b-tu

Brandenburg
University of Technology
Cottbus - Senftenberg

Real-Time Dynamic Hardware Reconfiguration for Processors with Redundant
Functional Units
Rotta, Randolf; Segabinazzi Ferreira, Raphael; Nolte, Jorg

DOI
10.1109/ISORC49007.2020.00035

Publication Date
2020

Document Version
Accepted author manuscript

Published in:
2020 IEEE 23rd International Symposium on Real-Time Distributed Computing (ISORC)

Citation

R. Rotta, R. Segabinazzi Ferreira and J. Nolte, "Real-Time Dynamic Hardware Reconfiguration for
Processors with Redundant Functional Units," 2020 IEEE 23rd International Symposium on Real-Time
Distributed Computing (ISORC), Nashville, TN, USA, 2020, pp. 154-155, doi:
10.1109/ISORC49007.2020.00035.

Important note
To cite this publication, please use the final published version (if applicable). Please check the document
version above.

Publisher:
Institute of Electrical and Electronics Engineers Inc.

Publisher copyright

IEEE

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

(Article begins on next page)


https://doi.org/10.1109/ISORC49007.2020.00035

Real-Time Dynamic Hardware Reconfiguration for
Processors with Redundant Functional Units

Randolf Rotta, Raphael Segabinazzi Ferreira, Jorg Nolte
Brandenburg University of Technology, Cottbus, Germany
{rottaran, R.SegabinazziFerreira, Joerg.Nolte} @b-tu.de

Abstract—The tiny logic elements in modern integrated circuits
increase the rate of transient failures significantly. Therefore,
redundancy on various levels is necessary to retain reliability.
However, for mixed-criticality scenarios, the typical processor
designs offer either too little fault-tolerance or too much re-
dundancy for one part of the applications. Amongst others,
we specifically address redundant processor internal functional
units (FU) to cope with transient errors and support wear
leveling. A real-time operating system (RTOS) was extended to
control our prototypical hardware platform and, since it can be
configured deterministically within few clock cycles, we are able
to reconfigure the FUs dynamically, at process switching time,
according to the specified critically of the running processes. Our
mechanisms were integrated into the Plasma processor and the
Plasma-RTOS. With few changes to the original software code, it
was, for example, possible to quickly change from fault-detecting
to fault-correcting modes of the processor on demand.

Keywords—Reconfiguration, Run-Time, Modular Redundancy,
Mixed-Ceriticality.

I. INTRODUCTION

The demand for higher computing throughput, lower power
and energy consumption necessitates smaller manufacturing
technologies for the processors. This, however, increases the
impact of aging effects and the susceptibility to external inter-
ference such as radiation, electromagnetic noise, and voltage
fluctuations, effectively limiting the expected life-time of the
processors and its reliability.

At the same time, due to the ever growing amount of
”smart” software-controlled components and embedded logic
in modern machinery, there is a desire for consolidation
of multiple applications into fewer processors and hardware
components. This mix of applications comes with a wide range
of reliability and performance requirements. In this context,
less critical tasks might afford to fail without detecting any
fault or can afford the run-time overhead of restarting the
application to recover from detected faults. On the other hand,
highly-critical tasks cannot afford this and may require, for
example, a triple modular redundant execution for on-the-fly
fault correction.

This paper presents a platform to enable modular redun-
dancy on-demand. With the focus in mixed-criticality scenar-
ios, the idea is to combine controllable fine-grained replication
of functional units in the processor, such as the ones presented
in [1], with software-based dynamic configuration strategies

This project has received funding from the European Union's Horizon 2020
research and innovation programme under the Marie Sktodowska-Curie grant
agreement No 722325.

explored in this paper. This platform offers configuration flex-
ibility to the criticality mix of its running tasks, for example,
configure redundancy minimizing fault effects in functional
units, but also wear-leveling reducing aging of electronics by
not using all the units all the time for non-critical tasks.

One of our main contributions is the possibility to trade fault
tolerance and aging of electronics. For that, we are addressing
soft faults caused by charged particles hitting the hardware
design and intermittent faults that increase, in number, as the
electronics start to age. So, the fault model considered over
this paper is the single bit flip that may happen in the internal
signals of processor functional units due to the faults just

mentioned.
II. METHODOLOGY

For this paper, we used the 32-bit, MIPS-I compliant, syn-
thesizable Plasma microprocessor [2]. It was extended with a
low-latency reconfiguration logic and configurable DMR/TMR
scheme similar to the platform presented in [1]. Additionally,
the RTOS taken as the base for our software implementations
was the Plasma-RTOS [2]. The next subsections describe these
implementations.

A. Reconfigurable Processor Design

This section summarizes the prototypical design of a simple
processor core with dynamically configurable redundancy.
Instead of replicating the complete core for lockstep execution,
the design aims for fine-grained replication on the level of
Functional Units (FUs) such as arithmetic logic units (ALUs),
floating-point units (FPUs), integer multipliers and dividers,
and address generation units (AGUs). These perform most
of the software’s computations, take up large portions of the
die area, and contain most of the complex logic with critical
propagation path delays. Hence, covering these with modular
redundancy and other fault detection mechanisms should ef-
fectively increase the processor’s fault tolerance against soft
faults.

Figure 1 shows the replication of a single functional unit
(FU) and its interaction with the added components. The
instruction decoder was extended to add new instruction
opcodes. These provide read/write access to the configuration
state and fault counters. The output of each replica FU is
passed through a Muller C-Element with a configurable delay
line (MCE), similar to the scheme proposed in [3], so it can
correct small glitches in the logic signals. Then, the voter
performs a majority vote across the active FUs replica. When



instruction decoder

1 other pipeline stages
'

v

———t

)
s
[z
=
9
-2
=
=1
=
&
15
I
o

counters

¥ other pipeline stages v

Fig. 1. Extensions to the processor design to enable configurable modular
redundancy and fault detection. Rounded boxes mark the extensions.

faults are detected by the MCEs or the voter, these are counted
for the respective replica and a signal is raised to let the system
software performs the appropriate action.

B. The Operating System and its extensions

As part of a co-design approach, the operating system was
extended to control the reconfigurable platform mentioned in
section II-A. The RTOS is then responsible for monitoring the
health status of the FUs, check the criticality requirements of
its running processes, and configure the HW design to match
these two parameters. In case of modifications in the health
status of the FUs, the RTOS functions are also responsible
to update the hardware configuration, as well as the FUs,
attributed to each process.

To do so, we mainly extended the operating system pro-
cesses data structure and the process switching mechanism.
The first, to attribute the criticality parameter to each process
and, the second, to enable units reconfiguration at process
switching time.

As a result, we have a very flexible platform, which enables
real-time design reconfiguration on-demand either to the fault-
tolerant mode or to the aging avoidance mode.

C. Software Design Space Exploration

Although pure software approaches for fault tolerance
demonstrated very good results, they have been showing
limitations in its effectiveness. Which means that joint meth-
ods, involving hardware and software approaches, become
necessary for further improvement.

Thanks to reconfigurable designs, software approaches can
keep their role, but additionally, use this feature to improve
their fault tolerance capability as it demands to, without wast-
ing unnecessary hardware resources. The design just present
in the sections above, enable configuration on-demand of fault
tolerant measures, e.g. double or triple modular redundancy.

Taking the mixed-criticality scenario as its application do-
main, such reconfigurable platform can provide, for example,
triple modular redundancy while executing a highly critical
task or, in the other case, a simple execution using a single

unit when no critical task is been executed, saving some power
and minimizing aging over the electronics.

Additionally, the design reconfiguration can be explored as
such to provide fault correction on fault detection. It means,
once a fault is detected, for example, using double modular
redundancy, software approaches can be designed to enable
simple instruction re-execution over the same units, instruction
re-execution using different units and re-execution using full
TMR scheme. To enable such features software approaches
like branch on-fault, interrupt on-fault, trap on-fault can be
implemented.

III. EVALUATION

The final system is composed of the Plasma processor
design, its modification, and the Plasma-RTOS equipped with
the proposed extensions running on top of it. The system was
simulated using the Xilinx Vivado 2018.2 simulator tool.

We evaluate the latency incurred in the process switching
mechanism due to the modification to perform the reconfigu-
ration at process switching time. To do so, we first executed
the plain process switch with no additional code. Next, we
measured the execution time after adding all the necessary
code to verify processes criticalities and perform the run-time
reconfiguration. The difference between these two executions
resulted in an overhead of 5.1% of execution time in the
process switching mechanism.

Concerning area overhead, the Plasma processor has its FUs
covering about to 60% of the original processor design. So, a
triplication of all of these units would generate an overhead
of 120%. Moreover, a combinational logic necessary to enable
such configurations would take an additional 18% of the area
for this particular design, as it is suggested by [1].

Although simple fault injections were performed in the
functional units internal signals, confirming the fault tolerance
effectiveness of the TMR configuration, long and comprehen-
sive fault injections campaigns are still to be done.

IV. CONCLUSION

This paper presented a reconfigurable platform to cope with
the criticality mix of its application scenario. Our prototype
consists of both extended versions of the Plasma processor
design and the Plasma-RTOS. Its focus is to provide fault
tolerance on-demand and minimizes the aging of electronics
while executing non-critical tasks. The prototype shows a
rather small overhead of 5% on the latency of the system’s task
switching mechanism to configure the core for the next task.
Finally, the incurred overhead, for triplicating the functional
units plus the combinational logic, still bellows the full core
replication when compared to core lockstep schemes.

REFERENCES

[1] R. Segabinazzi Ferreira and J. Nolte, “Low latency reconfiguration
mechanism for fine-grained processor internal functional units,” in 2079
IEEE Latin American Test Symposium (LATS), (Santiago/CL), 2019.

[2] OpenCores.org, “Plasma - most MIPS I(TM) Overview,” in
https://opencores.org/projects/plasma, visited Dec. 6th, 2019.

[3] S. Mitra, M. Zhang, N. Seifert, T. Mak, and K. Kim, “Soft Error Resilient
System Design through Error Correction,” in 2006 IFIP International
Conference on Very Large Scale Integration, pp. 332-337, IEEE, 10 2006.



