as A(u). u 

∈ GMQC �| A(u) |≥ (N −1) / 2�� ��where |V(G)| = N. For a graph 

G(V,E) with � �½, D(G)=2 �[15]. Hence 2)},({),(, ≤∀ ∈ vudGVvu . 

Case1: d(u,v)=2; 

u,v )( MQCGV∈  )(),(&),(| 000 MQCGEvnnun ∈∃� . We claim that 

for pair of nodes {u,v}, there is at least one more common 

neighbor apart from node 0n .  

Let us define ivui SniniAS ∉−=∈ },{;)( 00},{ 3|| −≤∪� NSS vu  (1). 

Eqn (1) holds since nodes u, v and n0 are not part of || vu SS ∪ .  

Since |V(GMQC)| = N and, || },{ vuiS ∈ �½ � � ||11 vu SSN ��−− � 1, 

otherwise Eqn (1) will not hold. In other words, u and v have at 
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least one more neighbor apart from node n0. Hence, there exists a 

cycle of length 4 between any pair of nodes {u,v} )( MQCGV∈ . 

Case 2: d (u,v) = 1;  

u,v )( MQCGV∈  i.e. u and v have an edge between themselves. In 

this case, without loss of generality, for any neighbor n0 of node u, 

2),( 0 ≤vnd . Hence {u,v} )( MQCGV∈ are part of cycle of length 4. 

Hence in both these cases, node v (u) is part of a cycle of length at 

most 4 or, in other words, for any (u, v) )( MQCGE∈ , there exists 

another path between them of length at most 3 within the cluster. 

The short cycle property (SCP) of MQCs, as we explain next, 
radically simplifies the cluster discovery problem. Capitalizing on 
the SCP we can add a new node to the existing clusters locally 
(i.e., by just processing the edges adjacent to it) as follows. For 
each new keyword n that is moving into high state, if it shows a 
correlation with n1, n2….nk (k >1) keywords (nodes) in graph G, 
we check if each node pair ni, nj (1�i , j�k): 

Rule R1: Has at least one more common neighbor OR 
Rule R2: Has an edge between them.  

In either case, we add the new node to the cluster that both these 
nodes are already part of.  If these two nodes (ni, nj) are not part of 
any cluster, we initialize a cluster with four nodes if it satisfies 
(R1) or three nodes if it satisfies (R2). For k=2, as shown in 
Figure 2, an incoming node n, forms a cluster (a) as n1 and n2 

have a common neighbor nc (R1) or cluster (b) as n1 and n2 have 
an edge between them (R2). If the incoming node shows 
correlation with zero or one node, we simply add that node (and 
edge) in G and do nothing.  

 
 
We check R1 and R2, for each departing node (node which moves 
from high state to low state), where existing clusters can be either 

re-clustered into smaller clusters or dissolved (Section �5.3). For 
all edges adjacent to the arriving or departing node, we consider 
two adjacent edges at a time (total O (k2) pairs of edges if there 
are k adjacent edges to that node). We check if nodes which these 
two edges are adjacent to, satisfy either R1 or R2.  

Therefore without processing any other nodes and edges in the 
graph, except the pairs of edges adjacent to the node under 
consideration, we can discover a cluster that satisfies SCP and 
thus an aMQC. Thus, due to this special property, we can discover 
the approximate 1/2-quasi cliques in the dynamic graph AKG by 
performing just local computations. At each time quantum, we do 
a total of O(k2NC) computations where N is the total number of 
nodes changing their status (to high or low), k is the average 
number of edges adjacent to these nodes and C is the average 
cluster size a node (among N nodes) is participating in. Now, by 
our definition, both k and N are fairly small compared to the 
number of keywords present in the message stream in a given time 
window. Further, as shown by our experiments, the average 
cluster size is very small compared to the size of the graph (less 
than 7 keywords/cluster). 

For MQC, short cycle property is a necessary but not sufficient 
condition. For the cluster in Figure 3(b) (including new edges), 
each edge participates in a cycle of length 4 within the cluster but 
the cluster is not MQC. If we identify the cliques based on the 
short-cycle property, while we will not miss any MQC, we may 
collect some extra clusters which are not MQCs. As shown in 

�[14], discovering MQC is NP-hard even for static graphs. 
Therefore, discovering clusters based on SCP discovers the MQCs 
not only with a good approximation bound, but also very fast and 

we can discover dense clusters with just local computation.  

4.2 Analysis of Approximate MQCs 
As we proved in Section 4.1, SCP is a necessary condition for 
MQCs. Once an aMQC is discovered based on SCP, one can 
efficiently identify if it is MQC in O(N2) time where N is the 
number of nodes in the discovered cluster. We check if each node 
belonging to the cluster has edges with at least (N-1)/2 nodes in 
the cluster. However, with dynamic graphs, we face challenges 
which are different from stable graphs as depicted below. 

Example 1:  Let us consider a MQC of size 7 as in Fig 3(a) which 
is reported as a cluster. Since the clique size is 7, each node has to 
be connected with at least � � 32/6 = of the nodes in the clique. 

Now, if a 8th node joins the clique (due to the existence of short 

cycle with nodes in the cluster), for the original cluster to be 
continued to be considered MQC, each node should have 

connection with � � 42/7 =  nodes. Hence, the new node should a) 

have edges to at least 6 of the existing nodes in the cluster or b) 
have connection with any of the 4 nodes in the cluster along with 
at least 1 more new edge among already existing nodes in the 
cluster. Point (b) not only makes the computation of MQC 
exponential, it is also an unnecessary requirement since the cluster 
with existing 7 nodes is already reported. On the other hand, the 
requirement to have an edge with almost all the other existing 
nodes is too stringent for admitting any node in the cluster as the 
keywords belonging to an event may keep on changing. This 
example shows that since real time events evolve continuously, 
using MQC as our cluster definition restricts our capability to 
capture dynamic events.  

Example 2: We show two separate clusters (MQC clusters) in 
Figure 3(b), both discovered based on SCP. Now assume that two 
new edges emerge among two clusters, as shown in Figure 3(b), 
forming a short cycle between the nodes belonging to separate 
clusters therefore, due to SCP, merging these two clusters into 
one. Now a) either we stop reporting both of these earlier clusters 
as events since the merged cluster is no longer an MQC or b) we 
keep on reporting earlier clusters as separate clusters.  

 

Figure 3: Clusters discovered based on SCP 

Both of these scenarios point out the following issues: In case of 
(a) we stop reporting the events already reported, the basis for 
which is still intact. The nodes in the event continue to show 
correlation with the same set of nodes as in the erstwhile clusters 
(one may, however, stop reporting the event if any node/edge 
disappears); In case of (b) maintaining such distinction will not 
only be computationally expensive in a dynamic environment (we 
need to identify all sub-cliques in a discovered cluster such that 
these sub-cliques are MQCs), it will be erroneous also (nodes n1, 
n2, n3, n4 would be reported as a separate cluster). On the other 
hand, emergence of new edges among the nodes belonging to two 
events, both discovered close to each other in real world time, 
points to a strong temporal and spatial correlation. 

However, if we relax the requirement of having MQC and instead 
consider aMQC based on SCP, as our clusters of interest, we not 

n 

n1 n2 

nc 

(a) 

n1 n2 

n 

(b) 

New Edges 

n1 

                 Clusters 1                                  Cluster 2 

n2 n3 
n4 

       (a) MQC of size 7                           (b) Clusters formed due to SCP 

Figure 2: Clusters formed due to short-cycle property 
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only capture the evolving nature of real time events in a fast 
moving environment, we discover the clusters more efficiently. 
aMQC cliques allow incremental evolution of clusters therefore 
capturing the evolving nature of the real time events.  Hence, in 
Example 1, a new node is able to join the cluster due to SCP 

indicating the continuous evolution of the real time events. 
Similarly, in Example 2, two clusters exhibiting strong temporal 
and spatial correlation are allowed to merge into one event. 

However, if the evolved cluster is sparse, it is more likely to be 
ranked lower due to its inherent sparse nature. Our ranking 

function (Section �6) ensures the quality of discovered events by 
ranking more dense clusters higher.  Hence, the SCP helps 
discovering dense clusters in a scalable and efficient manner.  

Therefore, even though one can efficiently identify MQC from an 
aMQC, due to the dynamic nature of the graph and the evolving 
nature of the events, SCP is the only cluster property that we 
enforce while discovering clusters in a dynamic graph. The 
aMQCs based on SCP ensure that no MQC based clique is 
missed. At the same time, the clusters thus discovered are 
biconnected components as SCP is a sufficient (but not a 
necessary) condition for biconnected components as shown in 

Section �4.3. The bi-connected property of clusters is helpful in 
maintaining the events efficiently in a highly dynamic graph as 
explained in Section 5. 

4.3 Correctness of our Approach 
We next present the main properties of our clusters (aMQCs) and 
give a correctness proof for our approach. We first prove that 
clusters discovered by us are bi-connected. Thereafter we give a 
proof of correctness of our approach, i.e., the clusters discovered 
based on local processing of nodes and edges are unique and 
consistent with similar clusters discovered on a time invariant 
instance of the same graph.   

Theorem 2: If we discover the clusters based on SCP, the 

resulting clusters will be bi-connected. 

Proof: The proof is by induction and is based on Lemma 1.         � 

 
 
 
 
 
 
 

Figure 4: Independent path examples 

Lemma 1: Given any three nodes n1, n2 and n3 belonging to a 

cluster, there exist two independent paths from n1 to the other 

two, i.e., there exit two paths, one from n1 to n2 and another from 

n1 to n3 which are independent from each other.  

Proof Sketch: As the cluster is bi-connected, there exist two 
independent paths from n1 to n2 and from n1 to n3. As shown in 
Figure 4, let the two paths from n1 to n2 be named p1 and p2 and 
those from n1 to n3 be named p3 and p4. p1 and p2 are independent 
paths and hence do not intersect with each other.  The same holds 
for paths p3 and p4. Now, there are three cases: 
C1: None of these 4 paths (p1, p2, p3, p4) intersect with each other. 
Hence there exist 2 independent paths from n1-n2 and n1-n3. 
C2: Only one pair of paths intersects each other. Without loss of 
generality, say paths p1 and p3 intersect with each other. Hence, 
there exist 2 independent paths from n1-n2 (p2) and n1-n3 (p4). 

 C3: Both of these pairs of paths intersect with each other. 
Therefore, there must exist at least 2 intersection points. Let’s call 
them I1 and I2. We can always construct two independent paths 

from n1 to n2 and n1 to n3 as follows: n1-I1-n2 and n1-I2-n3. 
Independent paths can be constructed even if I1 and/or I2 
themselves are a sequence of nodes by extending the same 
argument. The detailed proof is omitted in the interest of space. 

Correctness of Local Computation: We now prove that our 
cluster computation is correct, unique and consistent.  

Lemma 2: The locally discovered clusters are consistent with any 

global computation of clusters on the same graph. 

Proof: The proof is by induction.            � 

As we see above, node n need not be present in the graph at the 
time of computation of cluster C, and as and when it arrives, by 
just processing its adjacent edges, we update the cluster. Now, 
suppose, an incoming (or departing) node n is adjacent to nodes 

n1,..nk.  ei is an edge from node n to node ni 

Lemma 3: Each pair of edges (ei, ej), 1�i,j�k, i�j will merge at 

most two clusters (for incoming node). 

Lemma 4: Each pair of edges (ei, ej), 1�i,j�k, i�j will break the 

cluster into at most two clusters(for departing node). 

However, it may be the case that one or more of the resulting sub 
clusters no longer remain aMQC as SCP may no longer hold for 

the cluster. The process to check this is described in Section �5.3.  

Lemma 5: For all pairs of edges (ei, ej), 1�i,j�k, i�j adjacent to 

node n, the final cluster(s) do not depend on the order in which 

each of these  pairs is  considered. 

Similarly, for an incoming/departing edge e, adjacent to nodes n1 
and n2, clusters are maintained by considering all pairs of edges 
(e, ei) where ei (�e) is an edge adjacent to either node n1 or n2 (as 
outlined in Section 5). Therefore, Lemmas 3, 4 and 5 are 
applicable for edge addition/deletion as well. 

Theorem 3: The locally discovered clusters result in the unique 

clustering for a given graph. 

Proof: Follows as a corollary of Lemmas 2, 3, 4 and 5.                � 

In summary, the properties of a cluster C discovered based on 
SCP are:  
P1: C is an aMQC as SCP is a necessary (but not sufficient) 
condition for MQC. 
P2: C is a bi-connected cluster as SCP is sufficient (but not 
necessary) condition for bi-connected clusters. 
P3: C, discovered locally with the aid of SCP, is consistent with 
global computation on the same graph, is correct and unique.  

5. CLUSTER MAINTENANCE 
We now present the details of the algorithms for node/edge 
addition/deletion. These operations do not require any global 
computation. We first prove a property of aMQCs below.   

Lemma 6:  Two aMQCs which share an edge are merged to form 
a single aMQC 
Proof Sketch: Consider two aMQC clusters C1(V1,E1) and 
C2(V2,E2). Let edge e1 between nodes n1 and n2 be common 

between C1 and C2, i.e., e1 ∈E1 and e1
∈E2. If C1 and C2 are 

merged to form a single cluster C(V,E) then the merged cluster 
will be an aMQC and satisfy all our cluster properties (P1,P2 P3).  
As explained next, we use this property to merge clusters as new 
nodes and edges are added to the graph. 

5.1 Node Addition 
The node addition algorithm is based on the SCP. Hence for a 
new node n1 to be made a part of cluster c1, it should have edges 
to at least two nodes n2 and n3 within the cluster. In order to 

p4 

I2 
n2 n3 

p1 
p2 p3 

I1 

                     n1                   

986



satisfy the SCP, either (a) n3 or n2 should be neighbors of each 
other or (b) n2 and n3 should be connected by a path of length 
two.  The node addition algorithm can be stated as follows: 

Algorithm: NodeAddition 
Let V’ be the set of nodes which are incident on the newly added 

node n1. For all pairs of nodes (n2, n3) ∈V’,  

     if (n2, n3)∈E, form a new cluster from n1, n2 and n3.   
     Find all nodes N which are adjacent to both n2 and n3.   

     Form a new cluster from the nodes n1, n2, n3 and ∀ n4
∈N.   

Merge the clusters using the cluster merging algorithm till no 
more merging is possible. In Figure 5(b), when a new node n 

arrives, it has edges to node 1 and 2. These two nodes have a 
common neighbor (node 4). Hence, a new cluster (1, 2, 4, n) is 
formed due to presence of SCP. Since this new cluster shares an 
edge (1, 4) with C1, it is merged with C1. This merged cluster is 
again merged with C2 due to edge (2, 4) resulting in cluster C4. 
Being based on SCP, we can see that the newly formed clusters 
will satisfy P1, P2 and P3.  

 
Figure 5: Node/edge addition and deletion examples 

5.2 Edge Addition 
The edge addition algorithm also tries to ensure that the fresh 
clusters formed due to the new edge satisfy the short-cycle 

property. We present the algorithm and then prove its correctness.  
Let a new edge e1 (n1, n2) be added to the graph.  Notice that both 
the nodes n1 and n2 already existed in the graph G(V,E). 

Algorithm: EdgeAddition 
∀ n3

∈V | (n1, n3) ∈E do 

    ∀ n4
∈V | (n2, n4)∈E do  

         if n3= n4 or (n3, n4) ∈E, form a cluster of n1, n2, n3, n4. 
Merge the clusters using the cluster merging algorithm.  

The EdgeAddition algorithm works in two phases. In the first 
phase it forms all those clusters which satisfy the short-cycle 

property with the newly added edge.  Once it has formed these 
clusters, it merges them using the cluster merging algorithm. The 
clusters formed during the first phase satisfy the short-cycle 

property and hence satisfy all our cluster properties. As per 
Lemma 6, the clusters discovered during the second phase would 
also satisfy our cluster properties. Hence the edge addition 
algorithm discovers correct clusters. 

In Figure 5(a), a new edge (1,2) arrives. In phase 1, we create 
three clusters namely (1,2,4), (1,2,4,5) and (1,2,3,4,). In phase 2, 
these aMQCs are merged (Lemma 6) to form the cluster C3. 

5.3 Node Deletion 
When a node is deleted from the graph all the incident edges on 
that node also get deleted.  As a result of this the clusters in which 
the node participates could get split into one or more smaller 
clusters. Due to short-cycle property, standard depth first search 
based techniques to partition a biconnected component do not 
work in our environment. Thus the major task associated with the 
deletion of a node is to ensure that the correctness of the clusters 

is maintained post the deletion of the node. This implies that the 
partitioned clusters satisfy the short-cycle property.  

Thus a cluster will not get dissolved/split if (1) each edge in the 
cluster is part of a short-cycle within the cluster and (2) if the 
cluster does not have an articulation point. Notice that after the 
deletion of a node, a cluster could satisfy (1) and still have an 
articulation point as shown by the example in Figure 6. In the 
figure, initially the graph consists of a single cluster consisting of 
all the nodes.  When node 9 gets deleted, the cluster gets split into 
two as node 3 now becomes an articulation point (Cluster 1 – 
nodes 0,1,11,10,2,3 and Cluster 2 – nodes 4,5,8,7,6,3).  Hence 
whenever a node gets deleted, we need to perform two checks:  

 Cycle Check: find the edges which do not participate in a 
short-cycle, i.e., a cycle of maximum length four; and  

 Articulation Check: find if any articulation points are 
generated in the cluster.  

Before we explain the algorithm for dissolving clusters, we first 
present a property satisfied by the set of nodes that can become 
articulation points due to the deletion of a node and its incident 
edges. Once we identify this set we can restrict the articulation 
check to the nodes in this set thereby improving our efficiency. 

Figure 6: Breaking of cluster due to node deletion 

Lemma 7: Let nodes n1, n2, n and nc belong to cluster C (See 
Figure 2(a)).  n has only two incident edges e1(n, n1) and e2(n, n2).  
n1 and n2 have a common neighbor nc. Let the node n along with 
its edges e1 and e2 be deleted. No other node except nc can be the 
articulation point. 
Proof Sketch: Let the articulation point in the cluster be a node 
na�nc. Since na is part of an aMQC cluster, it participates in a 
short-cycle. That short-cycle cannot have either e1 or e2 (otherwise 
node n would have had at least one more edge adjacent to it). 
Therefore, na continues to be the part of a cycle and cannot be an 
articulation point.                 � 

In case there is no node adjacent to both n2 and n3 but there exists 
a direct edge between n2 and n3 then it can be shown that both n2 
and n3 will become the articulation points after the removal of n1.  
This can be proved using arguments similar to those given above.   

It is important to note that the node(s) suggested by Lemma 7 will 
be an articulation point if there are no alternate paths between n1 
and n2 except the one via nc. In other words if there is a direct 
edge between n1 and n2 or if there are multiple nodes neighboring 
n1 and n2 then nc cannot be an articulation point.  This is intuitive 
from the above and hence the proof is omitted.   

The articulation check is performed for each pair of edges 
adjacent to node n, which participate in a short-cycle.  
The node removal algorithm uses the Lemma 7 to restrict the 
articulation check to a small set of nodes. We now explain the 
details of this algorithm.  Let the graph G(V,E) consist of a cluster 
C having nodes V(C) and edges E(C).  

Algorithm: NodeDeletion 

Let VI
⊆ V s.t. ∀ n2

∈VI | (n1, n2) ∈E(C) 
Delete node n1 and all its incident edges 
Cycle Check 
∀ n2

∈VI do 

    ∀ (n2,n3) ∈E(C) check if the edge (n2,n3) has a path of length 
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         at most 3 within the cluster 
    If not remove edge from cluster and add n3 to VI 
    If yes, check if at least one edge of the cycle is shared with  
         another cycle of the original cluster of length at most 3. 
         If not, create an independent cluster from this cycle. 
Articulation Check: 

∀ n2 and n3
∈VI do 

  if (n2, n3)∉E(C) and there exists exactly one common neighbor 
    of n2 and n3 then check if there is any path from n2 to n3 
   if not, split C into two clusters – one consisting of node n2 and 
      nodes in V(C) reachable from n2 except via n3. The remaining 
nodes will be part of another cluster. 

 if (n2,n3) ∈E(C) and there is no other path from n2 to n3 of 
     length at most 3, then check if there is any path from n2 to n3 
   if not, split C into two clusters – one consisting of node n2 and 
      nodes in V(C) reachable from n2 except via n3. The remaining 
nodes will be part of another cluster. 

In Figure 5(c), node n is removed. Set V1 contains nodes 1, 3 and 
4 in the beginning. Node 2 and 5 are also added to set V1 as 
described in cycle-check. Since none of the nodes participates in a 
short-cycle, the cluster is no longer an aMQC and is discarded. In 
Figure 6, when node 9 is deleted, it generates an articulation node 
(node 3), and gets split into two clusters as described above. 
Articulation check is done for smaller set of nodes selected based 
on Lemma 7. If we find an articulation point then we split the 
original cluster around the articulation point. 

Thus the above algorithm helps to finds the new clusters locally 
by only focusing on the nodes taking part in the original cluster.  
Further, the algorithm needs to evaluate all the nodes of the 
original cluster if and only if we find some articulation point. 
Articulation points are used to discover bi-connected components 
in static graphs. We present algorithms such that we use 
articulation points to efficiently maintain the clusters locally as 
described above. Articulation points could be efficiently exploited 
due to the bi-connected property of aMQCs. In most of the cases 
the algorithm is able to discover the new clusters by visiting a 
fraction of the nodes of the original cluster.  

5.4 Edge Deletion 
The edge deletion algorithm is very similar to that of node 
deletion. When an edge e1(n1, n2) is deleted, we need to perform a 
cycle check to find all the cycles of length at most 4 that could 
have been broken due to the deletion of this edge. In Figure 5(d), 
edge (n, 1) is deleted. Set V1 (in NodeDeletion algorithm) is 
initialized with nodes {1,n}. In cycle-check phase, a smaller 
cluster with nodes (3, 4, n) is created since nodes 1, 2 and 5 are no 
longer part of a short-cycle.  

6. RANKING EMERGING EVENTS 
We discover emerging events in real time in a microblog stream. 
It is important to rank these discovered events in order to present 
these events to users in a comprehensible manner such that 
relatively more important events are ranked higher. Further, due 
to overwhelming pace at which the messages are generated in a 
microblog stream, it is entirely possible that some spurious events 
may get discovered due to accidental formation of a cluster, for 
instance because of presence of some popular keywords in the 
graph. Hence, our goal is to not only identify real events but to 
rank relatively more important events higher. 

We compute the relative ranking of events (or clusters) by 
utilizing only the local parameters of a cluster without resorting to 
any global data structure or entity; since our objective is to 
discover events in real time any global computation (for instance, 

relative ranking of events by considering all the events in the 
current time window) for ranking is simply not scalable. 
Therefore, for efficient ranking of the clusters, we take into 
account local cluster properties, namely: 

a) Correlation coefficient of edges present in a cluster. 
b) Density of cluster (number of edges present in a cluster). 
c) Support of the cluster, i.e., the number of independent user 

ids associated with the cluster keywords. 

A natural way to think about these parameters is that a strongly 
correlated dense cluster with high support should be ranked 
higher. Hence, a set of messages due to a real event is more likely 
to be ranked higher than an accidental cluster formation as 
accidental clusters are likely to possess low correlation, low 
density, or low support.    

Let C= (V,E) is a cluster  discovered by our algorithm. V is the set 
of nodes in C, |V| = n. E is set of edges in C. We compute the 

rank of the cluster as .
1

n
W.C where W is the weight matrix of 

size 1-by-n where wi, is the weight of a node i, i.e., the number of 
user ids associated with it. C is edge correlation coefficient matrix 

of size n-by-n.
iC i i ∀= ;1

 EjiCiC ijii ∉=∀= ),(;0,;1 . We normalize the 

cluster rank with its size so that the rank of a cluster is not a 
monotonically increasing function of cluster size. Hence, a 
strongly connected cluster will result in higher rank as there 
would be many non-zero entries in C. Secondly, higher 
correlation coefficient values will result in higher cluster rank. 
Finally, higher support to cluster will result in higher value of 
weight matrix, W, resulting in higher rank.  

7. EXPERIMENTAL EVALUATION 
Our goal in Section 7.1 is to compare and contrast our SCP based 
technique, designed to extract, in real-time, emerging events from 
microblog messages, with ground truth regarding real-world 
events, as manifested in Google news headlines.  The above study 
establishes that our technique is capable of identifying real-world 
events, as they occur, with high precision and recall. In the 
experiment reported in Section 7.2 we present the results of a 
detailed precision and recall study using Twitter traces. In Section 
7.3, we compare the performance of our SCP based clustering 
algorithm with an offline method �[2].   

7.1 Evaluation against Ground Truth  
Using an RSS feed reader we collected a total of 473 Google news 
headlines over a period of 18 hours on 29th Feb 2012. 255 of these 
headlines related to USA specific real time events (for example, 
we did not consider news analysis related headlines among our 
events of interest). These headlines were found to be related to 60 
unique real-world events.  We concurrently ran a twitter 
downloader to obtain more than 1.3 million tweets generated 
within the USA (by providing longitude and latitude range). 
Tweet download rate was close to 21/sec.  

We set �=800 tweets/quantum, and w=30 quanta, representing a 
history of 20 minutes. Note that � is defined in terms of number of 
messages in our experiments. First we identified all the bursty 
keywords in the twitter trace; a keyword is bursty if in at least one 
quantum in the trace, the keyword is used by � 4 users. That is, 
�=4.  �=0.1. A keyword in a given Google news headline, (after 
removing stop words), must be present in the bursty keyword list 
in order to be identified as pertaining to an event. For instance, 
corresponding to the headline “Body of missing Florida firefighter 
found”, there was only one tweet present in the entire trace. �=4 
implies that the event represented by the lone tweet need not be 
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considered as an emerging event. Of the 60 news events, there 
were 27 such events (with very few related tweets) including, 
“Egypt lifts travel ban on 7 US pro-democracy workers”, “Rep. 
David Drier decides against seeking reelection”, etc. Of the 
remaining 33 emerging real-world event related headlines our 
technique identified 31 events. Other two headlines were 
((“Obama, Congress leaders seek cooperation on jobs”, “Obama 
praises Snowe”). Of the keywords occurring in these headlines, 
only “Obama” exceeded the burstiness threshold. Upon 
investigation, we found that considered w.r.t. each headline, 
“Obama” could not be characterized as being bursty. Hence our 
technique did not report these two events.  

In the table below, we list a subset of the identified events. Events 
with real time implications such as weather warning (Tornado in 
MidWest) were up to 6 hours ahead of their Google News 
counterpart. Some events, like ‘Apple’, were concurrent with the 
source of Google news (USA Today). 

Table 1: SCP technique w.r.t. ground truth 

Google News HeadLine Event Discovered Using SCP 

Davy Jones of Monkees dead Davy Jones Monkees Dead RIP 

Tornado pounds MidWest Watch awesome Tornado outside 

A dead body found by Miami 
police on Rick Ross’s House 

Dead body found Rick house 

Nebraska senator Bob Kerrey 
reverses decision not to run 

Bob Kerrey will run 

Apple market value hits $500B  Apple worth more than Poland 

It is important to point out that we identified almost 6 times more 
events (e.g., “Forecast 29th Feb Snow Rain Today”, “advisory 
high wind warning issued surf”) which were not present in Google 
news headline but were important in the local context (see Table 
3). These included local job openings such as “#jobs alert ca #job 
#retail store #accounting manager #tweetmyjobs”.  

7.2 Precision and Recall 

7.2.1 Experimental Setup 
For a more detailed study of our technique and to understand its 
sensitivity to various parameters, we used 2 different data sets, 1) 
Event Specific (ES), (comprising a total of 8 million tweets) 
containing tweets corresponding to specific topics such as the 
Japan earthquake, Apple, etc. 2) Time Window (TW), (comprising 
a total of 10 million tweets) contains tweets, generated during a 
particular time window, not specific to any event or location. 
Tweets appear in chronological sequence w.r.t. their time of 
generation. The tunable parameters are listed in Table 2.  

Table 2: Nominal values used in the experiments 
Parameter Name Nominal Value Tunable Range 

Quantum size � 160 tweets 80-240 tweets 

HighStateThreshold  � 4 user ids/quantum NA 

EC Threshold � 0.20 0.1-0.25 

Window Length w.� 30 quanta 20-40 quanta 

Window length is 30 quanta, comprising a total of 4800 most 
recent tweets. The events in our case comprise global news such 
as “Plane crash in Iran kills 150 passengers” to more specific or 
local events such as “Now milk products in Fukushima are 
contaminated”. Many a times events may not be breaking news for 
world media but important in the local context.  

Identification of an event depends on the nodes and edges that 
constitute the graph. Therefore, in our experiments, we have 
varied two parameters to test our algorithm’s performance; 1) 
Quantum size (�). � is related to the burstiness of keywords. The 

larger the �, the less bursty an event needs to be and vice versa; 2) 
Edge Correlation threshold (�). We report the results obtained by 
varying the quantum size instead of high state threshold (�) as, if 
we vary � the set of events itself changes. It is important to point 
out that varying 	 shows similar trends.  

7.2.2 Measuring Recall and Precision 
If a trace contains messages pertaining to an event but we do not 
discover the event, loss of recall occurs. We may miss the event 
due to (1) non-formation of the corresponding cluster (i.e., only 1 
or 2 words from the event showed burstiness) (2) the cluster 
formed does not satisfy the SCP. Therefore, we compute recall as 
follows: First we collect all the keywords, after removing stop 
words, which are either bursty (based on the high state threshold 
�) or are already present in the current sliding window. An event 
in the current window can comprise of only these keywords. 
Keywords which are bursty but not present in any of the 
chronologically correlated event clusters discovered in offline 
manner indicate potentially missed events. Once we collect all 

such noun words (we use Stanford POS Tagger �[16]), we 
manually check in the trace if they indeed belong to any real event 
or not. To make this check manageable, given the size of the data, 
we randomly pick a fraction of missing noun keywords. The 
probability of them belonging to a real event is extrapolated to 
estimate the number of missing events. The maximum number of 
events (by adding both events identified and events missed by our 
algorithm) discovered in a run is considered to be the sum total of 
all the events present in the trace. We use this number to compute 
recall across different runs. Once the maximum number of real 
events is estimated, the same number is used to compute recall 
across all the runs. Therefore, our objective of studying the impact 
of parameter tuning on recall is not affected because of 
‘estimation’ inaccuracy, if any.  

Precision is defined as ‘How many of the events identified by us 
are real and important events?’ A spurious event reported by our 
system leads to loss of precision. However, for an event, 
classification of it as real or spurious can be subjective. Therefore, 
to identify spurious events, we employ the following approach: 1) 
We ignore an event if its rank is below a threshold which is a 
function of the minimum rank that a cluster of size N can have 
(for given correlation and burstiness thresholds); 2) we ignore the 
clusters with all non-noun words. Our premise is that there must 
be at least one noun keyword in real world events. 

However, there may still be spurious event clusters (such as 
advertisements or rumors). As noticed in our evaluation, real 
world events typically have a build-up and wind-down phase. 
Therefore, the clusters belonging to such events are evolving 
and/or their rank scores keep on changing in a non-monotonic 
manner. On the other hand, spurious events have a sudden burst 
and thereafter they die. Hence, events which do not evolve and 
have monotonically decreasing rank scores are considered 
spurious events in our analysis. We cannot suppress these events 
from being reported as we cannot determine their future behavior. 
However, for an event, we can analyze its behavior in a post-hoc 
manner. Precision for events is computed as the percentage of real 
events among all the events that are reported.  

7.2.3 Observed Precision and Recall 
The event density (events/unit length of trace) in ES set is found 

to be approximately 3 times that in TW set. Recall and Precision 
results are shown in Figures 7 to 10. In general with increasing � 
and decreasing �, recall increases as more nodes and edges move 
into AKG due to the less stringent requirement on the burstiness. 
Similarly, precision tends to improve with increasing � and 

989



decreasing � (though not as much as recall) due to the following 
reason: in our experiments we see that spurious events tend to 
appear in bursts. Hence, there is practically no effect of parameter 
tuning on these events due to their strong temporal correlation and 
they are almost always discovered in each run. However, with 
more relaxed parameters, majority of the extra events that get 
discovered are real events. Hence, with more events getting 
identified and the number of spurious events remaining 
approximately stable, precision increases. In experiment (run on 
ES trace) with �=800, �=0.25 and 	=4: (i) Recall improves to 
0.95; (ii) Precision also improves marginally due to the presence 
of almost the same number of spurious events. As stated earlier, 
we varied � instead of � to see the effect of burstiness. Finally, 
changing w, the number of quanta in a window, did not result in a 
discernable effect on precision/recall. 

7.2.4 Analysis of Quality of Discovered Events 
From our previous experiment, it may appear that one may set the 
� as large and � as small as possible to achieve maximum recall 
and precision. However, another important dimension in our 
analysis is the quality of the discovered events. With low � and 
high �, more and more keywords start merging with event 
clusters, reducing the quality of event clusters. Similarly, many 
meaningless (or less interesting) events may get discovered. We 
use the following two measures to determine the event quality: 1) 
Average cluster size: We compute the size of average cluster for 
all the discovered events. The average cluster size across all the 
runs ranges from 6.16 to 6.88 keywords/event except when � is 
reduced to 0.1 when the average cluster size becomes 9.23 and 
9.88 for ES and TW data sets respectively indicating an almost 
50% increase. As one can see, consuming small and focused event 
clusters is preferred compared to large clusters. 2) Average 

Cluster Rank: As explained in Section �6, a high rank score 
signifies a strong cluster and therefore a better event quality. We 
notice, with increasing � and reducing �, average rank score 
reduces by up to 20% and 30% in TW and ES traces respectively 
from its peak value. As we see, the average cluster size does not 
change much across different runs, the reduced rank score implies 
that most of the additional events that are discovered with more 
relaxed parameters have fairly low rank score. Further, clusters 
around real events were almost always ranked higher compared to 
clusters formed accidentally.  

7.3 Bi-connected clusters vs. SCP clusters 
We implemented the algorithm to discover the bi-connected 
clusters (BCs) on exactly the same graph on which SCP clusters 
are computed. Similar algorithm is also proposed in �[2] to identify 
events in blogs. After each quantum, the BCs are computed on the 
entire graph in an offline manner. All the edges (including edges 
connecting two BCs), which are not part of any bi-connected 
cluster, are reported as clusters of size 2. All parameters are set to 
their nominal values (Table 2). We have used the same twitter 
trace which we used for the ground truth experiment. At the end 
of each quantum, clusters identified by both the techniques are 
compared. Since SCP is not a necessary condition for bi-
connected clusters, additional clusters are discovered in the 
offline method. Therefore, we compute: (1) additional clusters 
(Ac) and (2) additional events (AE) discovered in offline method. 
We get 276% Ac and -11.1% AE. If we exclude BCs of size 2 from 
offline clusters (since SCP based clusters do not include them), Ac 
and AE come down by -5.1% and -17.1%. The additional clusters 
in the offline method arise from edges being identified as clusters 
(of size 2). A substantial number of these edges are found to be 
not related to real events. We further identify that 1) 74.5% of 
offline event clusters exactly overlap with short-cycle based 

clusters (after excluding edges), 2) no instance of an event cluster 
is found in the offline method which did not have short-cycle. 

Both these facts prove (1) the correctness of our method (2) our 
conjecture that real events have short-cycle within the event 
cluster. Average size of exactly overlapping clusters was 4.53 
(against 5.07 for all the clusters in the SCP method) indicating 
that mostly small clusters overlap exactly. For the offline event 
clusters, not overlapping exactly with short-cycle based clusters, 
we see an increase in average cluster size from 6.83 to 12.72. The 
average rank of all the BC clusters goes down from 186.4 to 150.9 
w.r.t. SCP clusters. Therefore, the quality of offline clusters 
suffers. Further, our technique computes clusters 46% faster 
compared to offline method due to the fact that it involved only 

local computations. Note that the performance of our method can 
further be improved in a parallel processing environment since 
multiple simultaneous computations are allowed on the graph in 
short-cycle based clusters. 

 
Figure 7: Recall for Time Window Based Trace 

 
Figure 8: Recall for Event Specific Trace 

 
Figure 9: Precision for Time Window Based Trace 

 
Figure 10: Precision for Event Specific Trace 

As is evident from the above discussion, the offline clusters lead 
to lower precision. However, even recall is lower as in some 
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instances two real events get merged into one offline cluster, 
leading to loss of recall. In summary, we show that real time 
events almost invariably have short-cycle within the cluster 
(except a small number of events which do not form cycles). 

Table 3: Performance of different clustering schemes 

 SCP 
Clusters 

Bi-connected 
Clusters 

Bi-connected 
clusters +Edges 

Events Discovered 216 179 192 

Precision 0.911 0.795 0.216 

Recall 0.935 0.775 0.831 

Avg. Rank 186.4 150.9 92.1 

Avg. Cluster Size 5.07 6.31 3.14 

7.4 Impact of using AKG  
Recall from Section 3 that at the end of each quantum, we do a 
total of O (k2NC) computations. On average, the number of edges 
in AKG was less than 2% of CKG (at a given point of time). In 
our experiments, less than 5% nodes in CKG show burstiness. 
These reductions demonstrate the efficacy of our technique to 
reduce the size of graphs used for cluster discovery. 

Further, the average number of edges attached to a node was less 
than 6 and the average size of clusters was less than 7 nodes.  
Hence we can clearly see that the amount of computation that 
needs to be done at the end of each quantum is significantly 
reduced due to the use of SCP over AKG. In the table below, we 
show the message processing rate. We see that on our machine, 
one with modest configuration, the rate of processing a general 
twitter trace is beyond 5000 messages/second. On ES trace, with 
much higher event intensity, the rate of processing comes down. 
With increasing �, the number of low quality clusters increases 
and only some of them are identified as real events. The system 
ends up processing many clusters which are discarded later.  

Table 4: Message processing rate for given quantum sizes 
Msg Processed/Second Trace Type 

� =120 � =160 � =200 
Time Window Based Trace 5185 4420 4160 

Event Specific Trace 1410 1400 1160  

In summary, our experiments demonstrate the following: 

• We see that our algorithm is able to discover interesting 
events with high precision and recall in a timely manner. 
Besides ‘important’ events it also discovers events which 
may not be “captured” by headlines reported in news sites.  

• Our algorithm, by exploiting the SCP, works in real time and 
outperforms the offline algorithm reported in �[2]. Analysis of 
events identified in offline method also establishes that SCP 
is almost invariably present in all the event clusters. 

• Our algorithm is quite resilient to parameter settings as the 
event set discovered by us is fairly stable across different 
runs underlining the robustness of our algorithm. Further, we 
find that the average cluster size is quite stable across runs. 

• On a modest machine, our algorithm is able to process 
almost twice the current rate at which messages are added to 
the Twitter stream underlying our algorithms’ scalability.  

8. CONCLUSION 
In this paper we have addressed the problem of discovering events 
in a microblog stream. We mapped the problem of finding events 
to that of finding clusters in a graph. Due to the dynamic nature of 
the twitter stream, the size of the graph can become extremely 
large. We hence proposed the use of a technique which allowed us 
to efficiently find a stable graph which was order of magnitude 
smaller than the original graph and yet captures all the 
information about the emerging events. We argued that 

conventional cluster discovery techniques used for finding events 
in a microblog stream do not work in our setting. We hence 
introduced aMQCs, which are bi-connected clusters, satisfying a 
new short-cycle property which allowed us to find and maintain 
the clusters locally without affecting the quality of the discovered 
clusters. To handle the dynamics we also proposed algorithms for 
handling addition/deletion of a node/edge and proved the 
correctness of the same. We showed the efficacy of our techniques 
using real world data – we were able to find clusters efficiently, in 
real-time, i.e., keeping pace with the arrival of messages.   

As part of our future work we plan to build a system that includes 
the ability to discover and thus discard spurious and malicious 
events (e.g., rumors). Since many web applications generate data 
which can be modeled as massive and dynamic graphs, we will 
also extend and apply our technique to other domains with similar 
characteristics. Finally, we will explore pre- as well as post-
processing techniques to complement the core approach described 
in this paper. 
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