
Real-Time Distributed Discrete-Event Execution with Fault Tolerance

Thomas Huining Feng and Edward A. Lee
Center for Hybrid and Embedded Software Systems

Dept. of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720, USA
{tfeng, eal}@eecs.berkeley.edu

Abstract

We build on PTIDES, a programming model for dis-
tributed embedded systems that uses discrete-event (DE)
models as program specifications. PTIDES improves on
distributed DE execution by allowing more concurrent event
processing without backtracking.

This paper discusses the general execution strategy for
PTIDES, and provides two feasible implementations. This
execution strategy is then extended with tolerance for hard-
ware errors. We take a program transformation approach to
automatically enhance DE models with incremental check-
pointing and state recovery functionality. Our fault toler-
ance mechanism is lightweight and has low overhead. It
requires very little human intervention. We incorporate
this mechanism into PTIDES for efficient execution of fault-
tolerant real-time distributed DE systems.

1. Introduction

Large-scale distributed embedded systems are a mixture

of software components, hardware devices (such as sensors

and actuators), and networks. Examples include automo-

tive and avionics systems. From a high-level design per-

spective, the discrete-event (DE) models of these systems

consist of interconnected actors accepting inputs and pro-

ducing outputs via the connections between them. Follow-

ing DE semantics, the actors must process their input events

in the order of the model time associated with those events.

A strategy for executing distributed DE models must obey

this ordering of events across computers in a network.

Traditional conservative execution strategies for dis-

tributed DE models, such as the one proposed by Chandy

and Misra [3], require a computer to wait for events to

be present in all its input queues before it can decide the

next event to process. Optimistic approaches, such as Time

Warp, proposed by Jefferson [9], allow a computer to pro-

cess events without always making sure that the time order

is conformed to. When the system detects violation of time

order, the state of some actors needs to be recovered, and

events need to be processed again in the correct order. The

need for backtracking and the domino effect that backtrack-

ing may cause in a distributed system make it hard for the

optimistic approaches to be applied to embedded systems.

To address the problems of existing approaches, PTIDES

(Programming Temporally Integrated Distributed Embed-

ded Systems) has been proposed as a strategy for executing

distributed DE models in [14]. By taking advantage of static

information about dependency between actors, the PTIDES

execution strategy reduces the unnecessary wait for input

events and improves concurrency without resorting to an

optimistic approach that has the need for backtracking.

In this paper we present our work on a fault-tolerant ex-

tension to PTIDES, which supports selective backtracking

for fault tolerance (not for performance gains, as in Time

Warp). It is based on a program transformation that auto-

matically enhances models with incremental checkpointing

and state recovery functionality [8]. This extra function-

ality makes it possible for the actors to recover state that

is invalidated by hardware errors. The difference between

the state recovery in our approach and that in optimistic ap-

proaches to distributed DE execution is that the former is

only performed in reaction to hardware errors, which are

rare in practice, while the latter is a requirement to remedy

the misordering of events in an optimistic execution.

Compared to other software fault tolerance techniques,

such as object serialization and Enterprise JavaBeans (EJB)

using a back-end database, the incremental checkpointing

that we developed is more suitable for real-time distributed

embedded systems for its low run-time overhead and small

memory footprint. The automatic program transformation

tool that we implemented also makes it easy to apply this

technique to preexisting programs that do not have fault-

tolerance capability.

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.22

205

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.22

205

IEEE Real-Time and Embedded Technology and Applications Symposium

1080-1812/08 $25.00 © 2008 IEEE
DOI 10.1109/RTAS.2008.22

205

Clock

Merge DeviceRouteDelay

DisplayImage
Processor. . .

n copies

Queue

Command

. . .

Figure 1. The camera application in PTIDES

The contribution of this paper is twofold. Firstly, we pro-

vide two feasible implementations for the general PTIDES

execution strategy: one resembling traditional conservative

strategies and the other utilizing time-synchronized plat-

forms to provide better concurrency. Secondly, we extend

the PTIDES execution strategy with a fault-tolerant feature

that allows actors to automatically backtrack to previous

state when hardware errors occur.

The following sections are arranged as follows: in Sec-

tion 2, we motivate this work with a real-time distributed

image composition application. The PTIDES execution

strategy for DE is reviewed in Section 3, and then two feasi-

ble implementations are discussed. In Section 4, we present

our incremental backtracking mechanism. In Section 5, we

demonstrate the backtracking mechanism by extending the

image composition application with it. The merit of our ap-

proach is assessed in Section 6 with a comparison to related

work. Section 7 concludes the discussion.

2. Real-Time Image Composition Application

We motivate our work with the same experimental appli-

cation considered in [14]. 1 The functionality of this ap-

plication is to compose images periodically acquired from

distributed cameras in real time. In the physical setup, n
cameras are placed around a football field, all connected to

a central computer via Ethernet. Figure 1 shows the simpli-

fied DE model. (Actors are shown as boxes, and the links

between triangular ports represent communication channels

for events.) The upper part of the figure shows the actors

running on each camera. There are n identical copies of the

upper part in the model. The lower part shows the actors

running on the central computer.

The Command actor represents an input console that a

human operator can use to issue two kinds of parametrized

1This application is inspired by the “eye vision” project

(http://www.ri.cmu.edu/events/sb35/tksuperbowl.html) at CMU and

CBS Television.

commands: “change frequency” that is used to change a

camera’s image-acquisition frequency, and “adjust zoom”

that is used to adjust a camera’s zoom. This actor assigns

time tags to the commands before it sends them as output

events. The time tags are in terms of model time (or virtual

time), which are chosen such that they equal to the physi-

cal time (or real time) at which the commands are issued by

the human operator. The Delay actor receives those com-

mands via the network, and increases their time tags by a

fixed amount. The Delay then immediately transmits the

commands to the Route actor, which routes them to the des-

ignated receivers. The Clock accepts “change frequency”

commands only, which instruct it to change the frequency at

which it produces triggering events to its output. Each trig-

gering event is also sent back to the Clock itself to trigger

the next triggering event. The Merge actor merges the trig-

gering events from the Clock and the “adjust zoom” com-

mands from the Route in their time tag order, and sends

them to the Queue. The Queue temporarily stores the com-

mands until the Device is available to handle them. To han-

dle a triggering event, the Device invokes a function in the

camera’s API (Application Programming Interface) to take

a picture. An image is returned on success. To handle an

“adjust zoom” command, the Device adjusts the camera’s

zoom by invoking another function in the API, which re-

turns a success flag after the zoom is adjusted. If the op-

eration in a functions fails, an error code is returned that

describes the problem. When acquired, the images are sent

back to the central computer via the same network. The

Image Processor composes the images from all the cameras

that are acquired at the same time to produce a composite

view on the Display.

Two research challenges are highlighted in this prototyp-

ical application:

• Timing. A time tag is assigned to each event. The

Command actor can be viewed as a special kind of

sensor that receives external data. It associates with

its output events time tags equal to the current physi-

cal time. The Device actor and the Display actor are

actuators. The time tags of their input events repre-

sent the physical time at which those events should be

processed by the underlying hardware. Obviously, if

the events are received later than their time tags, then

the actuators will not be able to actuate the hardware

at the requested time, causing the problem of missing

deadlines. To address this problem, the PTIDES ex-

ecution strategy takes advantage of static information

about dependency between actors to reduce the unnec-

essary delay in traditional conservative strategies.

• Fault tolerance. Sensors and actuators may generate

errors. 2 We will not discuss the handling of those er-

2In the scope of this paper, we do not consider design errors in the

206206206

rors, because it is application-specific. However, we

will examine how hardware errors may affect event

processing in software components. According to tra-

ditional conservative strategies, if the processing of an

event depends on the successful completion of a hard-

ware operation, then the actor cannot process the event

until the operation finishes. We provide better con-

currency by parallelizing the hardware operation and

event processing. In the rare case where errors occur,

the actor can recover its previous state with our back-

tracking mechanism.

3. Discrete Event Execution in PTIDES

A conservative strategy for executing distributed DE

models proposed by Chandy and Misra [3] requires a com-

puter to wait for events to be present in all its input queues

before it can decide the next event to be processed. Based

on the assumption that input queues receive events in time

tag order, the next event to be processed is the one with

the smallest time tag among the present events. The wait

for events to be present in all input queues incurs unnec-

essary delay. An improvement is to have the computers

generate “null messages” [12] from time to time, which

inform their recipients to advance time even though there

are no events for them. However, the extra null messages

themselves are an overhead. Optimistic approaches, such

as Time Warp [9], allow computers to process events out

of order. Unfortunately, they require backtracking. This on

the one hand complicates the implementation, and on the

other hand prevents their application to embedded systems

involving hardware devices that cannot backtrack once op-

erations are performed.

In this section we first review the PTIDES execution

strategy [14] for actor-oriented models. It improves upon

the conservative strategies and provides more concurrency.

We then outline two feasible implementations for PTIDES.

3.1. Relevant dependency

An actor α ∈ A, where A is the set of all actors in the

model, has a set of input ports Iα and a set of output ports

Oα. Without loss of generality, in this section, we shall

consider an actor’s internal state as output to an output port,

so we need not explicitly discuss internal state. We shall let

I =
⋃

α∈A Iα, O =
⋃

α∈A Oα, and P = I ∪O.

During execution, each event e is associated with a time
tag represented by tag(e) ∈ R

+. It denotes the model time

at which e was produced. The events that an actor receives

software. A future extension is to adapt our fault-tolerance technique to

software errors.

Clock

MergeRoute
a b

c

d

e
f

g

h

i

Figure 2. An example of minimum delay
δ(a,i) = min{δ(a,c)+δ(h,i), δ(a,b)+δ(e,f)+
k × δ(d,f) + δ(g,i)} (k ≥ 0)

should be processed semantically in non-decreasing order 3

of their time tags. In particular, if distinct events e1 and e2

are received by the same actor, and if they have influence

on the same output signal (i.e., the set of events output via

a port over time), then e1 must be processed prior to e2 if

tag(e1) < tag(e2).
Before execution, PTIDES performs static analysis to

obtain dependency information. The first step of comput-

ing dependency is to determine the minimum delay between

pairs of ports, represented by a function δ : P × P →
R

+ ∪ {∞}. δ(p1, p2) is defined as the minimum differ-

ence between tag(e1) and tag(e2) for any event e1 at p1

and e2 at p2 that depends on e1. (We say e2 depends on e1

if at execution time, e2’s value or time tag may be totally

or partially determined by e1. We also say e1 influences

e2 if e2 depends on e1.) We shall let δ(p1, p2) = ∞ if the

events at p2 never depend on those at p1. Note that the delay

δ(p1, p2) is in terms of model time and does not depend on

the physical time that it takes for events at p1 to influence

events at p2.

Figure 2 shows the example of computing δ(a,i), as-

suming that the minimum delay within individual actors is

predefined, 4 and that the outputs of an actor always depend

on the most recent inputs at all input ports. By applying

min-plus algebra [1], δ(a,i) is computed as the minimum

delay of all the paths from a to i. A path from a to i is a se-

quence of ports [p1, p2, · · · , pn] such that p1 = a, pn = i,

and for every pk where 1 < k ≤ n, either pk is connected

to pk−1, or pk−1 and pk are input port and output port of

the same actor, respectively. The paths from a to i in this

example include [a, c, h, i] and [a, b, e, f, g, i]. Because

of the loop, there are an infinite number of paths, but these

3Normally, we enhance each time tag with an integer to break the tie

of events at the same model time, resulting in a time model known as

superdense time [11]. For the purposes of this paper, this enhancement

adds only complexity, so we omit it. Our results carry over trivially when

using superdense time.
4The minimum delay within actors can be predefined as part of the

actors’ behavioral interface, which is not discussed here.

207207207

two have the smallest delay. The delay of [a, c, h, i] is

computed by the sum of δ(a,c) and δ(h,i). The delay of

[a, b, e, f, g, i] is the sum of δ(a,b), δ(e,f) and δ(g,i).
(Direct connections do not cause any delay in model time.)

The minimum of these is the minimum delay from a to i.

We then partition I into a set of equivalence classes E =
{E1, E2, · · · , Ek} ⊆ 2I . Distinct input ports i1 ∈ I and i2 ∈
I are in the same equivalence class, traditionally denoted

by i1 ∼ i2, if and only if they belong to the same actor,

and there exists an output port o of that actor that satisfies

δ(i1, o) < ∞ and δ(i2, o) < ∞. Intuitively, if i1 ∼ i2,

the events that they receive may influence the same output

signal. Therefore, those events must be processed in the

order of their time tags. However, if i1 � i2, any event e1

at i1 and event e2 at i2 do not have influence on the same

output signal, so the order in which e1 and e2 are processed

is insignificant. To continue with the example in Figure 2,

{a}, {d,e} and {g,h} are equivalence classes in E, due to

the assumption that the outputs of an actor always depend

on the most recent inputs at all input ports.

The relevant dependency d : E × E → R
+ ∪ {∞} is

defined as:

d(E1, E2) = min
i1∈E1,i2∈E2

{
δ(i1, i2)

}

For equivalence classes E1 ∈ E and E2 ∈ E, d(E1, E2) rep-

resents the minimum delay in model time that it takes for

any event at a port in E1 to influence an event at a port in E2.

For example, in Figure 2, d
(
{a}, {d,e}

)
=

min
{
δ(a,d), δ(a,e)

}
= δ(a,b), and similarly,

d
(
{a}, {g,h}

)
= δ(a,b).

3.2. Execution strategy

Before we discuss the execution strategy of PTIDES, one

more definition needs to be introduced. For actor α, let Eα

be the set of equivalence classes containing its input ports,

i.e., Eα = E∩ 2Iα . Let Eα be an arbitrary equivalence class

that ranges over Eα. A dependency cut (or simply a cut) for

Eα, denoted by C�Eα� ⊆ E, is a minimal set of equivalence

classes that satisfies the following.

For any p ∈ Eα and any path ρ to p, there exist
E ′ ∈ C�Eα�, p′ ∈ E ′ and ρ′ being a path from
p′ to p, such that either ρ is a subpath of ρ′ or
ρ′ is a subpath of ρ. (A subpath is a sequence
of consecutive ports in a path. It is also called a
substring in the literature.)

Intuitively, a cut for Eα is a “complete” set of equivalence

classes on which Eα depends. Completeness in this case

means that for each port in Eα, all ports it depends on will

be accounted for in C�Eα�, either directly by being included

or indirectly by having either upstream or downstream ports

included.

Note that for Eα, the choice of C�Eα� is not unique. For

example, in Figure 2,
{
{a}

}
and

{
{g,h}

}
are both cuts

for equivalence class {g,h}.
{
{d,e}

}
is not, because if

we pick port h and path [c,h], then no port in
{
{d,e}

}
is

on this path or on another path that backward-extends this

path.
{
{d,e}, {g,h}

}
is not a cut either, because it is not

minimal. Minimality is a requirement for the efficiency of

the PTIDES execution strategy, but not for its correctness.

Redundant equivalence classes lead to unnecessary tests for

events at the ports in those equivalence classes.

During execution, an actor α decides whether to pro-

cess its input events by evaluating its time-advance func-
tion Tα : Eα × R+ × R+ → boolean. The first argu-

ment is an equivalence class containing ports that belong

to α, the second argument is a model time, and the third

argument is a physical time in a certain time unit. A true

value for Tα(Eα, t, τ) means that at physical time equal

to or greater than τ , actor α will not receive any event

e at a port in Eα with tag(e) < t. Obviously, for any

t′ < t, Tα(Eα, t, τ) ⇒ Tα(Eα, t′, τ), and for any τ ′ > τ ,

Tα(Eα, t, τ) ⇒ Tα(Eα, t, τ ′).
The general strategy to evaluate Tα(Eα, t, τ) for model

time t and physical time τ can be summarized as follows:

Let C�Eα� be an arbitrarily chosen cut for Eα.
Tα(Eα, t, τ) is true if for any E ′ ∈ C�Eα�, α has
received all the events at the ports in Eα that de-
pend on events at the ports in E ′ with time tags
smaller than t− d(E ′, Eα).

Various implementations can be devised from this general

strategy. These implementations differ in 1) how to choose

C�Eα� and 2) how α decides whether it has received all the

events at the ports in Eα that depend on events at the ports

in E ′ with time tags smaller than t− d(E ′, Eα). Two imple-

mentations will be discussed in Section 3.3.

If Tα(Eα, t, τ) equals true, then at physical time equal

to or greater than τ , actor α will not receive events at the

ports in Eα with timestamps smaller than t. Therefore, α
can process the event at any port in Eα whose time tag is

smaller than or equal to t and is the smallest among the

time tags of the available events at the ports in Eα.

3.3. Implementations

In Section 3.2 we have discussed a strategy for actor α
to decide whether it can process input events at the ports

in Eα with time tags smaller than or equal to model time

t. Here we sketch two feasible implementations for eval-

uating Tα(Eα, t, τ), where τ is the physical time at which

the evaluation is performed. We will start with a particular

implementation that turns out to be similar to the strategy

proposed by Chandy and Misra [3]. We will then improve

it to achieve better concurrency.

208208208

1. Recall that a decision about the choice of C�Eα� needs

to be made when developing an implementation. In

this particular implementation, we shall always choose

C�Eα� to be {Eα}. ({Eα} trivially satisfies the condi-

tions for a cut.) Take Figure 2 as an example. The

dependency cut chosen for equivalence class Eα =
{g,h} is {Eα} =

{
{g,h}

}
.

In this case, the equivalence class E ′ ∈ C�Eα� to be

tested is Eα itself. Since d(Eα, Eα) = 0, the expression

t − d(Eα, Eα) is equal to t. Therefore, the strategy is

equivalent to testing whether actor α has received all

events at the ports in Eα with time tags smaller than t.

This implementation resembles the strategy by Chandy

and Misra. The difference is that this one requires α
to wait for events to be available at all the ports in

Eα ⊆ Iα, while Chandy and Misra’s requires it to wait

for events to be available at all the ports in Iα. (Our

previous assumption that an actor’s output events al-

ways depend on the most recent input events at its in-

put ports actually equates Eα with Iα, and makes this

implementation equivalent to the strategy by Chandy

and Misra.)

2. An improvement on the above implementation is in-

spired by time-synchronized distributed platforms that

are made available by recent distributed clock synchro-

nization protocols. In particular, computers in our ex-

perimental environment are equipped with clocks syn-

chronized with the IEEE 1588 protocol [6]. The syn-

chronization error of those clocks is bounded, and the

network delay is also bounded.

Each computer in our system receives external inputs

from other computers or the sensor actors running on

it. (Actors that receive data from the disk can also be

considered as sensor actors.) Since the inputs from

sensor actors can be regarded as inputs from computers

in the external environment, without loss of generality,

the following discussion focuses on computers that re-

ceive inputs solely from other computers.

This implementation has two prerequisites. The first

one is that the cut C�Eα� for Eα is chosen as the bound-

ary between the computer that α runs on and other

computers. More formally, the equivalence classes

in C�Eα� consist of input ports that belong to actors

on the same computer with α, and are connected to

output ports that belong to actors on other computers.

For example, in Figure 1, the input ports of the Image

Processor on the central computer comprise an equiv-

alence class of input ports that are connected to the

output ports belonging to the actors on other comput-

ers (in this case, the cameras). This prerequisite can be

easily met by creating additional actors that receive in-

puts from other computers and relay those inputs to the

original actors on the same computer. In this way, only

the additional actors receive inputs from other com-

puters, so the cut defined with the equivalence classes

containing their input ports satisfies the prerequisite.

In practice, these additional actors need not be actu-

ally created in the model.

The second prerequisite is that for any event e sent

from another computer to the computer that α runs

on, tag(e) is always greater than or equal to the phys-

ical time at which e is output. With this, we can use

the sender’s current physical time as a lower bound

of the time tags of all future events that it sends out.

In our approach, this prerequisite is met by analyzing

the maximum real-time delay between actors’ input

ports and output ports, and making sure that the events

between computers be sent before the physical time

reaches the time tags of those events. One can think

of this prerequisite as a hard real-time constraint about

deadlines that the system must meet. (Refer to [5] for

a discussion on a precise timed (PRET) machine that

provides underlying support for this real-time require-

ment.)

Based on the above facts and prerequisites,

Tα(Eα, t, τ), where t is a model time that actor

α intends to advance to in order to process input

events, and τ is the current physical time measured on

α’s computer, can be evaluated as follows:

Tα(Eα, t, τ) is true if for any E ′ ∈ C�Eα� and
any actor β whose output ports are connected
to the ports in E ′, τ ≥ t − d(E ′, Eα) + δβ,α,
where δβ,α is the maximum delay of the net-
work connection from β to α.

At physical time τ , due to the bounded network delay,

the ports in E ′ have received all events that β outputs

before physical time τ − δβ,α. (Here, β must be on

another computer due to the first prerequisite about the

cut on the computer boundary.) The second prereq-

uisite relates this physical time to model time, so the

ports in E ′ have received all events from β with time

tags smaller than τ −δβ,α. If τ −δβ,α ≥ t−d(E ′, Eα),
or equivalently τ ≥ t − d(E ′, Eα) + δβ,α, then the

ports in E ′ have received all events from β with time

tags less than t−d(E ′, Eα). If this is true for any equiv-

alence class E ′ and any actor β that outputs events to

the ports in E ′, then we can apply the execution strat-

egy described in Section 3.2 to determine Tα(Eα, t, τ)
to be true. We can thus allow α to process the event at

any port in E with the smallest time tag that is also less

than t.

The cost of evaluating Tα(Eα, t, τ) is low because all

d(E ′, Eα) and δβ,α are known statically. Actor α only

209209209

Clock

RouteDelayCommand

...

a. Flows of events

Clock

Delay Route

...

Command

b. Flows of events and backward flows of hardware errors

Figure 3. Actor communication

needs to compare its physical time τ with a set of ex-

pressions in the form of t − d(E ′, Eα) + δβ,α, whose

values can be easily computed.

If this implementation is used to execute the model in

Figure 1, the distributed cameras and the central com-

puter need to be equipped with synchronized clocks.

The input ports of the Image Processor constitute an

equivalence class Eα, where α refers to the Image Pro-

cessor actor itself. The dependency cut C�Eα� chosen

by this implementation is {Eα}, which is the set of the

equivalence classes on the computer boundary. There-

fore, for any E ′ ∈ C�Eα�, d(E ′, Eα) equals 0. The set

of expressions are {t− δDevi,IP |1 ≤ i ≤ n}, where t
is the model time of the earliest image that the Image

Processor needs to process, and δDevi,IP is the max-

imum delay of the network connection from the i-th
Device actor to the Image Processor.

3.4. Execution with errors

According to the execution strategy in Section 3.2, for α
to decide whether it can process event e with tag(e) ≤ t
at an input port in Eα, C�Eα� is chosen according to the

implementation, and for any E ′ ∈ C�Eα�, α must have re-

ceived all the events at the ports in Eα that depend on events

at the ports in E ′ with time tags smaller than t − d(E ′, Eα).
We prefer d(E ′, Eα) for each E ′ to be a large positive num-

ber, because this allows α to process events earlier. How-

ever, when hardware errors are considered, d(E ′, Eα) may

become 0.

Figure 3 shows the communication between the Com-

mand actor and any of the n Clock actors in our application.

The Clock repeatedly schedules its future activity accord-

ing to the current frequency. When it receives a “change

frequency” command, it cancels the imminent schedule and

makes a new schedule. If the new frequency is too small,

the clock refuses to reschedule because the real-time delay

on event processing does not allow it to actuate the down-

stream Device actor on time. In this case, it sends back an

error event to its predecessor (the Route actor). Otherwise,

it sends back a success event instead.

An error event carries the same time tag as that of the

command that caused the error. Because it may receive

an error event, the Route actor cannot perform any further

computation after it sends a command to the Clock actor un-

til it receives a success event or an error event (unless it can

determine that the potential error does not affect its com-

putation result or internal state, which is not true for the

general-purpose Route actor). Furthermore, on receiving an

error event, the Route actor is not capable of handling it. It

has to send it back to the Delay actor, which in turn sends

the error back to the Command actor for handling. As a re-

sult, like the Route actor, the Command and the Delay can-

not perform further computation until they receive either a

success event or an error event.

This lack of concurrency is because the minimum de-

lay δ between these actors’ command input ports and error

event output ports is 0. The relevant dependency between

the equivalence classes containing these ports, computed

with δ, is also 0. We will revisit this problem in Section

5, and provide a solution with backtracking.

4. Backtracking Based on Incremental Check-
pointing and State Recovery

In this section, we discuss a backtracking mechanism [8]

that can be incorporated into PTIDES as an extension. It al-

lows general-purpose actors to perform computation with-

out always waiting for success events or error events. If

errors occur during the hardware operations, the state of the

actors can be recovered with the backtracking mechanism.

In our model execution framework (Ptolemy II [2]), ac-

tors are either atomic ones or composite ones. Atomic ac-

tors are defined as classes in the Java programming lan-

guage. Composite actors are hierarchical composition of

actors (atomic or composite).

At the beginning of an execution, atomic actors are in-

stantiated from their classes. State may be stored in the in-

stances’ fields. We call the atomic actors that maintain state

stateful actors.

We have implemented a program transformer to en-

hance stateful actors’ source code with incremental check-

point functionality, which the actors can use to backtrack to

their previous state. The transformation preserves the ac-

tors’ behavior perceivable from the execution result. For

most general-purpose actors, this transformation is fully

automatic and requires no human intervention. For ac-

210210210

tors that store state in special forms such as files in a net-

work file system, the actor designers can customize the in-

cremental checkpointing with extra manually written func-

tions. The incremental checkpointing functionality incurs

low run-time overhead, which will be analyzed at the end

of this section.

The discussion here focuses on the Java programming

language and the state stored in non-static fields. However,

similar techniques can be applied to other programming lan-

guages, and our approach can be easily extended to support

state stored elsewhere, such as that in local variables, static

fields, and files on disks.

4.1. Recording state changes

The program transformer generates extra code in the ac-

tors’ classes to keep track of state changes. This code can

be enabled or disabled at run time. When it is enabled, a

handler is invoked in place of any state change. It stores the

old state in a record object in memory before the change is

made. The record objects can be used to restore the state

later.

Two sources of state changes are captured by the han-

dlers: assignments and routines in external libraries. As-

signments can be detected by a search in the actor classes’

abstract syntax trees (AST’s). These AST’s are obtained

from a Java parser, and a type resolver annotates them with

type information. The transformer replaces each assign-

ment with an invocation of a handler. For calls to routines

in external libraries that potentially change the state, such

as put() in class Hashtable and arraycopy() in

System, substitution methods are generated to record the

state before performing the change. For example, for the

put() method in Hashtable, a new Hashtable class

is generated, which provides a modified put() method.

This put() method stores the old value associated with

the affected key in a record object, and then performs the

same change as the original put() method. The trans-

former then changes the type of the instance to the new

Hashtable class, so that the modified put() method is

called instead of the one in Java’s standard library. This

transformation, as well as the generation of the modified

Hashtable class, is fully automatic.

Table 1 shows an example of transforming an integer as-

signment. $ASSIGN$s() is the handler generated to sub-

stitute the assignment to field s. It allocates a record object

in memory, and stores the current value of field s in it. The

record objects for s are linked and ordered by their creation

time. (The code for recording the value in a newly created

record object is omitted because it add unnecessary compli-

cation to our discussion.)

Besides primitive data, the state of objects and arrays can

also be recorded. For those types, references are recorded

int s;
void f(int i) {

s = i;
}

a. Before Transformation

int s;
void f(int i) {

// s = i;
$ASSIGN$s(i);

}
int $ASSIGN$s(int newS) {

... // Record the current value of field s
return s = newS;

}
b. After Transformation

Table 1. Transformation of integer assign-
ment

instead of the content. An observation about the handlers is

that the time taken to record an old value is always constant,

whether the field assigned to is primitive or not [8]. This

time is spent on allocating the record object and storing the

the old primitive value or the old reference of the object or

array in it.

4.2. Checkpoint management

A checkpoint is an execution point of an actor with state

associated with it. We assume that no state is shared be-

tween actors. This is a fair assumption for actor-oriented

models, in which actors exchange information by means of

events sent or received via output ports and input ports, re-

spectively. We provide a small yet sufficient set of meth-

ods for the actors to manage their checkpoints. For most

general-purpose actors, this checkpoint management is also

automatic.

The checkpoint() method in the library that we pro-

vide can be invoked to create a checkpoint. It returns a long

value as a unique checkpoint handle. After checkpoint cre-

ation, the assignment handlers are enabled to record state

changes. Later, the actor can backtrack to the checkpoint by

invoking rollback() with the checkpoint handle as pa-

rameter. An actor can maintain multiple checkpoints at the

same time, and it can roll back to any of those checkpoints.

When an actor decides that it will not backtrack to a check-

point, it invokes the discard() method with the check-

point handle to free the memory consumed by the record

objects. References to those record objects will be lost, and

the Java garbage collector will later collect the memory for

reuse.

Our backtracking mechanism is implemented specially

for applications in which run-time performance is impor-

tant. The checkpoint() method incurs a small constant

211211211

cost in time and in memory. It marks the current execution

point with a unique long integer number without actually

storing any state. The state is stored incrementally with as-

signments. There is a constant run-time cost for each as-

signment. Assuming that assignments are performed uni-

formly during the execution, the handlers slow down the

execution at a fixed rate that can be statically analyzed to ex-

tract real-time properties. rollback() and discard()
have O(cv) complexity, where c is the maximum number

of checkpoints that coexist at any time, and v is the number

of assignable memory locations (e.g., integer fields, object

references, array elements, etc).

5. Enhanced Camera Application

We now apply the backtracking mechanism to the image

composition application. The backtracking mechanism pro-

vides fault tolerance at the software level without requiring

a redesign of most actors in our actor library.

We will consider the Delay, Route, Merge, Queue and

Image Processor actors in this application to be general-

purpose. They have no knowledge about the meaning of er-

ror events or how to handle them. We will not discuss state

recovery of other actors that interact with hardware or the

human operator, because that depends on the specific oper-

ations provided by the API. For example, the Command ac-

tor in our application was considered a sensor. It may keep

a history of previous commands. Checkpoints of this actor

correspond to the indices in the history. To recover state

with a checkpoint, the Command actor may simply restore

the history to the specified index, and delete the subsequent

commands. Another example is the Display actor, consid-

ered as an actuator. It can not backtrack because the display

of erroneous data cannot revert. One way to deal with this is

to allocate a large enough buffer to store composed images,

which are shown on the display device only when the actor

is sure that the data used to compose them are valid.

In the following discussion, we will focus on general-

purpose actors. In general, the computation on those actors

depends on the successful completion of hardware com-

mands in the downstream actuators. On receiving an error

event, the default behavior of those actors is to recover their

state to the point before the event pertaining to the problem-

atic command was processed, and to relay the error event

back to their predecessors.

5.1. Processing error events

We will use the Image Processor actor as an example

to discuss the processing of error events in general-purpose

actors.

The Image Processor actor composes the images ac-

quired at the same time from the n cameras. It is a state-

ful actor because historical data about past images (up to a

certain time) may be used in the current composition. Due

to temporary loss of network connections, camera malfunc-

tion, or failure to focus, the Image Processor may not re-

ceive all the n images on occasions, and some of the re-

ceived images may be corrupted. We assume there is a way

for the Image Processor to detect lost or corrupted images.

A simple example is that if it does not receive data of a

partially transmitted image for a threshold, it considers the

connection lost, and the partial image corrupted.

A question to ask is when the Image Processor can start

to compose the images. If the composition starts at the

time when the Image Processor begins to receive image data

from any camera, and if during the composition some im-

ages are found to be corrupted, then the changes made on

the historical data are invalidated and the historical data can-

not be used any more. However, if the composition starts

when all the n images are either received intact or found

corrupted, then it may be too late the Display actor to pro-

duce real-time display, because image composition takes a

considerable amount of time.

This problem is similar to the one we have seen in Sec-

tion 3.4. We let Image Processor be actor α here. Let e1

be an event at i1 ∈ Iα that represents the start of transfer-

ring an image, which later becomes corrupted. Let e2 be an

error event at i2 ∈ Iα that represents the detection of the

corruption. tag(e1) = tag(e2) because e2 invalidates any

computation performed after e1. i1 and i2 are in the same

equivalence class because they both have influence on α’s

output signal (the set of composed images). Let this equiv-

alence class be Eα. Since e2 originates from the Device ac-

tors and does not depend any other event, the only path to i2
is [i2]. Therefore, the only C�Eα� that α can choose is {Eα}.
As we have seen, this choice of C�Eα� makes the PTIDES

execution strategy equivalent to Chandy and Misra’s con-

servative strategy. α has to pessimistically wait for e2 (or

a success event at port i2 instead) in order to process any

event with a time tag greater than tag(e1).

With backtracking, the Image Processor can perform

composition based on partially received data after it cre-

ates a checkpoint. Changes can be made on the histori-

cal data. The old values of the changed data are automati-

cally recorded without extra programming. In the rare case

where image corruption is detected, the Image Processor in-

vokes rollback() to recover its previous state, and then

restarts the composition with fewer images. In the major-

ity of cases, image transfer and composition are performed

in parallel and are both successful. Even in the rare case

where composition has to be restarted, the time to finish the

composition is similar to the time taken by traditional con-

servative strategies, not considering the part of composition

that can be reused after state recovery.

212212212

DisplayImage
Processor

DeviceMerge

Clock

Delay Route Queue

. . .
 Command

. . .

Figure 4. The camera application enhanced
with error channels

5.2. Error channels and cancellation mes-
sages

Figure 4 shows the model enhanced with error chan-
nels. Device and Clock are the actors that generate error

events. The errors propagate via error channels to other ac-

tors, which may further relay them. Errors stop propagating

until they are properly handled. (For loss of connections be-

tween the n Device actors and the Image Processor, we shall

consider that the Image Processor “receives” an error event

from a Device if it has not received data from that Device

for a certain timeout.)

In the static analysis of relevant dependency before ex-

ecution, the error channels are deliberately ignored, and so

are the error events that travel via those channels. Hence,

the static analysis for relevant dependency is not affected by

hardware errors. The Image Processor can choose a C�Eα�
different from {Eα}. For example, it can choose the set

containing n equivalence classes, each of which consists of

an input port of a distinct Delay actor. Using the second

implementation in Section 3.3, the Image Processor can de-

cide whether it can process input events by comparing the

physical time of the central computer to the expressions in-

volving the relevant dependency between those equivalence

classes and {Eα}.
At run time, hardware errors are automatically handled

by general-purpose actors. An actor creates a checkpoint

every time it starts to process an event. To continue with

the example of Image Processor, every time it starts to re-

ceive images from the cameras, it creates a checkpoint and

proceeds with the image composition without waiting. This

checkpoint will be useful when it receives an error event

(e.g., a one corresponding to the loss of a network connec-

tion). At that time, it recovers its state by backtracking to

the checkpoint. Note that the checkpoint management func-

tionality itself is not subject to backtracking, so it can main-

tain the list of events that have been received after the check-

point creation. Those events may need to be re-processed

after state recovery.

As a result of state recovery, an actor may generate can-
cellation messages to other actors. This is because some of

the events that it previously sent to those actors become in-

valid. Like error events, the cancellation messages are sent

via the error channels, and they are not considered in the

static analysis.

Cancellation messages in distributed systems have been

studied by previous research. For example, a cancellation

mechanism for Time Warp is described in [4]. Cascading

failure, also known as domino effect [13], must be avoided.

This problem is due to the fact that the cost of checkpoint

creation in the prior work is high, so it is not practical to

create a checkpoint every time an event is to be processed.

As a consequence, to cancel a previously processed event e,

an actor may backtrack to a model time earlier than tag(e).
It may then cancel its output e′ earlier than e. For the actor

that received e′ to cancel it, some outputs of that actor ear-

lier than tag(e′) may also need to be canceled for the same

reason. If this goes on, in the extreme case, the whole dis-

tributed system backtracks to very far in its past, or even to

its initial state.

In our backtracking mechanism, checkpoint creation is

an inexpensive operation that an actor can always perform

before it processes an event. To cancel the processing of

an event, the actor backtracks to the checkpoint created

right before that event was processed. This assures that the

domino effect does not happen.

6. Assessment and Related Work

Our backtracking mechanism has low performance over-

head and small memory footprint. It is best suited for appli-

cations with real-time requirements. If assignments are dis-

tributed uniformly in the execution, the extra state record-

ing slows down the applications at a fixed rate. This makes

it easy to infer real-time properties based on the real-time

properties of the non-backtracking version of the applica-

tions. Since error events are rare, the rollback operation

does not cause significant performance penalty. Neverthe-

less, for time-critical applications that require strict confor-

mance to real-time constraints, the time consumed by roll-

back still needs to be carefully considered. Fortunately, the

cost can be analyzed with the maximum number of coex-

isting checkpoints (1 in many actors) and the number of

assignable locations.

Compared to the traditional conservative strategy [3, 12],

PTIDES takes advantage of the provable minimum delay to

process events more eagerly, making actors more respon-

sive to incoming events. Compared to optimistic strate-

gies [9, 4], PTIDES requires much less backtracking, which

is needed only when hardware errors occur. Optimistic

strategies require backtracking to deal with time faults. The

213213213

extra cost and the unanalyzable nature of time faults some-

times outbid the gain of optimistic event processing.

Various techniques exist for software fault tolerance [7].

We find that some of them do not satisfy the requirement

of real-time applications, while the others require too much

human intervention and are not flexible enough. For ex-

ample, serialization at checkpoint creation makes it neces-

sary to pause the applications for a considerable amount of

time. It cannot be used when real-time performance is a

critical concern. The incremental checkpointing technique

described in [10] requires the programmers (in our case,

designers of atomic actors) to provide auxiliary methods,

which are an extra burden and a source of bugs. It is also

hard to maintain these methods as the code evolves. Our

backtracking mechanism does not have these limitations.

The programmers only maintain the original copy of the

code, which has no backtracking functionality. When the

code is updated, transformation is applied with a tool to

generate a new backtracking version. This process can be

incorporated into an unattended build system. No human

intervention is needed for most general-purpose actors.

7. Conclusion

We develop PTIDES for the execution of real-time dis-

tributed discrete-event embedded systems. A lightweight

backtracking mechanism based on program transformation

is incorporated into PTIDES as an extension. It provides

better concurrency for event processing, because the actors

need not always wait for success events or error events from

the hardware. In the rare case where the hardware cannot

complete the operations successfully and error events are

produced, the actors automatically backtrack to their previ-

ous state. Our backtracking mechanism has low overhead

in execution time and memory resource. It smoothly slows

down the execution, making it possible to prove real-time

properties of the applications.

Acknowledgment

This work was supported in part by the Center for Hybrid

and Embedded Software Systems (CHESS) at UC Berkeley,

which receives support from the National Science Founda-

tion (NSF awards #0720882 (CSR-EHS: PRET), #0647591

(CSR-SGER), and #0720841 (CSR-CPS)), the U. S. Army

Research Office (ARO #W911NF-07-2-0019), the U. S. Air

Force Office of Scientific Research (MURI #FA9550-06-

0312 and AF-TRUST #FA9550-06-1-0244), the Air Force

Research Lab (AFRL), the State of California Micro Pro-

gram, and the following companies: Agilent, Bosch, DG-

IST, National Instruments, and Toyota.

References

[1] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Syn-
chronization and Linearity: An Algebra for Discrete Event
Systems. Wiley, New York, 1992.

[2] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and

H. Zheng. Ptolemy II - heterogeneous concurrent modeling

and design in Java. Technical Report UCB/EECS-2007-7,

EECS Department, University of California, Berkeley, Jan

2007.
[3] K. M. Chandy and J. Misra. Distributed simulation: A

case study in design and verification of distributed programs.

IEEE Transaction on Software Engineering, 5(5), 1979.
[4] M. Chetlur and P. A. Wilsey. Causality representation and

cancellation mechanism in time warp simulations. In PADS
’01: Proceedings of the fifteenth workshop on Parallel and
distributed simulation, pages 165–172, Washington, DC,

USA, 2001. IEEE Computer Society.
[5] S. Edwards and E. A. Lee. The case for the precision timed

(PRET) machine. Technical Report UCB/EECS-2006-149,

EECS Department, University of California, Berkeley, Nov

2006.
[6] J. Eidson and K. Lee. IEEE 1588 standard for a precision

clock synchronization protocol for networked measurement

and control systems. In Sensors for Industry Conference,
2002. 2nd ISA/IEEE, pages 98–105, Nov 2002.

[7] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-

son. A survey of rollback-recovery protocols in message-

passing systems. ACM Comput. Surv., 34(3):375–408, 2002.
[8] T. H. Feng and E. A. Lee. Incremental checkpointing with

application to distributed discrete event simulation. In WSC
’06: Proceedings of the 38th conference on Winter sim-
ulation, pages 1004–1011. Winter Simulation Conference,

2006.
[9] D. R. Jefferson. Virtual time. ACM Transactions on Pro-

gramming Languages and Systems, 7(3):404–425, 1985.
[10] J. L. Lawall and G. Muller. Efficient incremental check-

pointing of Java programs. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks,

pages 61–70, New York, NY, USA, 2000. IEEE.
[11] Z. Manna and A. Pnueli. Verifying hybrid systems. In

Hybrid Systems, pages 4–35, London, UK, 1993. Springer-

Verlag.
[12] J. Misra. Distributed discrete-event simulation. ACM Com-

puting Surveys, 18(1):39–65, 1986.
[13] B. Randell. System structure for software fault tolerance.

In Proceedings of the international conference on Reliable
software, pages 437–449, New York, NY, USA, 1975. ACM

Press.
[14] Y. Zhao, J. Liu, and E. A. Lee. A programming model for

time-synchronized distributed real-time systems. In Pro-
ceedings of the 13th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS 07), pages 259–

268, Bellevue, WA, USA, Apr 2007.

214214214

