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REAL-TIME DISPATCH OF PETROLEUM TANK
TRUCKS*

GERALD G. BROWNt AND GLENN W. GRAVESt

A highly automated, real-time dispatch system is described which uses embedded optimiza

tion routines to replace extensive manual operations and to reduce substantially operating

costs for a nation-wide fleet of petroleum tank trucks. The system is currently used in daily

operations by the Order Entry and Dispatch segment of the Chevron U.S.A. Marketing

System. Refined petroleum products valued at several billion dollars per year are dispatched

from more than 80 bulk terminals on a fleet exceeding 300 vehicles in approximately 2600

loads per day. Centralized use of the dispatch system required its design and implementation

as a set of transaction modules within a large management information system. This environ

ment presents special challenges for the optimization methods; an heuristic sequential network

assignment was developed for certified performance on these dispatch models in lieu of their

solution as integer programs. Objectives include minimizing transportation costs (approaching

$100 million annually) while maintaining equitable man and equipment workload distribution,

safety standards, and customer service, and satisfying equipment compatibility restrictions.

(PETROLEUM INDUSTRY; TRANSPORTATION, ROUTE SELECTION; INTEGER

PROGRAMMING, HEURISTIC; INTEGER PROGRAMMING, APPLICATIONS; VE

HICLE DISPATCHING)

1. Introduction

The methods described here have been developed to assist in the timely control, and
economic use of a nationwide bulk delivery fleet of petroleum tank trucks. This
portion of the system is intended to aid dispatchers by correlating large amounts of
data in real time and producing nearly complete shift dispatches for each bulk
terminal from which loads are hauled. The dispatchers, located at a central national
order processing facility, must each handle several bulk terminals as well as coordinate
other activities related to product availability, order entry, nonproprietary equipment
requirements, and (recently) allocation.

Fundamental to the philosophy of the system is that the human dispatcher cannot
be replaced. Rather, he must be materially assisted in his work by quick and
comprehensive presentation of dispatch information in concise terms, with identifica
tion of exceptional conditions requiring manual intervention. The dispatcher is ex
pected to make whatever adjustments are necessary while preserving the overall quality
of the dispatch.

Very strict computer performance criteria must be met by the system. Even the

largest dispatch should not require more than a fraction of a second of computer time
or more than a very small memory region. This efficiency (as well as reliability) is vital

to the effective use of the system as an integrated transaction module in a real-time
information management system on a congested host computer. Daily operations
require hundreds of trial dispatches during a very short time period, although this is
mitigated somewhat by time zone differences across the continent.
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The system is intended to reduce operating costs in several ways [3]. It controls

overtime (and undertime) for vehicles and drivers, helps reduce costly human errors,

and uses the most economic available means of transportation. Indirect objectives

include greater manpower utilization system-wide, equitable distribution of workload,

and other benefits.

The overall system can be viewed as processing, maintaining and displaying for each

bulk terminal a large volume of information concerning the bulk terminal area,

customer orders, and vehicles. These data are used to produce in a timely manner two

shift dispatches per day for each terminal. Each dispatch must satisfy many explicit

specifications of customer delivery times and mileages, special equipment require

ments, product-specific capacities of each vehicle compartment, delivery time restric

tions, and so forth. The dispatcher must also consider myriad implicit conditions such

as rush hour. traffic congestion, local road and weather conditions, adjustment limits

on ordered quantities to suit available vehicle compartments, etc.

In the sections that follow, we introduce basic elements of the problem in sufficient

detail to motivate key design decisions, propose an overall solution scheme for the

dispatch process, formulate an integer linear program for the principal dispatch

module, and describe implementation and system use. A concluding discussion consid

ers what should, and what should not, be automated in the dispatch system.

2. Elements of the Problem

In this section, the basic elements of the dispatch problem are introduced in the

context of daily operations. There is necessarily much simplification. However, the

complex environment within which the dispatch function is embedded is both techni

cally and organizationally relevant to the solution methods introduced later.

Bulk Terminals

Each bulk terminal acts as a storage point for as many as 16 products ranging from

weed oil to jet fuel, but dominated in terms of sheer volume by motor gasoline.

Product is received by pipeline, barge or truck, stored in tanks, and transferred to

delivery vehicles via drive-through loading racks. Drivers are domiciled with company

owned vehicles at the terminal, with collocated service facilities for vehicle mainte

nance. Figure 1 shows the location of terminals for this system.

Delivery Vehicles

Delivery vehicles possess a wide variety of features relevant to their use in the

dispatch. A model truck and trailer rig (see Figure 2) is equipped with multiple,

isolated compartments. Each compartment has a volumetric capacity specific to the

density of the product contained. Loading is accomplished at the bulk terminal from

top or bottom outlets at a loading rack. Customer delivery is generally made by gravity

feed with a valve manifold connecting the compartment via a hose to an underground

storage tank; the entire content of each compartment is dropped, necessitating careful

prior determination of available storage tank capacity to preclude accidental spills.

The variations of this basic vehicle design are myriad. They result from local vehicle

laws, geographical and temporal demand patterns, and historical management policy.

Each vehicle may have from 1 to 6 compartments, special fittings, meters and pumps,

manifolding which prevents cross-product contamination (e.g., lead) upon delivery,

vapor recovery gear, and so forth. Every truck must be loaded in accordance with its
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FIGURE I. Bulk Terminals.

weight limits, those of road jurisdictions to be traversed, and such that compartments

empty, or not fully loaded, satisfy a complicated specification arising from safe road

handling considerations.

Vehicle operating costs are specified for each proprietary truck on a customer-by

customer basis as a function of mileage and standard delivery time. Nonproprietary

truck costs may also be simple functions of actual delivery time and mileage, or may

be fixed point-to-point charges for each trip depending upon operating region and

contract terms and duration.

Each vehicle is assigneda sequence of loads for a shift with the duration of each

shift determined by driver availabi-lity, vehicle availability, and contract terms. Overex

tension of vehicle shifts leads to overtime labor costs, disrupts following shifts, and can

foment employee dissatisfaction. Underutilization of vehicles causes other similarly

unfortunate outcomes, the most obvious being economic.

Typical Compartment Configuration

(Trailer aft; truck forward)

FIGURE 2.

Gasoline: 2000, 900, 1700; 900, 1200, 2000

Diesel: 1500,750, 1500; 700, 1000, 1700 (Gal.)

Delivery Vehicle.
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Customer Orders

Each customer order is received by telephone at the nationwide dispatch facility,

where an order processor immediately retrieves on a display console the customer's

order file. Each order typically includes three products, usually grades of gasoline,

jointly constituting a complete truck load. Following credit and allocation releases and

other preliminaries, the order is entered into the information management system with

the desired quantities of each product, the target delivery date. and shift(s), and

additional data regarding special equipment requirements (such as special couplings,

pumps, an unmarked truck, and so forth), driver instructions, and billing data. The

entire order entry process requires at most a couple of minutes, averaging 30 seconds.

Orders are accumulated throughout the day for future delivery. Soon after a cutoff

time for acceptance of orders to be delivered on the following day, a dispatcher

extracts on. his display console all the orders to be satisfied, assesses equipment and

driver availability at each bulk terminal, and determines bulk terminal area conditions

such as available product inventory, weather, etc. Some initial adjustments may be

made, such as: arranging for additional, non-proprietary vehicles, deferring excess

orders to other bulk terminals, or to later shifts by delivery priority, and specifying

additional delivery restrictions for some orders owing to safety or other considerations.

Finally, the complete dispatch is assembled and transmitted to the bulk terminal.

Minor variations may be handled subsequently by the terminal, but any necessary

major revisions are referred to the central dispatch facility.

3. Solution Scheme and Supporting Data

Our analysis of the dispatch function reveals that much of the time-consuming,

detailed work naturally lends itself to further automation. However, not all details can

be reasonably or economically integrated in an efficient manner.

The following is a general sequence of even ts for these dispatches:

1. Preview of dispatch. Extract customer order and vehicle data, review for special

cases, balance general workload, insert new or missing information, etc.;

2. Compatible vehicle edit. Determine which vehicles can be used to deliver each

order, considering equipment restrictions, compartmentation adequacy, etc.; but not

transportation cost;

3. Assign orders to vehicles. A good dispatch minimizes operating costs ..while

honoring vehicle and driver shift length restrictions;

4. Adjust order quantities. Order quantities may require adjustment to fit available

vehicle compartmentation in an acceptable filling sequence (i.e., actual permutation of

products in compartments) even for vehicles well suited to carry the load;

5. Final review. Identify any remaining exceptional conditions, and either perform

minor adjustments manually or return to step 1.with modified conditions;

6. Issue dispatch. Print load documents for each vehicle shift at the bulk terminal

site.

A critical review of this scheme was performed to identify opportunities to reduce

manual workload or improve dispatch quality. Steps 1 and 5 heavily involve human

judgment and do not invite much further automation. Steps 2 and 4, on the other

hand, are time consuming and detailed, yet appear to be successfully manually

performed with fairly simple rules of thumb. Of course, Step 3 offers the most obvious

new opportunity for outright modelling, pursued in the next section.
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The implicit decomposition of cost minimization and load sizing issues in Steps 2-4

has not been altered. Considering market policies and competitive environment, the

coordination of these features is performed by indirect means over long run operation

of the system; customers are encouraged to order product quantities which yield

economic loads, and vehicles are designed and located to meet temporal variations in

demand. In this way, maximum net profit of fitted loads gives way to equitable

customer service at minimal transportation cost at the individual dispatch level.

Supporting data for each customer order in this idealized dispatch scheme include

the products and quantities ordered, conditions on the degree of admissible adjustment

in the quantities actually delivered, and delivery shift restrictions. In addition, each

customer exhibits static data such as location, standard delivery time and mileage, and

special delivery equipment requirements.

Each vehicle is statically described in terms of operating cost, compartment configu

ration and capacities, and special delivery equipment. For each shift, availability is

specified; vehicles may be only available for a partial shift due to scheduled mainte

nance, Department of Transportation (D.a.T.) driver limitation, or other factors.

Finally, data specific to the bulk terminal includes fixed and variable transportation

delay factors for deliveries, useful for reflecting effects of weather, loading equipment

failures, and so forth, as well as product-specific densities, corrected for temperature,

and penalities used to indicate which products are in short supply and thus invite

equitable downward adjustment of delivered quantities.

4. An Integer Programming Formulation

This section develops and discusses an integer linear programming model which

incorporates several of the coordination issues in a good dispatch, and is intended for

use in Step 3 of the solution scheme.

Notation

Indexes

indexes orders;

j indexes trucks;

lei) index set of trucks compatible with order i,

Given Data

ci) round-trip transportation cost of delivering order i with truck i,
ti) round-trip transportation time of delivering order i with truck i,

5
i
,s, maximum and minimum shift lengths for truck i,

"ii' ~j penalty cost rates for violating shift length restrictions.

Decision Variables

Yij binary variable indicating whether or not order i is to be dispatched as a load

on truckj;

x) trivalent variable indicating the applicable elastic penalty ("i), O,~j)" for shift

lengths of any solution.

Integer Linear Program

min ~ ~ c..y .. + ~ x.[s. - ~ t ..y .. ]
}' LJ LJ IJIJ LJ}} LJIJIJ
. i jEJ(i) j i

(1)
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subject to
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2: .Yij= 1, allr;
jEJ(i)

(a) Sj = 5j and xj = Zj when 2: tU.yu > ~i;
i

(b) s. = s, and xj = ~j when 2: lijYU <u:j -}

i

(2)

(3)

(c) ~'=~'V~j and xj = 0 when Sj' <; ~ t ..y.. <; s,;
- L.J y~ !J .J'

i

)JuE {O, 1}, all i, j. (4)

Note that the penalties satisfy Zj <; 0 <;~J by implication when §j < ~i'

The objective function reflects the potentially conflicting desire to minimize operat

ing costs while simultaneously honoring the shift length restrictions. The second term

penalizes any undertime, or overtime for truck shifts.

Constraints (2) ensure delivery of each order as a single load.

Specifications (3) and (4) simply enforce the desired model composition.

The model was originally considered with rigid shift lengths (i.e., ~j = 5j and

~ j = - Zj = + 00), expressing the widely professed belief that a good dispatch must

utilize all equipment fully. Of course, no feasible solution can be guaranteed for such a

formulation, as was reinforced by management review of many manual dispatches.

The model was first implemented with strict minimum and maximum shift lengths

(i.e., ~j < Sj and ~ j = -~. = + 00). This permitted some flexibility in assembling

feasible solutions, but it required inordinate preview of vehicles and orders in Step 1 to

insure feasibility.

Finally, the elastic shift limits were provided as shown here. This formulation

permits violation of shift length restrictions for each vehicle at a specified rate of cost.

The penalty costs can be used to coerce prioritization of shift violations as an integral

economic consideration. Considerable analysis has been invested in the specification

of these shift limits, costs, and penalties for each vehicle, each bulk terminal, and each

shift limit rationale (e.g. D.O.T. driver limits are much more inflexible than simple

driver overtime). .

Note that each order has been assumed to be a full truck load. Although customers

are urged to order this way, there are still a few exceptions. These are either dispatched

on small trucks, or consolidated with other small orders by the dispatcher for

multiple-stop delivery. These split loads are not easily automated since no data is

currently available for customer-to-customer travel times and mileages, and their

frequency and value are too small to justify the initial investment in terms of reduced

dispatcher workload.

5. Implementation and Use

An elastic integer linear programming procedure and supporting data were devel

oped and improved over many months. Benchmarks for the prototype system were

extracted from daily operations at several bulk terminals and used to compare offline

system results side by side with actual manual dispatch performance. The early results

were very encouraging.
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Compared with manual dispatches, the system produces extremely uniform distribu

tion of workload among vehicles with significantly lower transportation costs. For

those cases in which shift limits are violated, the system gives the explicit economic

rationale for this outcome, and consequently proves to have excellent face validity for

dispatchers and management. In this respect, the system wins the competition without

qualification.

The benchmarks have also produced some unexpected results. Some popular rules

of thumb used by manual dispatchers in Step 3 prove to be very uneconomical.

Further, the system relentlessly reveals undetected data errors (a distinct advantage of

optimization) that have instigated major internal review of transportation cost and

time standards. Finally, it has become clear that some bulk terminal areas are

significantly more difficult to dispatch well than others. Surprisingly, it is much easier

for the automated system to produce a good dispatch for a large terminal than for a

small one.

Unfortunately, the conditions under which the system must operate are rather

severe. Since the dispatch system must cohabit in real time with a large information

management system in constant use, very little pure computational power remains.

Worse, the architecture of the real-time computer system is totally oriented to a

transaction-driven software package. Each transaction is expected to consume minimal

resources-at most, a fraction of a second of computer time and a very small region.

Overall performance considerations for the system do not permit large, heavily

computational tasks to be performed without unconscionable delay in response time

(either that for the originating dispatcher, or for the hundreds of other users of the

system at the time). Even more, the operating system resource monitor expects

transactions to consume increments of system resources in uniform, small, and

predictable quanta.

This is not an ideal environment for integer programming.

The following representative benchmark illustrates the situation. This dispatch has

28 trucks and 103 orders, producing a model with 811 binary variables. Some orders

can be carried by only one, or two special trucks, others will suit as many as 23 trucks;

on the average, J(i) has nearly eight entries per order. Standard delivery times vary

across orders such that a typical vehicle shift may carry as few as one, or as many as

ten loads. Among trucks, the standard delivery times and costs for any given order

may differ by 50 and 250 percent, respectively.

Run Conditions Solution Quality Solution Seconds

1 MPS unknown 300 +
2 XS (Default) 2.1% 14.1

3 XS (GUB) 1.8% 6.4

4 XS (Tuned) 0.6% 3.0

Solution quality is the percentage by which the value of the integer incumbent exceeds

the best lower bound at termination. Solution seconds are for IBM 3033.

Run 1 was performed with a commercial optimization system, which had difficulty

possibly related to poor enumeration tuning (not pursued). All subsequent runs were

with our X-System, an optimization system serving here as an experimental testbed [2].
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Run 2 indicates initial performance with default tuning. Run 3 gives the results

achieved by exploiting the Generalized Upper Bound [4] structure of the shift-length

constraints. Run 4 shows the best performance achieved by problem-independent

tuning of the x-System, which requires about lOOK bytes region. Runs 2-4 were

automatically terminated when solution quality met a specified tolerance of, respec

tively, 3, 2 and I percent.

This performance is not good enough for production use, especially with a workload

of several hundred daily runs within a few hours during peak-load computer condi

tions, relieved only slightly by the dispersion of activities across six time zones (Figure

I).

A customized optimization system was mandated. Options considered, and rejected,

included tailoring the general X-System for this particular model: The problem can be

restated as a binary network assignment problem with gains, but the need to preserve

elasticity features mitigates the usefulness of this observation. An alternate approach

would be development of a network factorization algorithm [6]. Both avenues were

investigated, with the conclusion that very little marginal improvement in performance

would result. Analysis of algorithm performance predicts that there is not a significant

difference between the work performed by the general X-System with standard basis

factorization and by a network variant with full elastic and integer enumeration

capability.

6. Efficient Heuristic with Embedded Optimization

At this point, and certainly with no misplaced sense of nobility, an heuristic was

considered. First, sheer speed is of the essence. Second, the problems occur with

regular structure in day-to-day operations at each bulk terminal, providing both an

opportunity to develop site-specific tuning and a fairly reliable method to detect

misbehavior. Finally, the model can be fully optimized for purposes of calibration and

selective audit by the off-line optimization system already available.

The design of the heuristic draws from computational experience with the quadratic

assignment model [7] and hybrids with linear programming [5], [8]. Also, the underly

ing network structure (exclusive of the gains and attendant floating point arithmetic

and basis structure) invites application of a pure network algorithm embedded in the

heuristic.

With this in mind, the following simple solution procedure was developed. A

sequence of embedded network problems is generated and solved with a variant of

GNET [1]. Each such solution is used to fix some of the orders as loads on trucks. This

process is terminated when all orders are assigned, or when no further progress can be

made.

The generic network problem is shown in Figure 3 and described mathematically

below.

Notation

Indexes

indexes unassigned orders, only (cardinality m);

j indexes trucks;

lei) index set of compatible trucks.
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Given Data

k denotes a dummy order (e.g., k = 0)

/. total of tl)" for orders already assigned as loads on truck j;
.I

T
j

remaining truck time projection: ( ~ j ~ ' - Zj~ j) / (~j - Zj) - ~;

t inf , tsup smallest, largest standard transportation times for unassigned orders;

'c;! projected, penalized transportation cost;

~ ! maximum number of orders still assignable to truck j:

b. = { 1 + lTj / tin f if ~! > 0,

.I ° . otherwise,

(l indicates the next lower in teger.);

u. range of the number of orders still assignable to truck):
.I

27

u. = { ~! - l~! / t su p if ~! > 0,

.I ° otherwise;

d total excess (unassignable) orders: 2 : ) ~ ! - m.

Decision Variables

J'u variable indicating whether or not order i is preferred as a load on truck);

5
j

variable indicating estimated surplus loads preferred for truck).

Embedded Network'

subject to

(sources)

(sinks)

min ""' ""' c'.v.r L..J L..J Yo/' ~I
. i jEJ(i)

2: Yij < 1, all i;
jEJ(i)

- Sj - 2: Yij= - bj , all);
i

(1)

(2)

(3)

(4)
Yij E {a, I}, all i,);

Sj E {integer}, all j.

The units of this pure network formulation are increments of time approximately

equal to the standard delivery time of the shortest remaininr unassigned order. The

formulation assumes that all unassigned orders require this time increment for delivery
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and that remaining truck time is always some integral multiple of this time increment.

The objective function reflects the projected consequence of assigning any remaining

order to a truck. Many options are available in forming this objective. Shown here is

one approach with four cases for cij. respectively representing: (1) certain overload, (2)

small underload for which no other order is likely to fit, (3) underload for which at

least one other order might fit as well and (4) extreme underload. This objective is

chosen in concert with the one-pass, nonbacktracking fixing scheme shown below.

Sources Sinks

o

m

U nassi.gned ) ( Trucks, j
Orders. i

FIGURE 3. Embedded Network.

Each network solution is examined and orders are fixed as loads on trucks as

follows. For each truck, if any orders have been assigned by the network solution, and

if the assigned order with the longest delivery time does not create a worse total time

penalty for that truck, fix that order and update the projected remaining truck time T i .

Continue fixing orders for that truck until 7)' < T (t inf + t sup) (e.g., T = 2, a heuristic

parameter). When this condition is met, repeat the process for the next truck.

If at least one order is fixed for some truck, continue the heuristic with another

(smaller) network problem.

When no order is assigned, the embedded network iteration ceas.es and any

remaining unassigned orders are placed on a spill list. This list can include other orders

orphaned by the compatibility edit in Step 2, and is treated as a phantom truck with

transportation costs equivalent to the preferred short-term nonproprietary truck type

for the local bulk terminal.

Next, the overall solution is improved if possible by simple pairwise comparisons

and switches of loads between compatible trucks, or slides of loads from one truck to

another. Higher order exchanges are not used.
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7. Vehicle Compatibility and Order Quantity Adjustment

Following the fixing of orders as loads on trucks, the order' quantities are adjusted

for each load in Step 4 to produce the filling sequence that best suits the truck

compartmentation. This typically involves assigning 3 products to 6 compartments.

Each compartment is filled to its precise product-specific capacity, which is a function

of temperature-corrected product density.

A direct enumeration scheme is used which determines which permutation of

product-to-compartment assignments is most desirable. No adjustment is considered

which completely eliminates a product or which violates certain adjacency restrictions.

For each product, an "up" and "down" penalty per gallon adjustment is specified. For

each load, order quantities of component products may also be coded with an

addi tional class penalty per gallon represen ting varying degrees of inflexibility with

respect to adjustment. Two optimal filling sequences are determined on the basis of

total quantity adjustment .penalty, one with adjacent compartments for each product,

and one with no adjacency restrictions. The contiguous filling sequence is selected

unless the companion sequence is significantly better by a constant specified by the

dispatcher.

This scheme gives the dispatcher the capability to influence several overall factors

for each bulk terminal. Quantity adjustments can be controlled in keeping with

product supplies (especially shortages) so that customers are still equitably served.

Contiguous product sequences are desirable because of the reduced driver workload at

the loading rack and the customer site.

The success of the order quantity adjustment in Step 4 is highly dependent upon the

compatible vehicle edit in Step 2, which restricts candidate vehicles for each order. On

the other hand, to the degree that Step 2 is increasingly selective in screening

compatible vehicles, the potential transportation cost savings of Step 3 are reduced.

Balancing these effects, Step 2 is a compromise which is suggested by examining

manual dispatch procedures.

The compatible vehicle. edit of Step 2 examines each order with respect to all

candidate vehicles indicated feasible for ·delivery. Initially, candidates are ruled out for

obvious reasons (e.g., fewer compartments than products ordered).

At this point, Step 2 could be patterned after the quantity adjustment in Step 4,

evaluating for each candidate vehicle the most desirable filling sequence to fit the

order as a load, and editing vehicles with respect to a maximum permissible adjust

ment threshold. This approach is prohibitively expensive when applied to all candidate

vehicles for each load.

Instead, a simple heuristic is used. Each candidate vehicle is ruled out if its estimated

capacity is not sufficiently close to the total order quantity. (Recall that actual capacity

is a function of product assignments to compartments.) Capacity is estimated by

assuming that the entire order consists of the product with the largest order quantity,

and "up" and "down" adjustment limits supplied by the dispatcher for each bulk

terminal are applied. Next, if the smallest product order quantity is below a given

volume, it is fit to the closest compartment on the candidate truck, and the truck is

ruled out if the required adjustment is above specified limits.

8. System Performance

Steps 2, 3, and 4 can each be overridden by the dispatcher, who can specify

compatible vehicles, fix loads, and assign compartments as he sees fit during the
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dispatch. This is especially useful for multiple iterations of these steps. For instance,

delivery time restrictions occasionally require manual intervention for assignments

made in Step 3.

The various parameters, penalties and limits of these procedures are specified for

each bulk terminal. They are designed for easy comprehension and use by dispatchers

in controlling the automated dispatch module, adapting to special local conditions,

and responding to overall judgment on dispatch quality.

For the representative test problem cited in Section 5, the dispatch module requires

61K bytes and 0.2 compute second for the heuristic solution to the integer model in

Step 3. Step 2 requires 0.1 second to edit compatible trucks and Step 4 requires 0.2

second to adjust order quantities.

The contracting network sequence in Step 3 requires a total of 5 steps, respectively

with 811, 302, 154,71 and 14 binary variables. The solution quality, compared to the

earlier known bounds, is 0.5%. These results are very typical.

Solution quality can also be compared with bounds developed without optimization

directly from problem data. For instance, if each order is assigned as a load on the

cheapest (or most expensive) compatible truck, lower (or upper) bounds are derived for

total transportation costs. With respect to this lower bound, the solution cited has

quality 1.0%.

Many other performance measures are easily applied without resorting to outright

optimization. For instance, an "ideal economic fleet" configuration is derived with and

without compatibility restrictions by simple selection of cheapest transportation cost

for each order, ignoring shift limits; this is used to evaluate selection, configuration

and placement of trucks, to monitor the effects of encouraging customers to place

standardized orders, and to reveal systematic errors in transportation cost and delivery

time estimates.

Among the inevitable problems attending installation, the heuristic has required

most tuning and modification to cope with extremely small dispatches-almost all

design work centered on meeting performance criteria for big terminals. As dispatchers

have come to increasingly depend upon the system, small nuisances have loomed with

unforeseen significance. For instance, the greatly increased workload has made fleet

sizing in Step 1 a bothersome task, which is now being studied for automation.

After many thousands of production runs and numerous minor adjustments, the

dispatch module produces excellent solution quality and face validity with extremely

reliable performance and high efficiency. In fact, most dispatches no longer require

any adjustment or reruns at the final review, Step 5.

Improvements in operating efficiency have been impressive since adoption of the

management support system which uses the dispatch modules. For instance, individual

dispatchers now have the capacity to deal with up to 400 loads per day, compared with

an industry average performance of 80-150 loads per day. In addition, transportation

costs have been reduced by about three percent. .

9. Conclusion

This project has provided many valuable lessons for both the managers and

management scientists involved. The most fundamental decisions concern neither

models nor implementation details. The crucial analysis focuses on what should and

what should not be automated, and on how much compromise of reality is desirable in

the automated portions of the system.
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The environment for this particular work-a congested computer system, peak

production workload, and capacitated personnel-has given an excellent aggregate

means of evaluating results. The system would either provide 'better overall productiv

ity, or fail completely. Fortunately, the quality, economy, efficiency, and face validity

of the semi-automated dispatch solutions have been excellent, and the project is

successful.

Individual productivity is increased only to the degree that the dispatcher still

controls, understands, and accepts the automated modules. Most important, human

judgement must be introduced .naturally in such semi-automated systems to cope with

extraordinary conditions. The total cost of automating responses to exceptional cir

cumstances extends far beyond the solution modules in the host organization, and can

render an otherwise desirable system totally infeasible. On the other hand, dispatchers

have contributed ~ o m e of the most insightful enhancements of the system after

accepting and using it.

From the perspective of contemporary management support systems, there are

continually increasing opportunities to apply optimization. However, classical optimi

zation systems and techniques are rarely designed for use in the demanding, real-time

environment so common to pervasive information management systems. Enforcing a

monadic view of optimization, especially for combinatorial problems, reveals weak

nesses not contemplated before by designers of stand-alone algorithms and systems.

For this particular problem, the environment and implementation schedule has

mandated the use of' heuristic methods. Heuristics are usually based on repeated

applications of simple functions (such as sorting), just as they are often patterned after

concepts useful in productive reasoning (such as greed). Fortunately, the remarkable

efficiency of minimum cost network algorithms has recently made this class of model

also available as such a routine tool. Methods employing nested sequences of condi

tional network problems show much promise for a wide range of combinatorial

models, especially for those with embedded network structure such as the quadratic

assignment model. Better yet, applications such as this encourage development of

reliable, efficient techniques in a design discipline which may help make embedded

optimization much more desirable for timely use on other important management

Issues.

As for solution quality, heuristics have a well-deserved reputation for unreliability.

However, there are appropriate arenas for heuristic methods, especially if bounds can

be developed for objective assessment of solutions. Bounded heuristics can serve

admirably, reliably extracting much of the information that an algorithm would

provide and producing solutions whose repetitive nature and audited error distribution

can be shown to yield reasonably good results.

Adoption of this tactical dispatch system has presented new strategic opportunities.

Among these, regional assignment of customer orders to bulk terminals, vehicle

relocation, and even pipeline scheduling are now possible with a global perspective

lended by the up-to-date, underlying high-resolution data bases now capitalized. Some

of these issues are already under analysis by various support groups. 1

I Special thanks are due to Gordon Bradley for his invaluable help, to Richard Lambeck and Marshall

Mustain, Chevron U.S.A., Inc., for their continuing support of this project, and to Richard Haefele, Brian

Putt and Gordon Topham, Standard Oil of California. We mourn that this is our last manuscript prepared

by Rosemarie Stampfel.
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