
Real Time Discovery of Dense Clusters in Highly Dynamic Graphs:
Identifying Real World Events in Highly Dynamic Environments

Manoj K Agarwal
*

IBM Research-India, New Delhi
manojkag@in.ibm.com

 Krithi Ramamritham
IIT-Bombay, Mumbai, India

krithi@cse.iitb.ac.in

Manish Bhide
IBM India Software Labs, Hyderabad

abmanish@in.ibm.com

ABSTRACT
Due to their real time nature, microblog streams are a rich source
of dynamic information, for example, about emerging events.
Existing techniques for discovering such events from a microblog
stream in real time (such as Twitter trending topics), have several
lacunae when used for discovering emerging events; extant graph
based event detection techniques are not practical in microblog
settings due to their complexity; and conventional techniques,
which have been developed for blogs, web-pages, etc., involving
the use of keyword search, are only useful for finding information
about known events. Hence, in this paper, we present techniques
to discover events that are unraveling in microblog message
streams in real time so that such events can be reported as soon as
they occur. We model the problem as discovering dense clusters
in highly dynamic graphs. Despite many recent advances in graph
analysis, ours is the first technique to identify dense clusters in
massive and highly dynamic graphs in real time. Given the
characteristics of microblog streams, in order to find clusters
without missing any events, we propose and exploit a novel graph
property which we call short-cycle property. Our algorithms find
these clusters efficiently in spite of rapid changes to the microblog
streams. Further we present a novel ranking function to identify
the important events. Besides proving the correctness of our
algorithms we show their practical utility by evaluating them
using real world microblog data. These demonstrate our
technique’s ability to discover, with high precision and recall,
emerging events in high intensity data streams in real time. Many
recent web applications create data which can be represented as
massive dynamic graphs. Our technique can be easily extended to
discover, in real time, interesting patterns in such graphs.

1. INTRODUCTION and MOTIVATION
Microblogging sites such as ����������	 have become a rich source
of information about any “event”, ranging from breaking news
stories to earthquakes or information about local concerts.

Empirical studies �[10]�[11] show that (i) Twitter is often the first
medium to break important events such as earthquakes, often in a
matter of seconds after they occur and more importantly (ii) they
highlight the need to discover all such events (and not just events

related to earthquakes �[10]) in real time from microblog streams.
Note that by ‘real time’ we mean that events need to be
discovered as early as possible after they start unraveling in the
microblog stream. Such information about emerging events can be
immensely valuable if it is discovered timely and made available.

* This work is done as part of the PhD at IIT-Bombay, India.

One obvious way to find information on microblogging sites is to
use keyword search. There are many microblog search engines
which allow users to find real-time microblogs relevant to a
keyword query (e.g., twitter search). These search engines allow
users to register their (continuous) keyword queries and return a
stream of events, trends or news items relevant to the query.
However, these search techniques do not help the user to
“discover” the event but can be used to gather follow up
information about the event. One could argue that the event could
have been discovered by a continuous query with a keyword, say,
“earthquake”. However, note that a user would have to register a
large number of such keyword queries to discover all possible
types of events, something that is clearly not feasible.

The major challenge in achieving the goal of building a real time
event discovery and tracking system lies in correlating the right
microblog messages, among the hundreds of thousands of
messages that are continuously being generated. The problem is
exacerbated by the fact that the keywords used to describe the
event might vary from one user to another and could also change
over time due to the evolving nature of real time events. Hence

classifier �[10] or keyword search techniques may not be practical.
This paper addresses these problems and presents a technique for
discovering events in a microblog stream in real time.

Whenever an event happens, there will be a few keywords which
will show burstiness (display a sudden jump in frequency). Hence
a simple and obvious way to discover events is to keep track of
the most popular words, something that is already done by twitter,
and displayed as trending topics. A keyword (or a pair of
consecutively occurring words) is recognized as a trending topic
by Twitter if it is popular over a period of time. However, as
reported in �
���
��������	, several thousand tweets over a
relatively short period of time are needed to identify an event as
trending topic. Therefore, (1) using keywords appearing in
‘trending topics’ does not serve the purpose of discovering events
in ‘real time’ (as by then the event would no longer be an
emerging event) and (2) it is not necessary that all important
events do become trending topics. Further, once a set of keywords
becomes popular, they would remain so for a long time thereby
overshadowing any new emerging events. Moreover, rather than
reporting individual keywords or a pair of consecutive keywords
it might be more meaningful and insightful to identify a set of
correlated keywords (not necessarily occurring consecutively).

In order to identify an emerging topic, we need to identify a set of
keywords which are temporally correlated, i.e., they show
burstiness at the same time and are spatially correlated, i.e., they
co-occur in temporally correlated messages from the same user. In
order to capture these characteristics we use a dynamic graph
model which uses the moving window paradigm and is
constructed using the most recent messages present in the message
stream. An edge between two nodes -- representing two keywords
-- indicates that messages from a user within the recent sliding
window involve the respective keywords. We use these properties
to formulate our problem as that of cluster discovery in a dynamic
graph. Figure 1 shows a partial graph induced by 6 real twitter
messages (comprising 12 keywords). 6 of these keywords show
burstiness (e.g., at least 2 occurrences). Keywords co-occurring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 10
Copyright 2012 VLDB Endowment 21508097/12/06... $ 10.00.

980

together in messages from a user (within 6 messages) share an
edge. We discover the cluster “earthquake struck eastern Turkey”
in the graph, denoting an event. Two other keywords (“massive”
and “moderate”) were also bursty within the graph but they are
not part of cluster (due to weak spatial correlation). When the
window is moved at a fixed rate (oldest 2 messages expire and 2
most recent messages are added), a new keyword (“5.9”) gets
added to the cluster (denoting the intensity of earthquake).

Figure 1: Event cluster embedded in a graph drawn on Twitter data

The example above highlights several issues central to our
problem, specifically a) the cluster definition should be able to
capture the imperfect correlation among keywords belonging to an
event. Not all keywords are used by all the users (there is no edge
between ‘eastern’ and ‘struck’); b) we should be able to capture
the evolving nature of events in a highly dynamic environment
(‘5.9’ joined the cluster later); and, c) the identified events should
truly be categorizable as emerging real-world events by filtering
out spurious and unimportant events.

The graph is highly dynamic and complex, i.e., keywords (and
associated edges) present in the graph get added and deleted at a

fast pace; (Twitter reports more than 2300 tweets/sec �[12] with
potentially multiple simultaneous events present); the technique to
identify the emerging events needs to be highly scalable.
Specifically, it should be able to identify and maintain the events
in a massive and highly dynamic graph.

1.1 Problem Formulation, Solution Ingredients
Let Si represent a set of keywords (potentially spread over
multiple messages) from a unique user i in a time window that
spans from time (t - �.w) to current time t, where � represents unit
time called quantum and �.w is the length of the time window. Let
Sw

t={S1…Sm} be a set of keywords sent by m unique users in the
microblog stream in a given time window. As we are interested in
discovering emerging events, Sw

t contains the messages from a
sliding window (of size �.w) over the message stream. Time unit �
denotes the fixed rate at which the window is moved.

Correlated Keyword Graph (CKG) captures the properties of

microblog contents. We represent all the keywords, after
removing stop words, appearing in the messages in the current
window as nodes in an undirected graph, CKG (we use the terms
node and keyword interchangeably in this paper). CKG is a

dynamic graph whose state at time t, is Gt = (Vt, Et) where Vt is

the subset of keywords appearing in message set Sw
t. Thus, two

keywords are said to be temporally correlated iff they appear in Vt
and are said to be spatially correlated if they have an edge
between them in Et. An edge links two keywords iff they both
appear in a keyword set Si belonging to a user i.

Thus using the sliding window paradigm, a keyword is present in
CKG if the keyword appears in at least one message in the current
window. Since the window moves forward with time, CKG is
highly dynamic where nodes and edges appear and disappear in
real time. Further, a node in CKG can be either in a “high” state
or a “low” state. A node moves into high state if there is a sudden
increase in the frequency of its occurrence in the message stream.

Each edge in CKG is associated with a weight which signifies the
probability of the words associated with the edge appearing in
temporally correlated messages from a set of users. One of the
challenges in working with highly dynamic microblog data is the
size of the generated CKG. We overcome this challenge by
constructing a much smaller Active CKG (AKG) from the original
CKG such that (1) the clusters discovered in AKG are no different
from those discovered in the CKG and (2) it is orders of
magnitude smaller than the original CKG.

Emerging events are identified by discovering clusters in CKG.
Given CKG, our problem of discovering emerging events can be
mapped to identifying significant properties of the graph. For
example, the burstiness of the keywords is captured by the state
associated with a node. Temporal correlation can be captured by
the moving window and spatial correlation can be identified by
the weight associated with the edges. Using these properties, at a
high level, our problem of event identification is similar to
discovering a “cluster” within CKG. The cluster would consist of
a set of keywords (e.g., “earthquake”, “struck”, “Turkey”) where
each keyword would be bursty and would exhibit temporal and
spatial correlation with the other words in the cluster.

 CKG is an undirected graph, i.e., is a tree of its biconnected
components. A graph is said to be biconnected if for any pair of
nodes in the graph there are at least two independent paths
between them. Two paths are independent if they do not have any
nodes in common except the end points. In a connected graph,
two biconnected clusters can be connected with each other with
just one path (had there been more paths between two clusters,
they will merge into one cluster). We assume that nodes within
biconnected components are more likely to be associated with the
same event compared to nodes across components.

 Biconnected components are the most encompassing forms of
clusters in an undirected graph, next only to a connected graph
itself being considered to be a cluster. However, if we choose to
consider all biconnected components as our clusters, we may end
up discovering massive and more often meaningless clusters in a
large and dynamic graph. The other option is to consider only
complete cliques, wherein each node is connected with all the
other nodes in the clique, as clusters of interest to us. Complete
cliques are more likely to represent interesting real world events
but considering only complete cliques as clusters does not suit our
scenario because a) different users may use different sets of
keywords to describe the same event and b) keywords associated
with an event change rapidly in the microblogging stream due to
the evolving nature of real time events.

Considering ½-quasi cliques (MQCs) as clusters of interest
contributes to good precision and recall of discovered events. As
noted above, identifying events from the biconnected components
in a CKG is likely to result in high recall (i.e., identify more real
world events) but low precision (i.e., identify many non events as
real-world events); the opposite is likely to be true for complete
cliques. Therefore instead of finding either complete cliques or
just biconnected components, we focus on ½-quasi cliques as our
clusters of interest. A cluster is a �-quasi clique if each node in the
cluster is adjacent to at least �.(N-1) nodes in the cluster where �
is a number between 0 and 1 and N is the cluster size. When � is
1, the cluster is a complete clique. A biconnected component has
�=2/N-1. For a connected graph, the minimum value of � can be
1/N-1. As explained above, none of the two extreme values of � is
suitable in our environment. Therefore a natural choice is to set �
to their mean in order to balance precision and recall. Hence, in
order to discover meaningful clusters in a dynamic environment,
we identify those components of a graph as clusters that have � >

moderate

massive

eastern

struck

Turkey
5.9

earthquake

981

(1/2+1/N-1) or � �1/2. We call these cliques majority quasi

cliques (MQCs) since each node of the cluster is connected with a
majority of the remaining nodes in the cluster.

Exploiting short cycle property (SCP) of MQCs makes event

discovery a tractable and local problem. It has been shown �[14]
that discovering ½ -quasi cliques is an NP-complete problem even
for static graphs. Fortunately, we are able to show that ½-quasi
cliques possess a unique property which we call short cycle

property (SCP): any edge in the cluster has at least one cycle of
length at most 4 within the cluster. (In Section 4, we define the
short-cycle property formally and show that (1) SCP is a
necessary but not sufficient condition for MQC, (2) SCP is a
sufficient but not necessary condition for bi-connected
components, and, (3) SCP can be exploited to identify events by
discovering clusters which possess the short cycle property (called
approximate MQCs (aMQCs)).

The key advantage of using SCP for defining clusters is that we
can discover dense clusters (aMQCs) efficiently and locally
without using any global state information. For a dynamic graph,
a cluster is said to be locally processable if for each incoming or
departing node (or edge) to the graph, the cluster can be
discovered by processing only its adjacent edges and nodes. Since
these computations are local in nature, they are efficient, a pre-
condition for discovering clusters in a highly dynamic graph.
Further, multiple independent additions and deletions are allowed
simultaneously on the graph. On the other hand, any processing
which needs the graph to be stable (i.e., no addition or deletion is
allowed in the graph during the course of computation) is called
global processing. We believe that ours is the very first attempt to
develop a technique to discover dense clusters in a highly
dynamic graph. We propose efficient algorithms for discovering
and maintaining the clusters in a dynamic graph as nodes and
edges get added and deleted due to the moving window. We prove
the correctness of our algorithms and experimentally show that
our use of aMQC to define clusters helps us to discover emerging
events correctly and efficiently.

Globally consistent ranking of events can be achieved by
exploiting local properties of clusters. In order to consume
events, a ranking function is needed such that important events are
ranked higher compared to spurious or less important news.
However, due to the highly dynamic environment and real time
considerations, no ranking function which needs any global
information can be used. We present a novel and highly efficient
ranking function that ranks events by just exploiting the local
cluster properties corresponding to each event, yet delivers a
globally consistent ranking in a best effort manner.

Suppose two clusters discovered by us pertain to the same event
but they could not get merged into a single event because (1)
users used synonymous keywords to describe the event; (2) users
indeed used different keywords, providing different perspectives
about the same event; (3) the messages are posted in different
languages. All these cases can be addressed by pre-processing the
messages or post-processing the discovered clusters. For instance,
one can use dictionary/thesaurus to address issues (1) and (3). For
(2), clusters pointing to the same event should show temporal
correlation. Therefore, one can post-process the discovered
clusters (within a given time window) to correlate such clusters.

Further, suppose there is an ongoing discussion among tweeters
about a controversial topic (resulting in many messages) but it is
not a real world event. Typically, such “events” are ranked low
compared to real world events due to their slow rate of spread. We
may want to report even those events if they are ranked
sufficiently high, but often one may want to ignore such events by

post-processing the discovered clusters to identify such events.
Post/pre-processing of keywords and discovered clusters and
event categorization are orthogonal to the technique presented in
this paper. It can be used to further enhance our technique and is
part of our future work.

1.2 Research Contributions
• We present a new technique to discover and maintain dense

clusters in massive and highly dynamic graphs in real time.
In contrast, other clustering techniques, such as those based
on data mining, are not only inherently slow in such
environments they are also not suitable (details in Section 2).

• In Section 3 we present our strategy to construct a much
smaller Active CKG (AKG) from the original CKG to help
us efficiently discover and maintain the clusters, which is
imperative in a dynamic environment.

• We model the problem of discovering the emerging events in
real time in microblog streams as discovering approximate
½-quasi cliques, which possess the short-cycle property. This
property is especially useful in highly dynamic microblog
environments as it helps us maintain the clusters locally
without using any global state information. We also prove

the correctness of the algorithms (Section �4).

• We propose efficient algorithms for maintaining the clusters
locally even under numerous additions and deletions of

nodes and edges (Section �5).

• In Section �6, we present our ranking function such that more
important events are highly likely to be ranked higher by just
using local cluster properties.

• Through an experimental study of our technique using real
twitter data, we demonstrate its ability to (1) discover the
emerging events in real time -- with high precision and
recall; (2) process at almost double the rate of current Twitter
intensity on a machine of moderate configuration; (3)
discover emerging events around the same time or much
before it is seen on Google headlines; (4) discover additional

events which do not appear in Google headlines (Section �7).

Discovering dense clusters in highly dynamic graphs efficiently
and in real time has many applications in social networks, IP
networks, telecommunication networks and for real time business
analytics. Extant algorithms to discover dense clusters in dynamic

graphs work on snapshot based techniques �[2] and have severe
limitations with regard to real time analytics. Our technique to
discover clusters in massive and highly dynamic graphs in real
time improves upon the state-of-the-art and can be easily extended
for many such applications.

2. RELATED WORK
The notion of time evolving graphs where some communities
show a burst in their behavior at certain points in time was first

developed in �[1]. This work, done in the context of blogs,
developed techniques to study the evolution of connected
component structures in time evolving graphs. A technique to
find proximity between two nodes in time evolving bipartite

graphs is proposed in �[3].

In �[2], authors propose a technique to discover keyword clusters

in blogs �[2] to identify a topic. The key difference between �[2]
and our work is that we discover keyword clusters in microblog
streams which are very dynamic and under stringent real time

constraints. The technique presented in �[2] requires global
computation of clusters in the graph where graphs are updated not
in real time but on a daily basis. Similarly, there is a large body

982

of work on analyzing the structure of communities and their

evolutions in social networks �[4]�[5]. These communities comprise
humans (and not keywords), hence the real time constraint in this
body of work is at a totally different scale compared to our
problem setting. Hence our problem warrants a new approach.

Recent work on identifying emerging topics on Twitter data �[13]
�[17]�[18] has a problem statement similar to ours. These
techniques use ‘bursty keywords’ in recent set of messages as
seeds to identify emerging events. In �[18] the authors describe a
series of heuristics to identify ‘emerging terms’. The technique is
computationally expensive for real time analysis due to the
iterative method that is employed to compute an ‘authority score’.
Further, the concept of user's authority to identify emerging terms
may not be applicable in most real world situations. �[13] reports a
pair of keywords (based on correlation) as an emerging topic. At
least one of these two keywords should be among the ‘bursty
keywords’. �[17] reports a cluster of keywords (at least one of them
has to be ‘bursty’). However, both the techniques suffer from
multiple limitations; 1) the performance is highly sensitive to the
value of keyword burstiness threshold; 2) in the presence of
multiple events, identifying co-occurring disjoint subsets from all
the bursty keywords �[17] or identifying co-occurring pairs based
on time series analysis �[13] are computationally expensive
techniques. Events are not ranked in �[17] therefore making the
consumption of events untenable in the presence of multiple
events. Further, the methods in �[13]�[17]�[18] are not able to
capture the evolution of an event as all these techniques use seed

keywords to identify events. These techniques are essentially
based on post-hoc analysis but they highlight the importance of
identifying keywords (nodes) and their correlation (edges among
keywords) as the basis for identifying an emerging topic.

3. REDUCING GRAPH SIZE: CKG to AKG
Due to the high rate of arrival of messages in microblogs, the
CKG generated from the microblog stream can quickly become
very large. Hence we first generate a manageable sub-graph,
AKG, from the original CKG so that our cluster discovery
problem becomes tractable.

3.1 Identifying AKG Nodes
We use a ‘hysteresis’ based approach. Let the CKG be denoted by
Go. Each node in this graph represents a keyword in the data
stream (after removal of stop words). As we are interested in
finding the emerging events, a natural way is to pick only active
keywords in Go which show an upward trend in their burstiness,
i.e., frequency of their occurrence across different messages
during a quantum, crosses a given threshold. Towards that end,
we construct a subgraph, called AKG using only the active
keywords and ignoring all the other keywords and their associated
edges. Let G be the AKG induced by Go after removing the non-
bursty keywords. Notice that threshold in our case is set to
identify keywords that need to be excluded from G and hence it is
significantly low. However, given a properly set threshold, G will
still be significantly smaller in size as compared to Go, since only
a small number of keywords would show burstiness. Because the
burstiness threshold is low, the graph G contains all the keywords
associated with an emerging event. We can subsequently use G to
identify the events without impacting precision and recall.
In order to identify bursty keywords, we use a two-state
automaton where each keyword is either in a low state or a high

state. A keyword moves from low state to high state (i.e., added in
AKG) if during a quantum it shows burstiness, i.e., it appears in
more than � different users’ messages. We call � the high state

threshold (HST). All other keywords are in low state. A keyword

in high state may remain bursty or may become non-bursty in
subsequent quanta. As we are interested in finding emerging
events, we are specifically interested in finding keywords which
are moving from low to high state.

In order to discover meaningful clusters in G, we need relative
stability in the graph. Hence, a keyword which has moved to AKG
remains in AKG as long as it is part of an event cluster
irrespective of its frequency of occurrence in subsequent quanta
However, as we maintain the graph over a sliding window, we
remove all the stale keywords, i.e., those keywords which have
not occurred in any of the last w quanta, from AKG.

For the keywords present in AKG, we update their status (i.e.,
remove them from AKG) using a lazy update principle, if needed,
for only those nodes which are (1) in AKG and also occur in the
messages present in the current quantum and (2) nodes adjacent to
nodes identified in (1), as their correlation can change. One can
see that in a given quantum only these nodes can be removed from
a cluster (due to change in correlation). A departing keyword from
a cluster is removed from the AKG if it is not part of any other

event cluster. Notice that, as we explain in Section �3.2, a keyword
which is not part of any cluster cannot become part of another
cluster unless it exhibits a high frequency behavior. At that point,
the keyword is moved into AKG anyway.

The above technique helps us to smooth the movement of
keywords from high to low state or vice-versa and is more
efficient and scalable compared to the time series analysis as

required in �[13]. We can compute the state of each arriving
keyword at the end of the quantum in O(1) time. Once the nodes
in the sub-graph have been identified, the next step is to find the
edges between these nodes.

3.2 Identifying AKG Edges
The guiding principle for creating an edge between two nodes in
the sub-graph G is that, in the current time window, messages

from a significant number of users should have both the

keywords. Therefore, we associate a correlation measure with the
edge connecting the two nodes and place an edge between the two
keywords (present in AKG) if the correlation between them is
above a threshold. The correlation is computed by associating a
set of user ids with each keyword. This set U1 (called the id set)
associated with a keyword n1, contains the ids of all those users
who used this word in the current window. Given sets U1 and U2
for a pair of nodes n1 and n2, we can find their correlation by
using the Jaccard coefficient, which is defined as the size of the
intersection divided by the size of the union of the two sets:
|U1 � U2 |/|U1 U U2 |. We call it edge correlation (EC). Notice that
a high value of the EC would imply that the two keywords have
been used together by a large proportion of users and would hence
imply a strong correlation. We use user ids as opposed to message
ids so as to avoid the case of a single user flooding the same
message multiple times leading to high correlation between nodes
of the message. However, if we use user id, the strict message
based spatiality is not valid (it is not necessary for a user to
mention all the keywords in the same message). Hence, spatial
correlation is not confined to a message but to a user and
keywords from a user may be spread over multiple messages
albeit within a given quantum of size �.

Since AKG contains all the keywords in the high state, it would
be costly to compute the correlation of all pairs of nodes in AKG.
Hence, we next address the following challenges: (1) Identify
those pairs of nodes whose correlation is likely to be above the
threshold and; (2) Find the correlation of the selected nodes.

983

3.2.1 Identifying node pairs for EC Computation
As mentioned earlier, each keyword is associated with an id set.
For keywords appearing in the last quantum, we construct two
sets with the aid of id set; (1) Keywords that are in the high state
(the size of the associated id set is � �) and (2) keywords that were
already in AKG and have also appeared in at least one of the
messages that arrived in the last quantum. Note that a keyword
may appear in both the sets. For all the keywords in set (1), we
compute the correlation only among them. If the EC threshold is �
and if the correlation between two keywords is above � we place
an edge between them. It is intuitive to see that new keywords,
entering into AKG do not have temporal and spatial correlation
with any other keyword present in the AKG except those in set
(1). For all the keywords identified in set (2), we update their
correlation with their neighbors. Any other pairs of keywords
would not have their correlation changed.

Thus, using this mechanism we drastically reduce the number of
EC computations that we need to do at the end of each quantum.

As described next, we use the Min-Hashing scheme �[6] to
compute the EC efficiently.

3.2.2 Efficient computation of EC
We assign a hash value to each unique user in a quantum.
Assuming that the number of unique users per quantum is no
more than 2n, we choose the hash value for each message
independently and uniformly from a range (0, 22n) so as to avoid

the birthday paradox (hash collision) �[8]. For each keyword, we
then keep track of the minimum hash value (Min-Hash) among all
the user ids present in its id set. Now, for each pair of nodes n1
and n2, the probability of both n1 and n2 having the same Min-

Hash value is exactly equal to their Jaccard similarity coefficient

�[7] or EC. The reasoning is as follows: The Min-hash value will
be the same if the id with minimum hash value is common to both
the id set nodes, i.e., it belongs to the set |U1 � U2 |. Since the
total size of both the sets is |U1 U U2 |, the probability of having
the same min-hash value is |U1 � U2 |/|U1 U U2 |. However, in
order to avoid false negatives, instead of keeping track of only a
single Min-Hash value for a node, we keep track of p Min-Hash

values (i.e., the p minimum hash values amongst all the user ids in
the union of id set). We add an edge between two keywords in G
if there is at least one common entry in their p Min-Hash values.
The value of p depends on the EC threshold � and high state

threshold �; for a uniform distribution, the expected number of
trials before a match occurs is 1/p.�. Value of p is set to
min(�/2,1/�). Due to this mechanism, we can compute the
correlation between two nodes in an efficient manner with a very

small probability of false negatives and false positives �[7].

In summary, we first significantly reduce the number of pairs of
nodes whose correlation needs to be computed and then for the
identified pairs we find their Jaccard coefficient efficiently in
O(p.log(p)) time where p is a constant.

Thus, the tunable parameters and thresholds affecting the AKG
are �, �, � and w* �. One can argue that it is imperative to set the
thresholds (� and �) correctly to include an edge and a node in the
AKG. The discovery of an event ultimately depends on what
nodes and edges are present in the graph, which in turn depends
on these threshold values. For timely discovery of events these
thresholds are kept low and they are just the qualifying thresholds
for any edge or node to be in the AKG. If the � is high, only very
popular keywords reach the high state. It compromises our ability
to identify the emerging events in a timely manner. Further, since
not all keywords are used by all the users, the threshold for each
individual keyword has to be low. For the same reason, � has to be

relatively low. Therefore, thresholds are set such that they just
filter out completely unwarranted nodes and edges and not tuned
such that nodes and edges left in the graph automatically result in
events. However, with low threshold, many more keywords move
into high state. Therefore, the events are identified by discovering
a particular class of clusters (aMQCs) as explained in Section 4.

4. CLUSTER DISCOVERY
Once the graph is in place, we can use many standard cluster

finding algorithms �[2] to find a cluster of keywords corresponding
to an emerging event. However, approximation algorithms for
finding dense clusters in a graph operate on the entire graph (i.e.,
graph needs to be stable during the computation) and are not

efficient �[2]. We hence propose the novel short cycle property

(SCP) in Section �4.1 which helps us discover dense clusters (i.e.,
aMQC cliques in our case) efficiently and in real time.

In Figure 1, a cluster with 4 keywords (“earthquake”, “struck”,
“eastern”, “turkey”) exists at time t. At time t+�, we could update
the cluster with keyword “5.9” since it was forming a cycle of
length 3 with nodes (“earthquake”, “turkey”). If the edge between
“earthquake” and “turkey” would not have existed, even then
keyword “5.9” would have joined the cluster due to the formation
of cycle of length 4, via keywords “eastern” or “struck”. Hence,
due to the existence of a short cycle within the nodes of the
cluster, we could update the cluster without re-computing it on the
entire graph. As the graph changes, SCP ensures that only
incremental computations are performed for those nodes and
edges which need to be updated, while simultaneously ensuring
the correctness of result. We provide the analysis and correctness

of our approach in Section �4.2 and Section �4.3 respectively.

4.1 Short-cycle property
A graph is said to possess the short-cycle property if for any two
adjacent nodes n1 and n2 in the graph, in addition to the direct
edge between n1 and n2, there exists at least one more path of
length at most 3 between n1 and n2, i.e., n1 and n2 are part of a
cycle of length at most 4. More formally, short-cycle property in a

cluster C(V,E) in graph G is defined as follows: if)(},{ CVvv ji ∈

and)(),(CEvv ji ∈ then)(ji vv →∃ s.t., 3||1 ≤→< ji vv .

Definition 1: The diameter of a graph G(V, E) is defined as

D(G)=)},({max)(, vudGVvu ∈ where d(u,v) is the distance

between any two nodes u, v, belonging to the graph. The diameter
of a complete clique is 1.

Theorem 1 states that SCP is a necessary property for MQCs.

Theorem 1: For a majority quasi clique G(V,E) with � � ½ ,

)(GVv ∈∀ , v participates in a cycle of length at most 4.

Proof: Let us denote the neighbor set of node u as A(u). u

∈ GMQC �| A(u) |≥ (N −1) / 2�� ��where |V(G)| = N. For a graph

G(V,E) with � �½, D(G)=2 �[15]. Hence 2)},({),(, ≤∀ ∈ vudGVvu .

Case1: d(u,v)=2;

u,v)(MQCGV∈)(),(&),(| 000 MQCGEvnnun ∈∃� . We claim that

for pair of nodes {u,v}, there is at least one more common

neighbor apart from node 0n .

Let us define ivui SniniAS ∉−=∈ },{;)(00},{ 3|| −≤∪� NSS vu (1).

Eqn (1) holds since nodes u, v and n0 are not part of || vu SS ∪ .

Since |V(GMQC)| = N and, || },{ vuiS ∈ �½ � � ||11 vu SSN ��−− � 1,

otherwise Eqn (1) will not hold. In other words, u and v have at

984

least one more neighbor apart from node n0. Hence, there exists a

cycle of length 4 between any pair of nodes {u,v})(MQCGV∈ .

Case 2: d (u,v) = 1;

u,v)(MQCGV∈ i.e. u and v have an edge between themselves. In

this case, without loss of generality, for any neighbor n0 of node u,

2),(0 ≤vnd . Hence {u,v})(MQCGV∈ are part of cycle of length 4.

Hence in both these cases, node v (u) is part of a cycle of length at

most 4 or, in other words, for any (u, v))(MQCGE∈ , there exists

another path between them of length at most 3 within the cluster.

The short cycle property (SCP) of MQCs, as we explain next,
radically simplifies the cluster discovery problem. Capitalizing on
the SCP we can add a new node to the existing clusters locally
(i.e., by just processing the edges adjacent to it) as follows. For
each new keyword n that is moving into high state, if it shows a
correlation with n1, n2….nk (k >1) keywords (nodes) in graph G,
we check if each node pair ni, nj (1�i , j�k):

Rule R1: Has at least one more common neighbor OR
Rule R2: Has an edge between them.

In either case, we add the new node to the cluster that both these
nodes are already part of. If these two nodes (ni, nj) are not part of
any cluster, we initialize a cluster with four nodes if it satisfies
(R1) or three nodes if it satisfies (R2). For k=2, as shown in
Figure 2, an incoming node n, forms a cluster (a) as n1 and n2

have a common neighbor nc (R1) or cluster (b) as n1 and n2 have
an edge between them (R2). If the incoming node shows
correlation with zero or one node, we simply add that node (and
edge) in G and do nothing.

We check R1 and R2, for each departing node (node which moves
from high state to low state), where existing clusters can be either

re-clustered into smaller clusters or dissolved (Section �5.3). For
all edges adjacent to the arriving or departing node, we consider
two adjacent edges at a time (total O (k2) pairs of edges if there
are k adjacent edges to that node). We check if nodes which these
two edges are adjacent to, satisfy either R1 or R2.

Therefore without processing any other nodes and edges in the
graph, except the pairs of edges adjacent to the node under
consideration, we can discover a cluster that satisfies SCP and
thus an aMQC. Thus, due to this special property, we can discover
the approximate 1/2-quasi cliques in the dynamic graph AKG by
performing just local computations. At each time quantum, we do
a total of O(k2NC) computations where N is the total number of
nodes changing their status (to high or low), k is the average
number of edges adjacent to these nodes and C is the average
cluster size a node (among N nodes) is participating in. Now, by
our definition, both k and N are fairly small compared to the
number of keywords present in the message stream in a given time
window. Further, as shown by our experiments, the average
cluster size is very small compared to the size of the graph (less
than 7 keywords/cluster).

For MQC, short cycle property is a necessary but not sufficient
condition. For the cluster in Figure 3(b) (including new edges),
each edge participates in a cycle of length 4 within the cluster but
the cluster is not MQC. If we identify the cliques based on the
short-cycle property, while we will not miss any MQC, we may
collect some extra clusters which are not MQCs. As shown in

�[14], discovering MQC is NP-hard even for static graphs.
Therefore, discovering clusters based on SCP discovers the MQCs
not only with a good approximation bound, but also very fast and

we can discover dense clusters with just local computation.

4.2 Analysis of Approximate MQCs
As we proved in Section 4.1, SCP is a necessary condition for
MQCs. Once an aMQC is discovered based on SCP, one can
efficiently identify if it is MQC in O(N2) time where N is the
number of nodes in the discovered cluster. We check if each node
belonging to the cluster has edges with at least (N-1)/2 nodes in
the cluster. However, with dynamic graphs, we face challenges
which are different from stable graphs as depicted below.

Example 1: Let us consider a MQC of size 7 as in Fig 3(a) which
is reported as a cluster. Since the clique size is 7, each node has to
be connected with at least � � 32/6 = of the nodes in the clique.

Now, if a 8th node joins the clique (due to the existence of short

cycle with nodes in the cluster), for the original cluster to be
continued to be considered MQC, each node should have

connection with � � 42/7 = nodes. Hence, the new node should a)

have edges to at least 6 of the existing nodes in the cluster or b)
have connection with any of the 4 nodes in the cluster along with
at least 1 more new edge among already existing nodes in the
cluster. Point (b) not only makes the computation of MQC
exponential, it is also an unnecessary requirement since the cluster
with existing 7 nodes is already reported. On the other hand, the
requirement to have an edge with almost all the other existing
nodes is too stringent for admitting any node in the cluster as the
keywords belonging to an event may keep on changing. This
example shows that since real time events evolve continuously,
using MQC as our cluster definition restricts our capability to
capture dynamic events.

Example 2: We show two separate clusters (MQC clusters) in
Figure 3(b), both discovered based on SCP. Now assume that two
new edges emerge among two clusters, as shown in Figure 3(b),
forming a short cycle between the nodes belonging to separate
clusters therefore, due to SCP, merging these two clusters into
one. Now a) either we stop reporting both of these earlier clusters
as events since the merged cluster is no longer an MQC or b) we
keep on reporting earlier clusters as separate clusters.

Figure 3: Clusters discovered based on SCP

Both of these scenarios point out the following issues: In case of
(a) we stop reporting the events already reported, the basis for
which is still intact. The nodes in the event continue to show
correlation with the same set of nodes as in the erstwhile clusters
(one may, however, stop reporting the event if any node/edge
disappears); In case of (b) maintaining such distinction will not
only be computationally expensive in a dynamic environment (we
need to identify all sub-cliques in a discovered cluster such that
these sub-cliques are MQCs), it will be erroneous also (nodes n1,
n2, n3, n4 would be reported as a separate cluster). On the other
hand, emergence of new edges among the nodes belonging to two
events, both discovered close to each other in real world time,
points to a strong temporal and spatial correlation.

However, if we relax the requirement of having MQC and instead
consider aMQC based on SCP, as our clusters of interest, we not

n

n1 n2

nc

(a)

n1 n2

n

(b)

New Edges

n1

 Clusters 1 Cluster 2

n2 n3
n4

 (a) MQC of size 7 (b) Clusters formed due to SCP

Figure 2: Clusters formed due to short-cycle property

985

only capture the evolving nature of real time events in a fast
moving environment, we discover the clusters more efficiently.
aMQC cliques allow incremental evolution of clusters therefore
capturing the evolving nature of the real time events. Hence, in
Example 1, a new node is able to join the cluster due to SCP

indicating the continuous evolution of the real time events.
Similarly, in Example 2, two clusters exhibiting strong temporal
and spatial correlation are allowed to merge into one event.

However, if the evolved cluster is sparse, it is more likely to be
ranked lower due to its inherent sparse nature. Our ranking

function (Section �6) ensures the quality of discovered events by
ranking more dense clusters higher. Hence, the SCP helps
discovering dense clusters in a scalable and efficient manner.

Therefore, even though one can efficiently identify MQC from an
aMQC, due to the dynamic nature of the graph and the evolving
nature of the events, SCP is the only cluster property that we
enforce while discovering clusters in a dynamic graph. The
aMQCs based on SCP ensure that no MQC based clique is
missed. At the same time, the clusters thus discovered are
biconnected components as SCP is a sufficient (but not a
necessary) condition for biconnected components as shown in

Section �4.3. The bi-connected property of clusters is helpful in
maintaining the events efficiently in a highly dynamic graph as
explained in Section 5.

4.3 Correctness of our Approach
We next present the main properties of our clusters (aMQCs) and
give a correctness proof for our approach. We first prove that
clusters discovered by us are bi-connected. Thereafter we give a
proof of correctness of our approach, i.e., the clusters discovered
based on local processing of nodes and edges are unique and
consistent with similar clusters discovered on a time invariant
instance of the same graph.

Theorem 2: If we discover the clusters based on SCP, the

resulting clusters will be bi-connected.

Proof: The proof is by induction and is based on Lemma 1. �

Figure 4: Independent path examples

Lemma 1: Given any three nodes n1, n2 and n3 belonging to a

cluster, there exist two independent paths from n1 to the other

two, i.e., there exit two paths, one from n1 to n2 and another from

n1 to n3 which are independent from each other.

Proof Sketch: As the cluster is bi-connected, there exist two
independent paths from n1 to n2 and from n1 to n3. As shown in
Figure 4, let the two paths from n1 to n2 be named p1 and p2 and
those from n1 to n3 be named p3 and p4. p1 and p2 are independent
paths and hence do not intersect with each other. The same holds
for paths p3 and p4. Now, there are three cases:
C1: None of these 4 paths (p1, p2, p3, p4) intersect with each other.
Hence there exist 2 independent paths from n1-n2 and n1-n3.
C2: Only one pair of paths intersects each other. Without loss of
generality, say paths p1 and p3 intersect with each other. Hence,
there exist 2 independent paths from n1-n2 (p2) and n1-n3 (p4).

 C3: Both of these pairs of paths intersect with each other.
Therefore, there must exist at least 2 intersection points. Let’s call
them I1 and I2. We can always construct two independent paths

from n1 to n2 and n1 to n3 as follows: n1-I1-n2 and n1-I2-n3.
Independent paths can be constructed even if I1 and/or I2
themselves are a sequence of nodes by extending the same
argument. The detailed proof is omitted in the interest of space.

Correctness of Local Computation: We now prove that our
cluster computation is correct, unique and consistent.

Lemma 2: The locally discovered clusters are consistent with any

global computation of clusters on the same graph.

Proof: The proof is by induction. �

As we see above, node n need not be present in the graph at the
time of computation of cluster C, and as and when it arrives, by
just processing its adjacent edges, we update the cluster. Now,
suppose, an incoming (or departing) node n is adjacent to nodes

n1,..nk. ei is an edge from node n to node ni

Lemma 3: Each pair of edges (ei, ej), 1�i,j�k, i�j will merge at

most two clusters (for incoming node).

Lemma 4: Each pair of edges (ei, ej), 1�i,j�k, i�j will break the

cluster into at most two clusters(for departing node).

However, it may be the case that one or more of the resulting sub
clusters no longer remain aMQC as SCP may no longer hold for

the cluster. The process to check this is described in Section �5.3.

Lemma 5: For all pairs of edges (ei, ej), 1�i,j�k, i�j adjacent to

node n, the final cluster(s) do not depend on the order in which

each of these pairs is considered.

Similarly, for an incoming/departing edge e, adjacent to nodes n1
and n2, clusters are maintained by considering all pairs of edges
(e, ei) where ei (�e) is an edge adjacent to either node n1 or n2 (as
outlined in Section 5). Therefore, Lemmas 3, 4 and 5 are
applicable for edge addition/deletion as well.

Theorem 3: The locally discovered clusters result in the unique

clustering for a given graph.

Proof: Follows as a corollary of Lemmas 2, 3, 4 and 5. �

In summary, the properties of a cluster C discovered based on
SCP are:
P1: C is an aMQC as SCP is a necessary (but not sufficient)
condition for MQC.
P2: C is a bi-connected cluster as SCP is sufficient (but not
necessary) condition for bi-connected clusters.
P3: C, discovered locally with the aid of SCP, is consistent with
global computation on the same graph, is correct and unique.

5. CLUSTER MAINTENANCE
We now present the details of the algorithms for node/edge
addition/deletion. These operations do not require any global
computation. We first prove a property of aMQCs below.

Lemma 6: Two aMQCs which share an edge are merged to form
a single aMQC
Proof Sketch: Consider two aMQC clusters C1(V1,E1) and
C2(V2,E2). Let edge e1 between nodes n1 and n2 be common

between C1 and C2, i.e., e1 ∈E1 and e1
∈E2. If C1 and C2 are

merged to form a single cluster C(V,E) then the merged cluster
will be an aMQC and satisfy all our cluster properties (P1,P2 P3).
As explained next, we use this property to merge clusters as new
nodes and edges are added to the graph.

5.1 Node Addition
The node addition algorithm is based on the SCP. Hence for a
new node n1 to be made a part of cluster c1, it should have edges
to at least two nodes n2 and n3 within the cluster. In order to

p4

I2
n2 n3

p1
p2 p3

I1

 n1

986

satisfy the SCP, either (a) n3 or n2 should be neighbors of each
other or (b) n2 and n3 should be connected by a path of length
two. The node addition algorithm can be stated as follows:

Algorithm: NodeAddition
Let V’ be the set of nodes which are incident on the newly added

node n1. For all pairs of nodes (n2, n3) ∈V’,

 if (n2, n3)∈E, form a new cluster from n1, n2 and n3.
 Find all nodes N which are adjacent to both n2 and n3.

 Form a new cluster from the nodes n1, n2, n3 and ∀ n4
∈N.

Merge the clusters using the cluster merging algorithm till no
more merging is possible. In Figure 5(b), when a new node n

arrives, it has edges to node 1 and 2. These two nodes have a
common neighbor (node 4). Hence, a new cluster (1, 2, 4, n) is
formed due to presence of SCP. Since this new cluster shares an
edge (1, 4) with C1, it is merged with C1. This merged cluster is
again merged with C2 due to edge (2, 4) resulting in cluster C4.
Being based on SCP, we can see that the newly formed clusters
will satisfy P1, P2 and P3.

Figure 5: Node/edge addition and deletion examples

5.2 Edge Addition
The edge addition algorithm also tries to ensure that the fresh
clusters formed due to the new edge satisfy the short-cycle

property. We present the algorithm and then prove its correctness.
Let a new edge e1 (n1, n2) be added to the graph. Notice that both
the nodes n1 and n2 already existed in the graph G(V,E).

Algorithm: EdgeAddition
∀ n3

∈V | (n1, n3) ∈E do

 ∀ n4
∈V | (n2, n4)∈E do

 if n3= n4 or (n3, n4) ∈E, form a cluster of n1, n2, n3, n4.
Merge the clusters using the cluster merging algorithm.

The EdgeAddition algorithm works in two phases. In the first
phase it forms all those clusters which satisfy the short-cycle

property with the newly added edge. Once it has formed these
clusters, it merges them using the cluster merging algorithm. The
clusters formed during the first phase satisfy the short-cycle

property and hence satisfy all our cluster properties. As per
Lemma 6, the clusters discovered during the second phase would
also satisfy our cluster properties. Hence the edge addition
algorithm discovers correct clusters.

In Figure 5(a), a new edge (1,2) arrives. In phase 1, we create
three clusters namely (1,2,4), (1,2,4,5) and (1,2,3,4,). In phase 2,
these aMQCs are merged (Lemma 6) to form the cluster C3.

5.3 Node Deletion
When a node is deleted from the graph all the incident edges on
that node also get deleted. As a result of this the clusters in which
the node participates could get split into one or more smaller
clusters. Due to short-cycle property, standard depth first search
based techniques to partition a biconnected component do not
work in our environment. Thus the major task associated with the
deletion of a node is to ensure that the correctness of the clusters

is maintained post the deletion of the node. This implies that the
partitioned clusters satisfy the short-cycle property.

Thus a cluster will not get dissolved/split if (1) each edge in the
cluster is part of a short-cycle within the cluster and (2) if the
cluster does not have an articulation point. Notice that after the
deletion of a node, a cluster could satisfy (1) and still have an
articulation point as shown by the example in Figure 6. In the
figure, initially the graph consists of a single cluster consisting of
all the nodes. When node 9 gets deleted, the cluster gets split into
two as node 3 now becomes an articulation point (Cluster 1 –
nodes 0,1,11,10,2,3 and Cluster 2 – nodes 4,5,8,7,6,3). Hence
whenever a node gets deleted, we need to perform two checks:

 Cycle Check: find the edges which do not participate in a
short-cycle, i.e., a cycle of maximum length four; and

 Articulation Check: find if any articulation points are
generated in the cluster.

Before we explain the algorithm for dissolving clusters, we first
present a property satisfied by the set of nodes that can become
articulation points due to the deletion of a node and its incident
edges. Once we identify this set we can restrict the articulation
check to the nodes in this set thereby improving our efficiency.

Figure 6: Breaking of cluster due to node deletion

Lemma 7: Let nodes n1, n2, n and nc belong to cluster C (See
Figure 2(a)). n has only two incident edges e1(n, n1) and e2(n, n2).
n1 and n2 have a common neighbor nc. Let the node n along with
its edges e1 and e2 be deleted. No other node except nc can be the
articulation point.
Proof Sketch: Let the articulation point in the cluster be a node
na�nc. Since na is part of an aMQC cluster, it participates in a
short-cycle. That short-cycle cannot have either e1 or e2 (otherwise
node n would have had at least one more edge adjacent to it).
Therefore, na continues to be the part of a cycle and cannot be an
articulation point. �

In case there is no node adjacent to both n2 and n3 but there exists
a direct edge between n2 and n3 then it can be shown that both n2
and n3 will become the articulation points after the removal of n1.
This can be proved using arguments similar to those given above.

It is important to note that the node(s) suggested by Lemma 7 will
be an articulation point if there are no alternate paths between n1
and n2 except the one via nc. In other words if there is a direct
edge between n1 and n2 or if there are multiple nodes neighboring
n1 and n2 then nc cannot be an articulation point. This is intuitive
from the above and hence the proof is omitted.

The articulation check is performed for each pair of edges
adjacent to node n, which participate in a short-cycle.
The node removal algorithm uses the Lemma 7 to restrict the
articulation check to a small set of nodes. We now explain the
details of this algorithm. Let the graph G(V,E) consist of a cluster
C having nodes V(C) and edges E(C).

Algorithm: NodeDeletion

Let VI
⊆ V s.t. ∀ n2

∈VI | (n1, n2) ∈E(C)
Delete node n1 and all its incident edges
Cycle Check
∀ n2

∈VI do

 ∀ (n2,n3) ∈E(C) check if the edge (n2,n3) has a path of length

7

0
1

2
3

4

5
6

8

9 10

11

0
1

2
3

4

5
6

7

8

10

11

Delete Node 9

•
•

•
•

• •
• •

• •
• •

• •
•

• •
•

• • •
• •

C1 C2 Articulation
Point

Node n

arrives

n

4

Edge n-1

departs

5

Node n

departs
5

5
4

3
2

1 2 1

3 3

3

2

2

1

4 4

4

1

5

5

C3

C4

n
1

2

3

4
n

1

3
2

5

Edge 1-2

arrives

(b) (a) (c) (d)

987

 at most 3 within the cluster
 If not remove edge from cluster and add n3 to VI
 If yes, check if at least one edge of the cycle is shared with
 another cycle of the original cluster of length at most 3.
 If not, create an independent cluster from this cycle.
Articulation Check:

∀ n2 and n3
∈VI do

 if (n2, n3)∉E(C) and there exists exactly one common neighbor
 of n2 and n3 then check if there is any path from n2 to n3
 if not, split C into two clusters – one consisting of node n2 and
 nodes in V(C) reachable from n2 except via n3. The remaining
nodes will be part of another cluster.

 if (n2,n3) ∈E(C) and there is no other path from n2 to n3 of
 length at most 3, then check if there is any path from n2 to n3
 if not, split C into two clusters – one consisting of node n2 and
 nodes in V(C) reachable from n2 except via n3. The remaining
nodes will be part of another cluster.

In Figure 5(c), node n is removed. Set V1 contains nodes 1, 3 and
4 in the beginning. Node 2 and 5 are also added to set V1 as
described in cycle-check. Since none of the nodes participates in a
short-cycle, the cluster is no longer an aMQC and is discarded. In
Figure 6, when node 9 is deleted, it generates an articulation node
(node 3), and gets split into two clusters as described above.
Articulation check is done for smaller set of nodes selected based
on Lemma 7. If we find an articulation point then we split the
original cluster around the articulation point.

Thus the above algorithm helps to finds the new clusters locally
by only focusing on the nodes taking part in the original cluster.
Further, the algorithm needs to evaluate all the nodes of the
original cluster if and only if we find some articulation point.
Articulation points are used to discover bi-connected components
in static graphs. We present algorithms such that we use
articulation points to efficiently maintain the clusters locally as
described above. Articulation points could be efficiently exploited
due to the bi-connected property of aMQCs. In most of the cases
the algorithm is able to discover the new clusters by visiting a
fraction of the nodes of the original cluster.

5.4 Edge Deletion
The edge deletion algorithm is very similar to that of node
deletion. When an edge e1(n1, n2) is deleted, we need to perform a
cycle check to find all the cycles of length at most 4 that could
have been broken due to the deletion of this edge. In Figure 5(d),
edge (n, 1) is deleted. Set V1 (in NodeDeletion algorithm) is
initialized with nodes {1,n}. In cycle-check phase, a smaller
cluster with nodes (3, 4, n) is created since nodes 1, 2 and 5 are no
longer part of a short-cycle.

6. RANKING EMERGING EVENTS
We discover emerging events in real time in a microblog stream.
It is important to rank these discovered events in order to present
these events to users in a comprehensible manner such that
relatively more important events are ranked higher. Further, due
to overwhelming pace at which the messages are generated in a
microblog stream, it is entirely possible that some spurious events
may get discovered due to accidental formation of a cluster, for
instance because of presence of some popular keywords in the
graph. Hence, our goal is to not only identify real events but to
rank relatively more important events higher.

We compute the relative ranking of events (or clusters) by
utilizing only the local parameters of a cluster without resorting to
any global data structure or entity; since our objective is to
discover events in real time any global computation (for instance,

relative ranking of events by considering all the events in the
current time window) for ranking is simply not scalable.
Therefore, for efficient ranking of the clusters, we take into
account local cluster properties, namely:

a) Correlation coefficient of edges present in a cluster.
b) Density of cluster (number of edges present in a cluster).
c) Support of the cluster, i.e., the number of independent user

ids associated with the cluster keywords.

A natural way to think about these parameters is that a strongly
correlated dense cluster with high support should be ranked
higher. Hence, a set of messages due to a real event is more likely
to be ranked higher than an accidental cluster formation as
accidental clusters are likely to possess low correlation, low
density, or low support.

Let C= (V,E) is a cluster discovered by our algorithm. V is the set
of nodes in C, |V| = n. E is set of edges in C. We compute the

rank of the cluster as .
1

n
W.C where W is the weight matrix of

size 1-by-n where wi, is the weight of a node i, i.e., the number of
user ids associated with it. C is edge correlation coefficient matrix

of size n-by-n.
iC i i ∀= ;1

 EjiCiC ijii ∉=∀=),(;0,;1 . We normalize the

cluster rank with its size so that the rank of a cluster is not a
monotonically increasing function of cluster size. Hence, a
strongly connected cluster will result in higher rank as there
would be many non-zero entries in C. Secondly, higher
correlation coefficient values will result in higher cluster rank.
Finally, higher support to cluster will result in higher value of
weight matrix, W, resulting in higher rank.

7. EXPERIMENTAL EVALUATION
Our goal in Section 7.1 is to compare and contrast our SCP based
technique, designed to extract, in real-time, emerging events from
microblog messages, with ground truth regarding real-world
events, as manifested in Google news headlines. The above study
establishes that our technique is capable of identifying real-world
events, as they occur, with high precision and recall. In the
experiment reported in Section 7.2 we present the results of a
detailed precision and recall study using Twitter traces. In Section
7.3, we compare the performance of our SCP based clustering
algorithm with an offline method �[2].

7.1 Evaluation against Ground Truth
Using an RSS feed reader we collected a total of 473 Google news
headlines over a period of 18 hours on 29th Feb 2012. 255 of these
headlines related to USA specific real time events (for example,
we did not consider news analysis related headlines among our
events of interest). These headlines were found to be related to 60
unique real-world events. We concurrently ran a twitter
downloader to obtain more than 1.3 million tweets generated
within the USA (by providing longitude and latitude range).
Tweet download rate was close to 21/sec.

We set �=800 tweets/quantum, and w=30 quanta, representing a
history of 20 minutes. Note that � is defined in terms of number of
messages in our experiments. First we identified all the bursty
keywords in the twitter trace; a keyword is bursty if in at least one
quantum in the trace, the keyword is used by � 4 users. That is,
�=4. �=0.1. A keyword in a given Google news headline, (after
removing stop words), must be present in the bursty keyword list
in order to be identified as pertaining to an event. For instance,
corresponding to the headline “Body of missing Florida firefighter
found”, there was only one tweet present in the entire trace. �=4
implies that the event represented by the lone tweet need not be

988

considered as an emerging event. Of the 60 news events, there
were 27 such events (with very few related tweets) including,
“Egypt lifts travel ban on 7 US pro-democracy workers”, “Rep.
David Drier decides against seeking reelection”, etc. Of the
remaining 33 emerging real-world event related headlines our
technique identified 31 events. Other two headlines were
((“Obama, Congress leaders seek cooperation on jobs”, “Obama
praises Snowe”). Of the keywords occurring in these headlines,
only “Obama” exceeded the burstiness threshold. Upon
investigation, we found that considered w.r.t. each headline,
“Obama” could not be characterized as being bursty. Hence our
technique did not report these two events.

In the table below, we list a subset of the identified events. Events
with real time implications such as weather warning (Tornado in
MidWest) were up to 6 hours ahead of their Google News
counterpart. Some events, like ‘Apple’, were concurrent with the
source of Google news (USA Today).

Table 1: SCP technique w.r.t. ground truth

Google News HeadLine Event Discovered Using SCP

Davy Jones of Monkees dead Davy Jones Monkees Dead RIP

Tornado pounds MidWest Watch awesome Tornado outside

A dead body found by Miami
police on Rick Ross’s House

Dead body found Rick house

Nebraska senator Bob Kerrey
reverses decision not to run

Bob Kerrey will run

Apple market value hits $500B Apple worth more than Poland

It is important to point out that we identified almost 6 times more
events (e.g., “Forecast 29th Feb Snow Rain Today”, “advisory
high wind warning issued surf”) which were not present in Google
news headline but were important in the local context (see Table
3). These included local job openings such as “#jobs alert ca #job
#retail store #accounting manager #tweetmyjobs”.

7.2 Precision and Recall

7.2.1 Experimental Setup
For a more detailed study of our technique and to understand its
sensitivity to various parameters, we used 2 different data sets, 1)
Event Specific (ES), (comprising a total of 8 million tweets)
containing tweets corresponding to specific topics such as the
Japan earthquake, Apple, etc. 2) Time Window (TW), (comprising
a total of 10 million tweets) contains tweets, generated during a
particular time window, not specific to any event or location.
Tweets appear in chronological sequence w.r.t. their time of
generation. The tunable parameters are listed in Table 2.

Table 2: Nominal values used in the experiments
Parameter Name Nominal Value Tunable Range

Quantum size � 160 tweets 80-240 tweets

HighStateThreshold � 4 user ids/quantum NA

EC Threshold � 0.20 0.1-0.25

Window Length w.� 30 quanta 20-40 quanta

Window length is 30 quanta, comprising a total of 4800 most
recent tweets. The events in our case comprise global news such
as “Plane crash in Iran kills 150 passengers” to more specific or
local events such as “Now milk products in Fukushima are
contaminated”. Many a times events may not be breaking news for
world media but important in the local context.

Identification of an event depends on the nodes and edges that
constitute the graph. Therefore, in our experiments, we have
varied two parameters to test our algorithm’s performance; 1)
Quantum size (�). � is related to the burstiness of keywords. The

larger the �, the less bursty an event needs to be and vice versa; 2)
Edge Correlation threshold (�). We report the results obtained by
varying the quantum size instead of high state threshold (�) as, if
we vary � the set of events itself changes. It is important to point
out that varying 	 shows similar trends.

7.2.2 Measuring Recall and Precision
If a trace contains messages pertaining to an event but we do not
discover the event, loss of recall occurs. We may miss the event
due to (1) non-formation of the corresponding cluster (i.e., only 1
or 2 words from the event showed burstiness) (2) the cluster
formed does not satisfy the SCP. Therefore, we compute recall as
follows: First we collect all the keywords, after removing stop
words, which are either bursty (based on the high state threshold
�) or are already present in the current sliding window. An event
in the current window can comprise of only these keywords.
Keywords which are bursty but not present in any of the
chronologically correlated event clusters discovered in offline
manner indicate potentially missed events. Once we collect all

such noun words (we use Stanford POS Tagger �[16]), we
manually check in the trace if they indeed belong to any real event
or not. To make this check manageable, given the size of the data,
we randomly pick a fraction of missing noun keywords. The
probability of them belonging to a real event is extrapolated to
estimate the number of missing events. The maximum number of
events (by adding both events identified and events missed by our
algorithm) discovered in a run is considered to be the sum total of
all the events present in the trace. We use this number to compute
recall across different runs. Once the maximum number of real
events is estimated, the same number is used to compute recall
across all the runs. Therefore, our objective of studying the impact
of parameter tuning on recall is not affected because of
‘estimation’ inaccuracy, if any.

Precision is defined as ‘How many of the events identified by us
are real and important events?’ A spurious event reported by our
system leads to loss of precision. However, for an event,
classification of it as real or spurious can be subjective. Therefore,
to identify spurious events, we employ the following approach: 1)
We ignore an event if its rank is below a threshold which is a
function of the minimum rank that a cluster of size N can have
(for given correlation and burstiness thresholds); 2) we ignore the
clusters with all non-noun words. Our premise is that there must
be at least one noun keyword in real world events.

However, there may still be spurious event clusters (such as
advertisements or rumors). As noticed in our evaluation, real
world events typically have a build-up and wind-down phase.
Therefore, the clusters belonging to such events are evolving
and/or their rank scores keep on changing in a non-monotonic
manner. On the other hand, spurious events have a sudden burst
and thereafter they die. Hence, events which do not evolve and
have monotonically decreasing rank scores are considered
spurious events in our analysis. We cannot suppress these events
from being reported as we cannot determine their future behavior.
However, for an event, we can analyze its behavior in a post-hoc
manner. Precision for events is computed as the percentage of real
events among all the events that are reported.

7.2.3 Observed Precision and Recall
The event density (events/unit length of trace) in ES set is found

to be approximately 3 times that in TW set. Recall and Precision
results are shown in Figures 7 to 10. In general with increasing �
and decreasing �, recall increases as more nodes and edges move
into AKG due to the less stringent requirement on the burstiness.
Similarly, precision tends to improve with increasing � and

989

decreasing � (though not as much as recall) due to the following
reason: in our experiments we see that spurious events tend to
appear in bursts. Hence, there is practically no effect of parameter
tuning on these events due to their strong temporal correlation and
they are almost always discovered in each run. However, with
more relaxed parameters, majority of the extra events that get
discovered are real events. Hence, with more events getting
identified and the number of spurious events remaining
approximately stable, precision increases. In experiment (run on
ES trace) with �=800, �=0.25 and 	=4: (i) Recall improves to
0.95; (ii) Precision also improves marginally due to the presence
of almost the same number of spurious events. As stated earlier,
we varied � instead of � to see the effect of burstiness. Finally,
changing w, the number of quanta in a window, did not result in a
discernable effect on precision/recall.

7.2.4 Analysis of Quality of Discovered Events
From our previous experiment, it may appear that one may set the
� as large and � as small as possible to achieve maximum recall
and precision. However, another important dimension in our
analysis is the quality of the discovered events. With low � and
high �, more and more keywords start merging with event
clusters, reducing the quality of event clusters. Similarly, many
meaningless (or less interesting) events may get discovered. We
use the following two measures to determine the event quality: 1)
Average cluster size: We compute the size of average cluster for
all the discovered events. The average cluster size across all the
runs ranges from 6.16 to 6.88 keywords/event except when � is
reduced to 0.1 when the average cluster size becomes 9.23 and
9.88 for ES and TW data sets respectively indicating an almost
50% increase. As one can see, consuming small and focused event
clusters is preferred compared to large clusters. 2) Average

Cluster Rank: As explained in Section �6, a high rank score
signifies a strong cluster and therefore a better event quality. We
notice, with increasing � and reducing �, average rank score
reduces by up to 20% and 30% in TW and ES traces respectively
from its peak value. As we see, the average cluster size does not
change much across different runs, the reduced rank score implies
that most of the additional events that are discovered with more
relaxed parameters have fairly low rank score. Further, clusters
around real events were almost always ranked higher compared to
clusters formed accidentally.

7.3 Bi-connected clusters vs. SCP clusters
We implemented the algorithm to discover the bi-connected
clusters (BCs) on exactly the same graph on which SCP clusters
are computed. Similar algorithm is also proposed in �[2] to identify
events in blogs. After each quantum, the BCs are computed on the
entire graph in an offline manner. All the edges (including edges
connecting two BCs), which are not part of any bi-connected
cluster, are reported as clusters of size 2. All parameters are set to
their nominal values (Table 2). We have used the same twitter
trace which we used for the ground truth experiment. At the end
of each quantum, clusters identified by both the techniques are
compared. Since SCP is not a necessary condition for bi-
connected clusters, additional clusters are discovered in the
offline method. Therefore, we compute: (1) additional clusters
(Ac) and (2) additional events (AE) discovered in offline method.
We get 276% Ac and -11.1% AE. If we exclude BCs of size 2 from
offline clusters (since SCP based clusters do not include them), Ac
and AE come down by -5.1% and -17.1%. The additional clusters
in the offline method arise from edges being identified as clusters
(of size 2). A substantial number of these edges are found to be
not related to real events. We further identify that 1) 74.5% of
offline event clusters exactly overlap with short-cycle based

clusters (after excluding edges), 2) no instance of an event cluster
is found in the offline method which did not have short-cycle.

Both these facts prove (1) the correctness of our method (2) our
conjecture that real events have short-cycle within the event
cluster. Average size of exactly overlapping clusters was 4.53
(against 5.07 for all the clusters in the SCP method) indicating
that mostly small clusters overlap exactly. For the offline event
clusters, not overlapping exactly with short-cycle based clusters,
we see an increase in average cluster size from 6.83 to 12.72. The
average rank of all the BC clusters goes down from 186.4 to 150.9
w.r.t. SCP clusters. Therefore, the quality of offline clusters
suffers. Further, our technique computes clusters 46% faster
compared to offline method due to the fact that it involved only

local computations. Note that the performance of our method can
further be improved in a parallel processing environment since
multiple simultaneous computations are allowed on the graph in
short-cycle based clusters.

Figure 7: Recall for Time Window Based Trace

Figure 8: Recall for Event Specific Trace

Figure 9: Precision for Time Window Based Trace

Figure 10: Precision for Event Specific Trace

As is evident from the above discussion, the offline clusters lead
to lower precision. However, even recall is lower as in some

990

instances two real events get merged into one offline cluster,
leading to loss of recall. In summary, we show that real time
events almost invariably have short-cycle within the cluster
(except a small number of events which do not form cycles).

Table 3: Performance of different clustering schemes

 SCP
Clusters

Bi-connected
Clusters

Bi-connected
clusters +Edges

Events Discovered 216 179 192

Precision 0.911 0.795 0.216

Recall 0.935 0.775 0.831

Avg. Rank 186.4 150.9 92.1

Avg. Cluster Size 5.07 6.31 3.14

7.4 Impact of using AKG
Recall from Section 3 that at the end of each quantum, we do a
total of O (k2NC) computations. On average, the number of edges
in AKG was less than 2% of CKG (at a given point of time). In
our experiments, less than 5% nodes in CKG show burstiness.
These reductions demonstrate the efficacy of our technique to
reduce the size of graphs used for cluster discovery.

Further, the average number of edges attached to a node was less
than 6 and the average size of clusters was less than 7 nodes.
Hence we can clearly see that the amount of computation that
needs to be done at the end of each quantum is significantly
reduced due to the use of SCP over AKG. In the table below, we
show the message processing rate. We see that on our machine,
one with modest configuration, the rate of processing a general
twitter trace is beyond 5000 messages/second. On ES trace, with
much higher event intensity, the rate of processing comes down.
With increasing �, the number of low quality clusters increases
and only some of them are identified as real events. The system
ends up processing many clusters which are discarded later.

Table 4: Message processing rate for given quantum sizes
Msg Processed/Second Trace Type

� =120 � =160 � =200
Time Window Based Trace 5185 4420 4160

Event Specific Trace 1410 1400 1160

In summary, our experiments demonstrate the following:

• We see that our algorithm is able to discover interesting
events with high precision and recall in a timely manner.
Besides ‘important’ events it also discovers events which
may not be “captured” by headlines reported in news sites.

• Our algorithm, by exploiting the SCP, works in real time and
outperforms the offline algorithm reported in �[2]. Analysis of
events identified in offline method also establishes that SCP
is almost invariably present in all the event clusters.

• Our algorithm is quite resilient to parameter settings as the
event set discovered by us is fairly stable across different
runs underlining the robustness of our algorithm. Further, we
find that the average cluster size is quite stable across runs.

• On a modest machine, our algorithm is able to process
almost twice the current rate at which messages are added to
the Twitter stream underlying our algorithms’ scalability.

8. CONCLUSION
In this paper we have addressed the problem of discovering events
in a microblog stream. We mapped the problem of finding events
to that of finding clusters in a graph. Due to the dynamic nature of
the twitter stream, the size of the graph can become extremely
large. We hence proposed the use of a technique which allowed us
to efficiently find a stable graph which was order of magnitude
smaller than the original graph and yet captures all the
information about the emerging events. We argued that

conventional cluster discovery techniques used for finding events
in a microblog stream do not work in our setting. We hence
introduced aMQCs, which are bi-connected clusters, satisfying a
new short-cycle property which allowed us to find and maintain
the clusters locally without affecting the quality of the discovered
clusters. To handle the dynamics we also proposed algorithms for
handling addition/deletion of a node/edge and proved the
correctness of the same. We showed the efficacy of our techniques
using real world data – we were able to find clusters efficiently, in
real-time, i.e., keeping pace with the arrival of messages.

As part of our future work we plan to build a system that includes
the ability to discover and thus discard spurious and malicious
events (e.g., rumors). Since many web applications generate data
which can be modeled as massive and dynamic graphs, we will
also extend and apply our technique to other domains with similar
characteristics. Finally, we will explore pre- as well as post-
processing techniques to complement the core approach described
in this paper.

9. REFERENCES
[1] Kumar R., Novak J., Raghavan P., Tomkins A. On the Bursty

Evaluation of Blogspace. WWW 2003.

[2] Bansal N., Chiang F., Koudas N., Tompa F. Seeking Stable
Clusters in the Blogosphere, VLDB 2007.

[3] Tong H. et al., Proximity Tracking on Time-Evolving
Bipartite Graphs. SDM, 2008

[4] Backstrom L., et al. Group Formation in Large Social
Networks: Membership, Growth and Evolution. KDD, 2007.

[5] Hopcroft J., Khan O., B., Kulis Selman B.. Natural
communities in large linked networks, KDD 2003.

[6] Cohen E. Size-Estimation Framework with Applications to
Transitive Closure and Reachability. J. of Computer and
System Sciences 55 (1997): 441–453.

[7] Cohen E. et al. Finding Interesting Associations without
Support Pruning, ICDE 2000.

[8] Motwani R., and Raghavan P. Randomized Algorithms.
Cambridge University Press, 1995.

[9] Zvi Galil, Maintaining biconnected components of a dynamic
planar graph. ICALP 1991.

[10] T. Sakaki, et al. Earthquake Shakes Twitter Users: Real-time
Event Detection by Social Sensors, WWW 2010.

[11] H. Kwak et al. What is Twitter, a Social Network or a News
Media?, WWW 2010.

[12] http://blog.seevibes.com/social-media/10-historic-moments-
that-broke-records-on-twitter/

[13] F. Alvanaki et al., En Blogue – Emergent Topic Detection in
Web 2.0 Stream, SIGMOD 2011.

[14] H. Matsuda, Classifying Molecular Sequences using a
Linkage Graph with their Pairwise Similarities. STOC 1999.

[15] J. Pei, D. Jiang, A. Zhang, On Mining CrossGraph
QuasiCliques. KDD 2005.

[16] http://nlp.stanford.edu/software/tagger.shtml

[17] M. Mathioudakis, N. Koudas, TwitterMonitor: Trend
Detection over the Twitter Stream, SIGMOD 2010.

[18] M. Cataldi et al., Emerging Topic Detection on Twitter based
on Temporal and Social Terms Evaluation, MDM 2010.

991

