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ABSTRACT The face, an important part of the body, conveys a lot of information. When a driver is in a state

of fatigue, the facial expressions, e.g., the frequency of blinking and yawning, are different from those in

the normal state. In this paper, we propose a system called DriCare, which detects the drivers’ fatigue status,

such as yawning, blinking, and duration of eye closure, using video images, without equipping their bodies

with devices. Owing to the shortcomings of previous algorithms, we introduce a new face-tracking algorithm

to improve the tracking accuracy. Further, we designed a new detection method for facial regions based on

68 key points. Then we use these facial regions to evaluate the drivers’ state. By combining the features of

the eyes and mouth, DriCare can alert the driver using a fatigue warning. The experimental results showed

that DriCare achieved around 92% accuracy.

INDEX TERMS convolutional neural network, fatigue detection, feature location, face tracking.

I. INTRODUCTION

In recent years, an increase in the demand for modern trans-

portation necessitates a faster car-parc growth. At present,

the automobile is an essential mode of transportation for

people. In 2017, a total of 97 million vehicles were sold

globally, which was 0.3%more than that in 2016 [1]. In 2018,

the global total estimation of the number of vehicles being

used was more than 1 billion [2]. Although the automo-

bile has changed people’s lifestyle and improved the conve-

nience of conducting daily activities, it is also associated with

numerous negative effects, such as traffic accidents. A report

by the National Highway Traffic Safety Administration [3]

showed that a total of 7,277,000 traffic accidents occurred

in the United States in 2016, resulting in 37,461 deaths

and 3,144,000 injuries. In these accidents, fatigue driving

caused approximately 20% − 30% traffic accidents. Thus,

fatigued driving is a significant and latent danger in traffic

accidents. In recent years, the fatigue-driving-detection sys-

tem has become a hot research topic. The detection meth-

ods are categorized as subjective and objective detection.

In the subjective detection method, a driver must participate

in the evaluation, which is associated with the driver’s sub-

jective perceptions through steps such as self-questioning,
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evaluation and filling in questionnaires. Then, these data are

used to estimate the vehicles being driven by tired drivers,

assisting the drivers to plan their schedules accordingly.

However, drivers’ feedback is not required in the objective

detection method as it monitors the driver’s physiological

state and driving-behavior characteristics in real time [4].

The collected data are used to evaluate the driver’s level of

fatigue. Furthermore, objective detection is categorized into

two: contact and non-contact. Compared with the contact

method, non-contact is cheaper and more convenient because

the system that not require Computer Vision technology or

sophisticate camera allow the use of the device in more cars.

Owing to easy installation and low cost, the non-contact

method has been widely used for fatigue-driving detection.

For instance, Attention Technologies [5] and SmartEye [6]

employ the movement of the driver’s eyes and position of the

driver’s head to determine the level of their fatigue.

In this study, we propose a non-contact method called

DriCare to detect the level of the driver’s fatigue. Our method

employs the use of only the vehicle-mounted camera, making

it unnecessary for the driver to carry any on/in-body devices.

Our design uses each frame image to analyze and detect the

driver’s state.

Technically, DriCare addresses three critical challenges.

First, as drivers’ heights are different, the positions of their

faces in the video are different. Then, when the driver is
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driving, his or her head may be moving; hence, tracking the

trajectory of the head in time is important once the position

of the head changes. To monitor and warn the driver in

real-time, the use of the kernelized correlation filters (KCF)

algorithm [7] is preferred based on our system’s evaluation.

However, the KCF algorithm only uses a single

Felzenszwalb histogram of oriented gradient features [8],

which has poor face-tracking accuracy in a complex environ-

ment. Moreover, the KCF algorithm uses a manual method

to mark the tracked target in the frame. In the case of KCF

tracker cannot immediately retrieve the target, and it cannot

track the human face once the target leaves the detection area

and then returns.

Second, the driver’s eyes and mouth play a vital role in

tracking. Thus, identifying the key facial features of the driver

is important for judging driving fatigue. A previous study [9]

proposes a deep convolutional neural network for detecting

key points. Though some traditional models [9]–[11] can

detect the positions of several facial key points, they cannot

determine the regions of the driver’s eyes and mouth.

Third, defining the driver’s level of drowsiness is cru-

cial for our system. When people are tired, drowsiness is

evident on their faces. According to Walter [12], the rate

of the driver’s eye closure is associated with the degree of

drowsiness. Based on this principle, Grace et al. [13] pro-

posed PERCLOS (percentage of eyelid closure over the pupil

over time) and introduced Copilot to measure the level of the

driver’s fatigue. Constant yawning is a sign of drowsiness,

which may provoke the driver to fall asleep. Li et al. [14],

Abtahi et al. [15], and Fan et al. [16] used this feature to

estimate the level of the driver’s fatigue. However, practically,

the driver may have different and complex facial expressions,

which may distort the identification of these features.

Our core contributions are as follows:
• First, we propose a new face-tracking algorithm named

Multiple Convolutional Neural Networks(CNN)-KCF

(MC-KCF), which optimizes KCF algorithm. We com-

bine CNN with the KCF algorithm [17] to improve the

performance of the latter in a complex environment,

such as low light. Furthermore, we introduce the mul-

titask convolutional neural networks (MTCNN) [18] to

compensate for the inability of the KCF algorithm to

mark the target in the first frame and prevent losing the

target.

• Second, we use CNN to assess the state of the eye.

To improve the accuracy of CNN, DriCare measures

the angle of an opening eye to determine if the eye is

closed. To detect yawning, DriCare assesses the duration

of the mouth opening. Besides, DriCare proposes three

different criteria to evaluate the degree of the driver’s

drowsiness: the blinking frequency, duration of the eyes

closing, and yawning. If the results surpass the thresh-

old, DriCare will alert the driver of drowsiness.

The remainder of this paper is organized as follows.

We review the related research in Section II and present

the DriCare overview in Section III. Section IV presents

the principle of human face tracking based on the MC-KCF

algorithm. In Section V, we present the evaluation method for

the driver’s degree of drowsiness. We describe the DriCare

implementation method and present the results of the experi-

ment in Section VI. In Section VII, presents the conclusions

of this study.

II. RELATED WORK

In this section, we categorize the related work into three parts,

those related to the visual object tracking algorithm, the facial

landmarks recognition algorithm and those to the methods of

driver-drowsiness detection.

A. VISUAL OBJECT TRACKING

Visual object tracking is a crucial problem in computer

vision. It has a wide range of applications in fields such as

human-computer interaction, behavior recognition, robotics,

and surveillance. Visual object tracking estimates the target

position in each frame of the image sequence, given the

initial state of the target in the previous frame. Lucas and

Kanade [19] proposed that the tracking of the moving target

can be realized using the pixel relationship between adja-

cent frames of the video sequence and displacement changes

of the pixels. However, this algorithm can only detect the

medium-sized target that shifts between two frames. With

the recent advances of the correlation filter in computer

vision [7], [20]–[22], Bolme [20] proposed the Minimum

Output Sum of Squared Error (MOSSE) filter, which can

produce stable correlation filters to track the object. Although

the MOSSE’s computational efficiency is high, its algorithm

precision is low, and it can only process the gray information

of a single channel.

Based on the correlation filter, Li and Zhu [22] utilized

HoG, color-naming features and the scale adaptive scheme

to boost object tracking. Danelljan et al. [23] used HOG

and the discriminative correlation filter to track the object.

SAMF andDSST solve the problem of deformation or change

in scale when the tracking target is rotating. Further, they

solve the problem of the tracker’s inability to track object

adaptively and the low operation speed. With the develop-

ment of the deep-learning algorithm, some scholars combine

deep learning and the correlation filter to track the mobile

target [24]–[28]. Although these algorithms have better pre-

cision than the track algorithms based on the correlation filter,

their training is time-consuming. Hence, these algorithms

cannot track the object in real-time in a real environment.

In this study, we propose a MC-KCF algorithm based on the

correlation filter and deep learning. This algorithm uses CNN

andMTCNN to offset the KCF’s limitation and uses the KCF

to track objects. Thus, the algorithm can track the driver’s face

in real-time using our system.

B. FACIAL LANDMARKS RECOGNITION

The purpose of facial key-points recognition is that getting

the crucial information about locations of eyebrows, eyes, lips

and nose in the face. With the development of deep learning,
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it is the first time for Sun et al. [9] to introduced DCNN based

on CNN to detect human facial keypoints. This algorithm

only recognizes 5 facial keypoints, albeit its speed is very fast.

To get a higher precision for facial key points recognition,

Zhou et al. [11] employed FACE++which optimizes DCNN

and it can recognize 68 facial keypoints, but this algorithm

includes too much of a model and the operation of this algo-

rithm is very complicated. Wu et al. [29] proposed Tweaked

Convolutional Neural Networks (TCNN) which is based on

Gaussian Mixture Model (GMM) to improve different layers

of CNN. However, the robustness of TCNN depends on data

excessively. Kowalski et al. [30] introduced Deep Alignment

Network (DAN) to recognize the facial keypoints, which

has better performance than other algorithms. Unfortunately,

DANneeds vastmodels and calculation based on complicated

functions. So in order to meet the requirement about real

time performance, DriCare uses Dlib [31] to recognize facial

keypoints.

C. DRIVER DROWSINESS DETECTION

Driver drowsiness detection can be divided into two

types: contact approaches [32]–[34] and non-contact

approaches [5], [6], [35], [36]. In contact approaches, drivers

wear or touch some devices to get physiological parameters

for detecting the level of their fatigue. Warwick et al. [32]

implemented the BioHarness 3 on the driver’s body to collect

the data and measure the drowsiness. Li et al. [33] used a

smartwatch to detect driver drowsiness based on electroen-

cephalographic (EEG) signal. Jung et al. [34] reformed the

steering wheel and set an embedded sensor to monitor the

electrocardiogram (ECG) signal of the driver. However, due

to the price of contact approaches and installation, there are

some limitations which cannot be implemented ubiquitously.

The other method employs a tag-free approaches to detect the

driver drowsiness, where the measured object does not need

to contact the driver. For example, Omidyeganeh et al. [35]

used the driver’s facial appearance captured by the camera

to detect the driver drowsiness, but this method is not real-

time. Zhang and Hua [37] used fatigue facial expression

reorganization based on Local Binary Pattern (LBP) features

and Support Vector Machines (SVM) to estimate the driver

fatigue, but the complexity of this algorithm is bigger than

our algorithm. Moreover, Picot et al. [38] proposed a method

that uses electrooculogram (EOG) signal and blinking feature

for drowsiness detection. Akrout and Mahdi [39] and Oyini

Mbouna et al. [40] used a fusion system for drowsiness

detection based on eye state and head position. Different from

these methods, we employ simple formulae and evaluations,

which make the results easier to measure.

III. DRICARE OVERVIEW

The proposed system, DriCare, is built using a commercial

camera automobile device, a cloud server that processes

video data, and a commercial cellphone that stores the result.

Figure 1 shows the structure of the DriCare system. While

driving, the automobile’s camera captures the driver’s portrait

FIGURE 1. The architecture of DriCare.

FIGURE 2. System workflow.

and uploads the video stream to the cloud server in real-time.

Then, the cloud server analyzes the video and detects the

driver’s degree of drowsiness. In this stage, three main parts

are analyzed: the driver’s face tracking, facial key-region

recognition, and driver’s fatigue state. To meet the real-time

performance of the system, we use the MC-KCF algorithm

to track the driver’s face and recognize the facial key regions

based on key-point detection. Then, the cloud server esti-

mates the driver’s state when the states of the eyes and mouth

change. The workflow is shown in Figure 2. Finally, the cloud

server transmits the result to the driver’s cellphone and other

apps, throughwhich a warning tone is transmitted if the driver

is observed to be drowsy.

IV. DRIVER FACE TRACKING BY MC-KCF

In this section, we illustrate the principle of driver face

tracking using DriCare. Owing to the complexity of the

real environment, each frame of the video data requires

preprocessing to meet the tracking requirements.

A. PRE-PROCESS

During the detection process, the quality of images is affected

and features of the human face become unclear if the illumi-

nation intensity within the cab is changed during driving. This

usually occurs in case of overcast skylight, rain, and at night.

For detection accuracy, we use the illumination enhancement

method to preprocess images before tracking the driver’s

face. Furthermore, we use the histogram equalization (HE)

algorithm [41] to improve the brightness of the image frame.
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FIGURE 3. The result of histogram equalization.

FIGURE 4. The performance of original KCF and MC-KCF algorithm.

To determine whether light enhancement is required for the

image frame, DriCare evaluates the brightness of the image.

Therefore, we convert the RGB image into a YCbCr image

because in theYCbCr color space, Y represents the luminance

value. We use Eq. (1) for the mean value of Y M around the

driver’s face in the image as follows:

M =

∑n
i L

n− i
(1)

where L denotes the luminance value of each pixel in the

YCbCr space, and n and i represent the first and last serial

numbers of the driver’s facial pixels in the image, respec-

tively. n− i is the total number of driver’s facial pixels. IfM is

lower than the threshold, the image enhances the illumination

using the HE algorithm. Otherwise, the image is retained.

After counting large samples, we set the threshold to 60.

Figure 3 shows the result of the illumination enhancement.

B. THE PRINCIPLE OF MC-KCF

As previously discussed, the KCF algorithm is based on the

FHOG feature [7]. Therefore, in a complex environment and

during long-term operation, the tracking window will drift,

as shown in Figure 4(b). We propose the MC-KCF algorithm

instead of the original KCF algorithm to track a human

face. In the MC-KCF algorithm, a new feature comprises the

FHOG feature and is based on the KCF algorithm and CNN

feature. We will explain the principle of FHOG and CNN

feature execution and how these features are integrated.

1) FHOG FEATURE EXACTION

In our algorithm, the FHOG feature [8] is a key factor for

human-face tracking. To extract the FHOG feature and for

easy calculation, the image is grayed before commencing.

Then, we calculate the gradient G and gradient orientation

at each pixel α in the image as shown in Eq. (2):






























Gx(x, y) = H (x + 1, y) − H (x − 1, y)

Gy(x, y) = H (x, y+ 1) − H (x, y− 1)

G =
√

Gx(x, y)2 + Gy(x, y)2

α = arctan(
Gx(x, y)

Gy(x, y)
) α ∈ (0◦, 360◦)

(2)

where H (x, y), Gx(x, y), and Gy(x, y) represent the pixel,

horizontal gradient, and vertical gradient values at (x, y),

respectively.

Then, we segment the image into n × n cells. Accord-

ing to [8], the gradient orientation is categorized into either

9 bins of contrast-sensitive orientations or 18 bins of

contrast-insensitive orientations. If any pixel in a cell belongs

to the corresponding orientation, the value of the orientation

bin increases 1. Finally, each cell has 9-dimensional and 18-

dimensional histograms.

The gradient of each cell is related to the internal pixels and

the 4 cells around it. After calculating the gradient histogram,

we use Eq. (3) and (4) for normalization and truncation.

Na,b(i, j) = (C(i, j)2 + C(i+ a, j)2

+C(i+ a, j+ b)2 + C(i, j+ b)2)
1
2 (3)

H(i, j) =









Tα(C(i, j)/N−1,−1(i, j))

Tα(C(i, j)/N+1,−1(i, j))

Tα(C(i, j)/N+1,+1(i, j))

Tα(C(i, j)/N−1,+1(i, j))









(4)

In Eq. (3), C(i, j) denotes the 9- or 18-dimensional eigenvec-

tor of the cell at (i, j), Na,b(i, j) represents the normalization

factor and a, b represent that the number of different normal-

ization factors, a, b ∈ {−1, 1}. In Eq. (4), H(i, j) is a feature

vector, and Tα(x) denotes the truncated function. If the value

in x is bigger than α, the value is assigned to α.

After normalization and truncation, the 9-dimensional

feature vector becomes a 36-dimensional feature vector.

The 18-dimensional eigenvector becomes a 72-dimensional

feature vector; in total, there are 108-dimensional feature

vectors. Then, we arrange this eigenvector with reference to

the matrix of 4×27. Finally, we obtain 31-dimensional HOG

features, named the FHOG feature, using matrix addition.

2) CNN FEATURE EXACTED BY SQUEEZENET 1.1

SqueezeNet is a small CNN architecture [17] with very fast

operation. Figure 5 shows the architecture of SqueezeNet

1.1, which includes a standalone convolution layer (conv1),

3 max-pooling layers, 8 fire modules (Fire2− 9), a final con-

volution layer (conv10), and one global average pool layer.

SqueezeNet uses the fire module instead of the tradi-

tional convolution layer to reduce the network parameters

and improve accuracy. The fire module comprises a squeeze

convolution layer of 1 × 1 filters, feeding into an expand

layer with a mix of 1 × 1 and 3 × 3 convolution filters,

similar to that shown in Figure 6. Three tunable dimensions
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FIGURE 5. The architecture of SqueezeNet 1.1.

FIGURE 6. The architecture of Fire module.

are S1, e1, and e3. A feature map sized H ×W ×M becomes

H ×M × S1 by squeezing layer processing [17]. Processing

by expanding layer [17], we can obtain a feature map sized

H ×W × (e1 + e3).

3) MULTI-FEATURE FUSION

To avoid large and redundant CNN features, DriCare uses the

CNN feature obtained from the 1×1 convolution filter in the

expand layer of Fires 5 and 9 of the SqueezeNet model. After

conducting the feature extraction of aD1×G1 original image

using the MC-KCF algorithm, we obtain a FHOG feature

sized D2 × G2 and two CNN features sized D3 × G3 and

D4 × G4. Obviously, the sizes of the three features differ.

Therefore, we adjust them so that they have the same size.

Thus, the adjustment equation is written as follows:
{

D = Da × θ

G = Ga × ϕ
(5)

where D and G denote the standard length and width, respec-

tively. Da and Ga represent the original length and width of

the three features, respectively. θ and ϕ are the scaling factors.

Similar to the structure of the KCF algorithm, in the

MC-KCF algorithm, we use each feature to train their clas-

sifiers separately using the kernel ridge regression, which is

written as follows [7]:

Eα = Êα = Ey(K + λI)−1 =
Êy

ˆkxx + λ
(6)

where K is the kernel matrix, I denotes an identity matrix, Eα
represents the vector of coefficients αi, λ is a hyperparameter,

FIGURE 7. The face tracking result in different weights of features.

and Ey is the vector of regression targets. Moreover, a hat ˆ
denotes the DFT of a vector, and kxx is the first row of the

kernel matrix K.

After the training, we use each classifier to evaluate the

regression function f (z) for every image sample z. The biggest

value of f (z) is the forecasted position of the target for each

feature. The equation is as follows:

f (z) = F
−1( ˆkxz ⊙ α̂) (7)

where F
−1 denotes the inverse DFT. Thus, we obtain three

tracking results. To obtain the final result of the MC-KCF

algorithm, we set different weights for the result of three

features: δ1, δ2, and δ3. We calculate the entire response

value of the MC-KCF algorithm F using the weights and the

prediction positions based on FHOG and CNN features. The

formula is as follows:

F = δ1 × f (zfhog) + δ2 × f (zfire5) + δ3 × f (zfire9) (8)

In Eq. (8), the codomain of δ is [0, 1]. When one of δ = 0,

the response value of the corresponding feature is not the

final result; otherwise, when δ = 1, the response value of

the corresponding feature is the entire response value. From

the response value, we obtain the position of the driver’s face.

The different weights of the three features can influence the

tracking accuracy. Thus, we calculate 1000 weight ratios of

the three features. Figure (7) shows a representative ratio.

When the ratio of δ1 : δ2 : δ3 is 0.57 : 0.14 : 0.29, respec-
tively, the performance is optimal. In our system, the ratio is

0.57 : 0.14 : 0.29.
Therefore, the total dimension of the CNN features is 384,

bigger than the dimension of the original FHOG feature,

which is a 31-dimensional HOG feature. Since the modified

object is small in some frames, we update the model of every

N frame to increase the computing speed of the model and

improve the real-time performance of the system. We set N

value as 3. The whole process is shown in Figure (8).

4) CALIBRATION OF MC-KCF

As discussed above, the original KCF algorithm is unable

to automatically obtain the tracking target of the first video

frame. Besides the original KCF algorithm, in which the

VOLUME 7, 2019 118731



W. Deng, R. Wu: Real-Time Driver-Drowsiness Detection System Using Facial Features

FIGURE 8. The process of MC-KCF algorithm.

object goes out of the camera’s sight, we align the MC-KCF

algorithm in case the algorithm is unable to track the driver’s

face. In Section III, the MTCNN algorithm uses the bounding

box to precisely determine the human face. Thus, we use

MTCNN to periodically calibrate the MC-KCF algorithm.

After preprocessing the video frame, the cloud severs will

judge whether the current image is the first frame. If it is,

the cloud server will use the MTCNN algorithm to locate

the human face in the image; otherwise, the cloud sever will

continue to judge whether the span of tracking time surpasses

10s. If the answer is yes, the cloud sever will use theMTCNN

algorithm to relocate the human face and reset the tracking

time. If the system evaluates that the current image is not

the first frame and the duration of the tracking time is less

than 10s, DriCare will use the MC-KCF algorithm to track

the driver’s face using the result to update the scope of the

search for the driver’s face for the next frame. We summarize

the MC-KCF calibration process in Algorithm 1.

V. EVALUATION OF THE DRIVER’S FATIGUE STATE

In this section, we discuss the method of analyzing the

driver’s face via the DriCare system in case of drowsiness.

Further, we discuss methods to locate the regions of the eyes

and mouth on the driver’s face. A change state of the eyes

and mouth is a crucial indicator of drowsiness. Additionally,

we discuss a new algorithm to detect the driver’s fatigue.

A. DETERMINATION OF EYES AND MOUTH REGIONS

In Section 4, we recognize and track the driver’s face in each

video frame. Then, we use Dlib [31] to locate 68 facial key

points on the driver’s face. The result is shown in Figure (9).

After obtaining the key points, we set the coordinate of each

key point as (xi, yi) and use the key points to locate the regions

of the eyes and mouth on the driver’s face.

1) THE REGION OF THE EYES

First, we offer the solution for locating the eyes’ regions.

From Figure 9, one eye has six key points. However, these

points are near the eyeball. By using these points to detect

the region of an eye, the region will not include the upper

and lower eyelids from the analysis, thereby influencing the

result of the subsequent evaluation. Therefore, we use the key

Algorithm 1 Calibration of MC-KCF Algorithm

Input: frame of the video fram, the span of the tracking

time t , the count number of frames cnt , the number of all

framesframs

Output: the result of human face tracking res_img

Load fram, set t is 0 and cnt is 0

while t 6 10s and cnt 6 frams do

if the current frame is the first frame then

Use MTCNN algorithm to detect a human face

else if MC-KCF algorithm cannot detect a human face

then

Use MTCNN algorithm to detect a human face

else

Use MC-KCF algorithm to detect a human face

t + +
cnt + +
Output the result res_img

Update the scope of the detection

Read the next frame

end if

end while

if t == 10s then

UseMTCNN algorithm to align the MC-KCF algorithm

(use MTCNN algorithm to detect human face) in the

current frame

Output the result res_img

Update the scope of the detection

t = 0

cnt + +
end if

Read the next frame

points of the eyebrow and nose to define the scope of the eye

and eye socket. The equation is as follows:










lex =
xi + xj

2

ley = ym +
yn − ym

4

(9)

In Eq. (9), xi and xj represent the X coordinate of the ith and jth
key points, respectively. yn and ym represent the Y coordinate

of the nth and mth key points, respectively. lex and ley denote
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FIGURE 9. The numbering of facial key points.

FIGURE 10. The ratio of mouth’s width and height in different states.

TABLE 1. The calculation parameters of the position of the two eyes.

the vertices’ coordinates of the rectangular region of the eye.

In our system, according to Fig. 9(b), when i is Point 18, j is

Point 37.m is the point number, with the minimum value of Y

coordinate between Points 18 and 22. n represents the point

number with the minimum value of Y coordinate between

Points 38 and 39. As shown in Figure (10), we obtain the A

vertex of the left eye.

After we obtain the coordinate of the upper left A and lower

right vertices of the region D, we determine the eye socket

region on the driver’s face based on rectangular symmetry.

Table 1 shows the calculation parameters of the position of

the two eyes.

B. EVALUATION OF THE DRIVER’S FATIGUE STATE

In this section, we discuss the principle of evaluating the

driver’s fatigue state. As shown in Figure 2, DriCare uses two

factors to evaluate the state of the driver’s fatigue: the states

FIGURE 11. The architecture of CNN.

of the eyes and mouth. Unlike other methods, we propose a

new assessment for the eyes state to achieve higher accuracy.

With CNN, we use the angle of the eyes to evaluate the eye

state. Moreover, we use the state of the single eye near the

camera to assess the state of the whole eye. Besides, DriCare

also measures the state of the mouth to judge if the driver

is yawning. After these assessments, DriCare merges these

results and evaluates the driver’s degree of drowsiness.

1) EYE STATUS RECOGNITION

a: RECOGNITION BASED ON CNN

We build a CNN to recognize the eight layers of the eye state.

Figure 11 shows the CNN architecture.

We use two convolutional layers and maximum pooling

layers to extract the feature based on the eye region. The

features are integrated by two full connection layers. Finally,

the results of the output are used to judge if the eye is open.

The number of neurons in the output layer is 1, and the

activation value is obtained using the sigmoid function as the

values are equal to or greater than 0, as shown in Eq. (10).

S(x) =
1

1 + e−x
(10)

In Eq. 10, the range of the result is in [0, 1]. During

training, the value of an open eye is 1, representing positive

samples, and the value of a closed eye is 0, representing

negative samples. A predicted value of greater than 0.5 in

the sigmoid activation function output represents the result

of open eyes; otherwise, it represents closed eyes.

b: RECOGNITION BASED ON ANGLE

Owing to the CNNdrawbacks (the accuracy of the eye closure

recognition by CNN is poor), we use the angle of the eye to

compensate for the CNN’s limitations regarding eye closure

recognition. After the CNN validates that the driver’s eye is

open, we use the angle of the eye to validate the result. A blink

is the process of the eye closing and opening. As discussed

in the previous section, we identify the eye region using the

video frame. As revealed in Fig. 12(a), we use the key points

in the eye region to assess the angle of the eye. The equation

is as follows:










dij =
√

(yj−yi)2 + (xj − xi)2

A = (arccos
d2ab + d2ac − d2bc
2 × dab × dac

)/π × 180◦
(11)

In Eq. (11), dij is the distance between Points i and j. (xi, yi)

and (xj, yj) represent the coordinates of Points i and j in the
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FIGURE 12. The state recognition for eye and mouth.

frame, respectively. In our system, (xi, yi) and (xj, yj) are the

two average coordinate values of two points in the eyelids.

A is the angle of the eye. When we obtain the result, if the

result is bigger than the threshold, DriCare will consider if

the state of the eye is opening, and vice versa. We analyze the

large number of samples. In the eye-closed state, the angle of

the eye is lower than 20◦. Therefore, we set the threshold at

20◦.

We assess the driver’s degree of fatigue from three per-

spectives based on the angle of the eye: (1) the proportion

of the number of closed-eye frames to the total number of

frames in 1 minute, (2) continuous time of eye closure, and

(3) frequency of blinking. According to [42], [43], when the

driver is awake, the proportion of closed-eye frames is less

than 30%.Moreover, the driver’s closure time for a single eye

is shorter when he or she is awake, so when the driver’s single

eye closure time exceeds 2s, the driver is considered fatigued.

Besides, when people are awake, they blink an average of

10 to 15 times per minute. However, when people are mildly

tired, the number of blinks increase; in case of severe fatigue,

the number of blinks will be lower because the eyes are closed

most of the time. To detect fatigue based on the frequency of

blinking, it is necessary to count the blinking frequency of the

eyes within 1 minute. If the blinking frequency is greater than

25 times/min or lower than 5 times/min, fatigue is indicated.

2) MOUTH STATUS RECOGNITION

For the detection of fatigued driving, the features of themouth

are important because when a driver is drowsy, continuous

yawns will occur. Therefore, DriCare uses these features to

measure the accuracy of evaluation. In Section 4, we obtain

some key points in the mouth to calculate the ratio of

the mouth’s width and height. The equation is rewritten as

follows:


















H =

√

(yr − ye)2 + (xr − xe)2

W =

√

(yu − yv)+(xu − xv)2

f =
H

W

(12)

In Eq. (12), f is the ratio of the mouth’s width and height in

one image frame. H represents the height of the mouth, and

W denotes the width of the mouth. (xr , yr ) is the coordinate

of the vermilion tubercle, and (xe, ye) is the lowest point in

FIGURE 13. The ratio of mouth’s width and height in different states.

the lower low lip. (xu, yu) and (xv, yv) are two coordinates of

the angulus oris. If f is larger than the threshold, DriCare will

consider that the driver is opening the mouth, and vice versa.

According to the measurement for a large number of samples,

in our paper, we set the threshold to 0.6.

In practice, the opening of the mouth may resemble

other situations, such as singing, speaking, and laughing.

These phenomena present the same results. To reduce errors,

we draw the diagram of curves using the width-height ratio

of the mouth obtained in each frame as shown in Figure (13).

From this illustration, when the driver is yawning, the mouth

will open continuously for a longer time, and the wave peaks

are wider. Otherwise, when the driver is speaking, the mouth

opens continuously for a shorter time, and the wave peaks are

narrower. Hence, we use Eq. (13) to calculate the duration

time ratio R of the opening mouth, which can discriminate

actions such as yawning and speaking. The equation is written

as follows:

R =
n

m
× 100% (13)

where m represents the number of frames for some time.

n is the number of the frame, and f exceeds the threshold.

According to [44], [45], we know that the whole yawning

process lasts for 7s in general, and the video frames, the f

of which is higher than the threshold, are approximately

3 ∼ 4s. Therefore, we set R to 50%. When judging whether

yawning occurs, we count the number of frames the ratio of

mouth-height to -width of which is higher than the threshold

of 7s. To determine the proportion of these frames, the total

number of detections should be greater than 50%. If this is

established, we consider the driver to be yawning. We count

the number of yawns in one minute and if the number of

yawns is more than two times per minute, the driver is said to

be drowsy.

However, according to [46], we can know that when driver

is a condition of boring or tedious activities that increased

yawning frequency. Hence, in order to eliminate the error,

we set weights for these features separately, and then we

account the total of weight, if the total of weight is higher than

the threshold, DriCare will consider the driver is drowsy.
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We summarize the entire detection process for DriCare in

Algorithm 2.

Algorithm 2 Fatigue Detection Algorithm for DriCare

Input: frames of the video

Output: Evaluation of the degree of driver fatigue

Load the frames of video

Assess the states of the eye and mouth

Calculate r the ratio of the frame of eye closure in 1 minute

and t a duration time of eye closure.

Calculate b the frequency of blinking and y the number of

yawning in 1 minute.

if r > 30% then

Wr = 1

end if

if t > 2s and is not yawning then

Wt = 1

end if

if b > 25 or b < 5 then

Wb = 1

end if’

if y > 2 then

Wy = 1

end if

Calculate T the total value of these weight. (T = Wr +
Wt +Wb +Wy)

if T > 2 then

The driver is drowsy

else

The driver is awake

end if

VI. EXPERIMENTS

A. DATASETS AND SETUP

Figure 14(a) shows a prototype of DriCare comprising a com-

mercial Qihu 360 camera and an Intel Core i7 CPUMacbook

Laptop at 2.5 GHZ and 16 GB memory to simulate the cloud

server. Figure 14(b) shows the system interface.

We use 10 volunteers to collect the video data captured by

the vehicle camera. Each volunteer simulates the drowsy and

clear driving states. Each video is 1-h long. For the evalu-

ation of drowsiness, we use the CelebA [47], YawDD [48]

dataset and volunteer video data to assess the performance of

DriCare.

We used Python 3.6, OpenCV 3.4, Tensorflow 1.8, and

Tkinter 8.6 to build the software environment required for our

experiments.

B. EXPERIMENTAL EVALUATION

We tested the DriCare performance and compared them with

other methods in the same condition.

1) PERFORMANCE OF MC-KCF

The Euclidean distance between the predicted and real values

of the target border is used to evaluate the performance of

FIGURE 14. Experimental environment and interface of the system.

FIGURE 15. The accuracy of face tracking in different environment.

the tracking algorithms. We compare the MC-KCF algorithm

with the other tracking algorithms using different scenarios.

The main test scenarios are fast motion, target disappears in

the field of vision, and target rotation. The average test results

in each scenario are counted as the final experimental results,

as shown in Figure15(a).

From Figure15(a), the MC-KCF algorithm demonstrates

the best tracking accuracy. In a complex environment,

the accuracy of MC-KCF is nearly 90%. Face tracking in the

driving environment is simpler than in other environments

because the driver’s face moves less and the speed is average.

Moreover, the face will be visible in the field of vision.

Figure 15(b) shows the results of the MC-KCF test per-

formance and other tracking algorithms, revealing that the

MC-KCF algorithm produces the best performance, with the
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TABLE 2. Comparison of other performances.

FIGURE 16. The comparison of eye state recognition method.

accuracy reaching approximately 95%., when the Euclidean

distance within 20px.

As shown in Table 2, we further compare the different

methods in terms of speed. Although the KCF algorithm

offers the highest speed, its accuracy is the worse than those

of MC-KCF and KCF + CNN. The MC-KCF algorithm has

the best accuracy for face tracking; its accuracy is nearly

20% more than that of the Struck algorithm; however, its

speed is slightly lower than that of KCF. The MC-KCF algo-

rithm can process 25 video frames per second, which meets

the requirement of our system. Thus, we consider that the

MC-KCF algorithm performs better and offers the practical

requirements for speed and accuracy.

2) PERFORMANCE OF DETECTION METHODS

For testing the performance of our evaluation algorithm,

we compare our method for evaluating the state of the eye

with other methods. Figure 16 shows the result, indicating

that the angle of eye opening is 95.2%, which is the highest

among the evaluated methods. Additionally, the closed-eye

recognition is the highest, at 93.5%. The success rate of

identifying a closed eye is significantly improved by our

method; it is 10% more than HoughCircle.

Figures 17(a) and (b) show that the recognition result of the

states of the eye and mouth during drowsiness and otherwise.

The horizontal axis represents the number of video frames;

and the left vertical axis represents the opening of the eyes,

wherein 1 represents the eye opening and 0 represents the

eye closing. The right vertical axis represents the ratio of

the height and width of the mouth. The experimental results

show that when the driver is awake, the blinking frequency

and eye-closing time are low. However, when the driver is

FIGURE 17. The recognition result of eye and mouth in different state.

TABLE 3. The performance in different environments.

tired, the blinking frequency and eye-closing time are high,

and sometimes, the driver will be yawning.

3) PERFORMANCE OF DRICARE

To test the performance of our system, wemeasure the system

in different experimental environments. The result is shown

in Table 3.

From Table 3, our system provides the best accuracy when

the cab is bright and the driver wears no glasses. If the

driver wears glasses and the driving environment is slightly

dim, the accuracy of fatigue driving is reduced. Regardless

of the environmental condition, the average accuracy of our

method is approximately 92%.However, the average process-

ing speed is 18fps when the environment is bright. When the

environment is dark, the speed is 16fps.

For now, there are not an image-based public driver

drowsiness recognition dataset can be used to estimated the

efficiency of our method. Therefore, we cannot compare the

effectiveness of DriCare with other methods [37]–[39] due
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TABLE 4. Comparison of results between DriCare and other
state-of-the-art methods.

to different datasets. So we compare our method with other

methods which are obtained from a video-based dataset. The

result are shown in Table 4.

Table 4 reveals that compared with existing methods such

as Zhang and Hua [37], Picot et al. [38] and Akrout and

Mahdi [39], the average accuracy of DriCare is better than

other methods, especially, the accuracy of DriCare is 11%

more than Picot et al. [38]. Thus, DriCare can meet our

requirements in terms of the estimation accuracy.

VII. CONCLUSION

We propose a novel system for evaluating the driver’s level

of fatigue based on face tracking and facial key point detec-

tion. We design a new algorithm and propose the MC-KCF

algorithm to track the driver’s face using CNN and MTCNN

to improve the original KCF algorithm. We define the facial

regions of detection based on facial key points. Moreover,

we introduce a new evaluation method for drowsiness based

on the states of the eyes and mouth. Therefore, DriCare

is almost a real-time system as it has a high operation

speed. From the experimental results, DriCare is applicable

to different circumstances and can offer stable performance.
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