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Real-Time DSP Implementation for
MRF-Based Video Motion Detection

Christophe Dumontier, Franck Luthon, and Jean-Pierre Charras

Abstract— This paper describes the real-time implementation
of a simple and robust motion detection algorithm based on
Markov random field (MRF) modeling. MRF-based algorithms
often require a significant amount of computations. The intrinsic
parallel property of MRF modeling has led most of implementa-
tions toward parallel machines and neural networks, but none of
these approaches offers an efficient solution for real-world (i.e.,
industrial) applications. Here, an alternative implementation for
the problem at hand is presented yielding a complete, efficient and
autonomous real-time system for motion detection. This system
is based on a hybrid architecture, associating pipeline modules
with one asynchronous module to perform the whole process,
from video acquisition to moving object masks visualization. A
board prototype is presented and a processing rate of 15 images/s
is achieved, showing the validity of the approach.

Index Terms—Digital signal processor (DSP), Markov random
field (MRF), motion detection, real-time implementation.

I. INTRODUCTION

M
ARKOV random field (MRF) modeling is widely used

in image processing, e.g., for motion analysis [1]–[3],

image restoration [4], and texture analysis [5]. Although the

performance of such algorithms is usually very good, their

structure is complex and the data flow to process is large.

Consequently, the computation cost is high. Since the original

paper by Geman and Geman [4], the locality (neighborhood

structure) and parallelism of MRF models have been used to

speed up the computations. Various real-time implementations

of MRF-based algorithms, either on parallel machines or

neural networks, have been proposed.

• Single Instruction Multiple Data machines (SIMD): this

approach fully takes parallel characteristics of the algo-

rithm into account. For example in [6], an MRF-based

global region labeling algorithm is implemented on a

SIMD array of over 40 000 processing units. The key-

points in SIMD implementations are the distribution of

data onto the processors and the communication between

processors.

• Multiple Instructions Multiple Data machines (MIMD):

for example in [7], a motion detection and interpretation

algorithm is implemented on an MIMD vision machine

based on twelve transputers. These machines offer an

attractive solution for real-time implementation, but their
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size, cost and complexity remain too high and limit their

use in specific applications.

• Cellular Neural Networks perform well by exploiting

both parallelism and locality. Moreover, MRF modeling

implies the minimization of an energy function which can

be solved by electrical networks [8]–[11]. For example,

in [12], a Hopfield network is used and simulated to

implement an MRF-based optical flow estimation algo-

rithm. Compared to parallel machines, cellular analog

networks induce dedicated hardware design (ASIC) which

limits the flexibility and adaptivity of implementations.

Current CMOS technology constraints only allow the

implementation of simple algorithms and restrict the size

of computed images (100 100 pixels). Main advantages

of such implementations are relaxation convergence speed

(faster than 1 s) and reduced hardware size.

This paper addresses the problem of video motion detection

based on MRF modeling with real-time implementation

constraints in mind [13]. An alternative solution to parallel

machine and neural network approaches is proposed here,

based on a split-technology (pipeline/asynchronous) with

standard programmable devices (DSP, FPGA, RAM). In

Section II, the MRF-based motion detection algorithm is

presented. Section III describes the alternative architecture of

the machine. Section IV discusses real-time implementation

and Section V reports some experimental results.

II. MOTION DETECTION ALGORITHM

The algorithm described below is derived from the work of

Bouthemy et al. [2]. Some definitions are recalled first, then

our algorithm is compared to the work in [2].

A. Definitions

Motion detection is a binary labeling problem whose goal

is to attribute to each pixel of image at time

one of the two following label values

if moving object

if static background.

With the hypothesis of static camera and little variation of

scene illumination between two consecutive images ( and

), motion information at any pixel is closely related to

the temporal change of the intensity function . Therefore,

observations are defined as

(1)

Let and represent one

particular realization of label and observation fields and ,

1057–7149/99$10.00  1999 IEEE
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Fig. 1. Spatiotemporal neighborhood and binary cliques.

respectively. The most probable configuration of label field

, given one realization of observation field , is obtained

with the maximum a posteriori criterion (MAP). From the

equivalence between MRF’s and Gibbs distributions [4], we

have

(2)

Maximizing this a posteriori probability is equivalent to min-

imizing an energy function which is the sum of two

terms, :

• the a priori model energy is a regularization term

given by

(3)

where denotes any binary clique in the

spatiotemporal neighborhood shown in Fig. 1 and is

the set of all cliques. is an elementary potential

function associated with each clique . In order to put

homogeneity constraints into the a priori model (i.e., to

give advantage to configurations where two neighbors

have the same label), stepwise potential functions are

used:

if

if

Three different constant potentials are taken for the three

kinds of cliques: for spatial, for past, for future.

• the observation energy represents the link between

labels and observations. It is given by the relationship

(4)

where is supposed to be a centered Gaussian

noise with variance and is a function that models

the observation behavior

if

if

If the pixel belongs to the static background, there is no

temporal change between two consecutive images, so that

observation is almost zero. If the pixel belongs to a moving

area, observation is supposed to take a positive value close to

which stands for the average value of nonzero observations.

The parameter may be estimated on-line as proposed in [2].

Fig. 2. Block diagram of the motion detection algorithm.

But for the real-time implementation described in this paper,

it has been determined manually after experimental tests.

Since stochastic relaxation algorithms are prohibitive for

real-time implementation, the deterministic relaxation algo-

rithm iterated conditional modes (ICM) is used to find the

minimum of [14].

Fig. 2 summarizes the detection algorithm. At time , it

requires three consecutive frames. Suppose the past label

field has been determined as the result of previous

relaxation. The current label field is initialized with a binary

field derived from the observation field (comparison

to a threshold ). A coarse estimate of the future label

field is also derived from the binarization of field . For

each site of the current image, the two label values one and

zero are tested and the label which induces the minimum local

energy in its spatiotemporal neighborhood is kept. The process

iterates on the label field until convergence, one iteration

corresponding to the scanning in and directions of the

whole field at time .

Note that the algorithm implies a one image delay for

obtaining the motion masks at time , since the frame at time

is required.

B. Comparison with Bouthemy’s Algorithm [2]

As regards temporal information, both algorithms work

on three consecutive frames of the sequence. Both of them

respect spatial coherence and take into account temporal

discontinuities. Bouthemy’s algorithm estimates the final label

field in two steps with a sliding pair of images, while our

algorithm works in one step with a triplet of images and gives

advantage to the future with respect to the past by taking

. This helps to eliminate the areas uncovered by motion.

No significant difference has been observed as to the qual-

ity of the results produced by the two algorithms, but our

algorithm is more efficient if computation complexity is taken

into account, as in the following.
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Fig. 3. Block diagram of the board with hybrid (pipeline/asynchronous)
architecture.

• The number of parameters required for MRF modeling

is lower in our case: four parameters

instead of five in [2],

• The processing of the temporal direction requires one test

only, while in [2] eight different configurations are tested,

• the operations involved in the processing of temporal and

spatial dimensions are identical in our case,

• The number of data used during the relaxation process

is minor in our algorithm in comparison with the sliding

pair algorithm in [2].

Note that in our model, temporal neighbors are not literally

speaking Markovian because their associated parameters

are not equal and their labels are not updated during

relaxation. These neighbors must rather be considered as side

information for the relaxation process.

III. HARDWARE ARCHITECTURE

The algorithm block diagram (Fig. 2) exhibits two process-

ing stages (preprocessing and Markov processing) and two

video stream connection stages (acquisition and visualization).

Taking into account the video stream connection within the

design of the architecture alleviates a lot of problems linked to

data control (when acquisition and vizualization are computed

with an external board). Moreover, this integration makes the

final board autonomous and enables its use in size-restricted

applications (embedded applications). For that purpose, a hy-

brid architecture made of pipeline and asynchronous modules

has been designed. Pipeline modules are synchronized by

video clock (here, MHz). The asynchronous

module operates at a faster clock (33 MHz).

Fig. 3 gives an overview of this architecture which is

composed in practice of two computation stages, two I/O

stages and one buffer stage:

Input Stage: Video input stream control. This stage converts

standard interlaced video input into digital images of size

512 512 and 8-b pixel depth. It works at standard

European video rate, i.e., 25 images/s and uses standard

8-b AD converters.

Preprocessing Stage: This stage computes observations and

initial labels. An optional lowpass (LP) filtering is added

before this computation in order to improve the quality

of initialization in case of very noisy sequences. This

stage requires elementary operations only (difference, ab-

solute value, threshold and convolution). These operations

are easily implemented on logical components. Field pro-

grammable gate arrays (FPGA’s) are used because of their

flexibility. Initial images are made of two interlaced frames

(odd and even) temporally shifted by 20 ms (CCIR stan-

dard). To comply with the spatial coherence of our model,

only odd frames are processed, so that the image size

computed by this stage is reduced to 256 256 pixels.

Markov Processing Stage: This stage performs the energy

minimization to obtain the final masks of moving objects. It

is implemented on a digital signal processor (DSP) since

a careful analysis of the algorithm (cf. Section IV-B3)

shows that most of computations involved are similar to

convolutions. DSP’s are particularly suited for this kind of

calculation. Since the energy minimization is an iterative

process, data need to be accessed several times during

relaxation. Moreover, the number of operations performed

and their complexity imply a high computation rate. These

characteristics are not compatible with video flow compu-

tation. Consequently, this stage works asynchronously, at a

rate faster than video rate, on data stored in a buffer memory.

The DSP is also in charge of dynamic memory control that

is performed under exception processing. This control takes

about 8% of the CPU time (one exception appears at the

beginning of each line, i.e., each 64 s).

Buffer Stage: This stage enables asynchronous data accesses

and ensures continuity of video data flow. A video RAM

component (VRAM) is chosen for this purpose. This video

memory is composed of two banks. One is used for input

data storage and the other one is used for output mask stor-

age. However, this memory is not fast enough for zero wait-

state accesses, so that static memory (SRAM) is also used

by the DSP for temporary data storage. Fig. 4 shows the

synchronization of computations with respect to video flow.

Output Stage—Video Output Stream Control: This stage

converts the resulting frames into a standard interlaced video

signal to be visualized on a control monitor. It uses standard

8-b DA converters.

IV. REAL-TIME IMPLEMENTATION

A. Hardware Configuration

A printed circuit board (PCB) prototype was developed to

validate this architecture. The main features of this board are

the following:

• standard PC-ISA bus;

• one digital signal processor DSP Motorola 96 002 work-

ing at 33 MHz for implementing the deterministic relax-

ation algorithm;

• one FPGA Xilinx XC4003 working at standard European

video rate (25 images/s) on images of size 512 512 for

lowpass filtering initial images;

• one FPGA Xilinx XC4005 for differentiating consecutive

images, computing the observation field and thresholding
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Fig. 4. Synchronization of computations with respect to video flow. (a) Video stream (25 images/s). (b) Preprocessing frames (12 images/s). (c) Details
of computations performed to obtain the moving object masks.

Fig. 5. PC board prototype photo.

observations (initial label field). This stage works on odd

frames of size 256 256. A local SRAM memory is

required for storage of image ;

• 32 Kwords of zero wait-state SRAM for temporary data

storage;

• two banks, 256 Kbytes each, of triple-port fast page mode

VRAM for precomputed field storage ( and )

and final label field storage .

• combined DAC/ADC converters and look-up-tables

(Brooktree components).

Fig. 5 shows a photo of the PCB prototype. This implemen-

tation includes on a single board all successive stages involved

in the processing (from acquisition to visualization).

B. Software Implementation

1) Convergence Criterion: Pixel recursive updating is used

for ICM relaxation [14]. Theoretically, the convergence of the

ICM algorithm is reached when no more label change occurs

after a scan of the whole image. Experience shows that this

criterion is too strict and induces superfluous iterations that

do not improve the final result (visually). Another criterion

focuses on the relative variation of the global energy function

between two consecutive iterations ( %). A

Fig. 6. Evolution of the number of pixels changing of label during the
relaxation process. Results are given for three real-world scenes (image size
128 � 128).

third criterion stops the process after a fixed number of

iterations. This number is determined experimentally. For ob-

vious reasons of computational simplicity, this third criterion

is used here. Practical tests show that is sufficient to

obtain moving masks of good visual quality. Fig. 6 shows

results obtained on three real-world scenes (presented in

Section V).

2) Parameter Setting The motion detection algorithm de-

pends on four MRF parameters and one threshold

. Experimental tests were made on several synthetic and real-

world image sequences. Good quality results were obtained

with a fixed set of parameters: and

. However, for a specific application, these parameters

must be adjusted to optimize the quality of the results. More

weight is given to the future by taking . This helps

to deal with motion discontinuities, to take into account any

innovation in motion in a faster way, and to better eliminate

background areas which are uncovered during motion.

The contribution of each energy term ( and ) entering

into the global energy is fixed to approximately 50%

each. Depending on the scene processed, this balance can be
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Fig. 7. Computation of up(ls = 0) that is equivalent to 3-D filtering + LUT operation at site s.

modified by introducing a weight parameter in the definition

of the global energy .

The binarization operation also requires the definition of a

threshold . This threshold is estimated by the relationship

where represents the standard deviation of the

noise induced by the acquisition process (camera digitizer).

Depending on the scene, this threshold can take values in the

range (for images coded with 256 gray levels).

The value of can either be set manually by the user, or

computed directly by the processor (online computation of

) and updated by the way of a serial link between the DSP

and the FPGA. So, some flexibility is kept in the hardware

implementation.

3) Storage and Computation Cost Two important points

are the complexity of the calculation and the size of data

flow. Since the algorithm used for energy minimization is

iterative, data (frames) have to be stored. Five frames are

actually required at each time: four binary frames

and one 8-b frame .

The contribution of each processing stage to the global

computation load has been evaluated. Initialization process

(preprocessing) accounts for about 10% and Markov process-

ing, for 90%. This last process is divided into about 70% for

computation, 25% for and 5% for the final choice

of label at pixel . These time evaluations take into account

the kind of computations involved and the data access times.

Moreover, a careful analysis of the algorithm [15] exhibits

three interesting characteristics for the evaluation of

(5)

where and represent the local energy values

at pixel contributing, respectively, to and , as

follows.

1) The local model energy takes the same absolute

value but a different sign for each of the two possible

labels ( or ) at a site

(6)

2) the computation of over the spatiotemporal neigh-

borhood for one of the two possible labels is equivalent

to a convolution with a 3-D-filter followed by a look-

up-table (LUT) operation. First, the static label

is taken and a temporary value is computed with

the convolution kernel shown in Fig. 7. Then is

processed by the LUT to obtain the actual value of

. Next, the remark 1) is applied to obtain

the value of for the moving label

;

3) the third remark concerns the evaluation of observation

energy given by (4). Theoretically, this evaluation

must be done at each pixel of image (giving a value

for each pixel). In practice, can only take

256 different values in the range . It is not

necessary to compute for each pixel and at each

iteration of the process, but only to compute once and

for all the 256 possible values at the beginning of each

relaxation process.

V. EXPERIMENTAL RESULTS AND PERFORMANCE

Three examples of experimental results obtained with the

proposed hardware board are given in Figs. 8–10. Sequences

were acquired with a standard CCD camera and results are

obtained with the fixed set of parameters given in Section IV-

B2. Each experiment emphasizes one major property of the

algorithm, as follows.

• Fig. 8 shows the noise reduction achieved by MRF re-

laxation. The scene contains three walking pedestrians, a

pedestrian hidden behind a street lamp and a car appearing

on the right of the street (in the last image of the

sequence). The initial label field is very noisy (acquisition

noise of a standard camera), but after relaxation, only the

moving objects are detected.

• Fig. 9 shows the cancellation of uncovered areas. The

mobile has a fast rotational motion. In the initial label

field, a large uncovered area is visible (i.e., the position

of the mobile at time ). After relaxation, the final

label field only exhibits the mobile mask at time .

• Fig. 10 illustrates the regularizing behavior of the al-

gorithm and the quality of the masks (e.g., for video-

surveillance or traffic control application). Note the de-

tection of the pedestrian’s shadow on the bonnet of the

car (lower left corner of the image), and the fairly good

reconstruction of the leg motion.

The main difficulties encountered by the motion detection

algorithm concern the following two kinds of situations.
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Fig. 8. Noise reduction.

Fig. 9. Cancellation of uncovered areas.

Fig. 10. Mask quality.

• Very small moving objects: a too small object is consid-

ered as noise in the frame. Specific MRF-based algorithms

have been developed for these cases [16].

• Low speed objects: there is a lack of information given

by the preprocessing stage (thresholded frame differences

are zero almost everywhere). Spatiotemporal approaches

and multiresolution framework may improve the detection

quality for this kind of motion [17].

In practice, a processing rate of 12 to 15 images/s for images

of size 128 128 is achieved by our PCB prototype. This

corresponds to about half the European standard video rate (25

images/s). Compared to the rate of ten images/s obtained with

a parallel implementation of the same algorithm on a SIMD

machine with 256 elementary processors [18], the performance

achieved by our prototype is satisfying.

The main shortcoming is the limited image size (128

128 pixels). This size may be sufficient for many applications

(intruder detection for example). Images of size 256 256

could be processed by our board, but this would decrease the

computation rate by about a factor of four (four images/s).
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Another solution consists in using the lowpass filter imple-

mented in the preprocessing stage. With this filter, initial

images (256 256 pixels) can be subsampled without aliasing

and then, the relaxation stage still works on images of size 128

128. To get final label fields of size 256 256, a simple

interpolation (duplication of pixels) is performed. Of course,

this procedure induces a slight lowering in the precision of

the mask edges.

VI. CONCLUSION

In this paper, a simple and robust MRF-based motion

detection algorithm is presented and a hardware architecture

is proposed for its real-time implementation. The algorithm

is adapted in order to limit as much as possible the data

flow and the computation cost. It practically works on three

consecutive images (which implies a one image delay at the

output) and integrates contextual spatiotemporal information

to give homogeneous masks. The regularizing behavior of the

algorithm is shown on several real-world sequences.

A hybrid architecture (pipeline/asynchronous) is proposed

for real-time implementation and a PCB prototype is described.

This implementation is autonomous and integrates the whole

processing on a single board, from image acquisition to mask

visualization. Logical programmable components (FPGA’s)

and ADC/DAC components are used for pipeline modules

and a single digital signal processor (DSP) asynchronously

performs the more complex tasks (energy minimization). The

link between these modules is implemented by the way of a

buffer memory (VRAM). Results are promising (15 images/s

on images of size 128 128) and validate the perspective of

using MRF algorithms in industrial applications. Indeed, this

work shows that MRF algorithms do not necessarily imply a

complex, bulky and expensive hardware implementation.

However, the intrinsic parallel property of MRF modeling

is not completely exploited by our implementation. The pro-

cessing rate and the computed image size could be increased

by using an up-to-date processor, integrating some parallelism

(e.g., programmable video processors like Texas Instrument

TMS320C80 with MIMD architecture).
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