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Practical aspects of identifying dynamic models for aircraft in real time were studied.  

Topics include formulation of an equation-error method in the frequency domain to estimate 

non-dimensional stability and control derivatives in real time, data information content for 

accurate modeling results, and data information management techniques such as data 

forgetting, incorporating prior information, and optimized excitation.  Real-time dynamic 

modeling was applied to simulation data and flight test data from a modified F-15B fighter 

aircraft, and to operational flight data from a subscale jet transport aircraft.  Estimated 

parameter standard errors, prediction cases, and comparisons with results from a batch 

output-error method in the time domain were used to demonstrate the accuracy of the 

identified real-time models.   

Nomenclature 

x y za ,a ,a

 

= body-axis translational accelerometer measurements, g or ft/sec2 

b = wing span, ft 

c

 

= mean aerodynamic chord, ft 

X Y ZC ,C ,C

 

= body-axis non-dimensional aerodynamic force coefficients 

l m nC ,C ,C

 

= body-axis non-dimensional aerodynamic moment coefficients 

E{  } = expectation operator 

x y z xzI , I , I , I

 

= mass moments of inertia, slug-ft2 

j = imaginary number = 1

 

J = cost function 

m = aircraft mass, slug 

TM = body-axis pitching moment from engine thrust, ft-lbf 

p, q, r

 

= body-axis roll, pitch, and yaw rates, rad/sec or deg/sec 

q

 

= dynamic pressure, lbf/ft2 

s = standard error 

S = wing reference area, ft2 

T = maneuver length, sec 

x zT , T

 

= body-axis engine thrust, lbf 

V = airspeed, ft/sec 

 

= angle of attack, rad or deg 

 

= sideslip angle, rad or deg 

e a r f, , , = elevator, aileron, rudder, and trailing-edge flap deflections, rad or deg 

c dc s ds, , , = canard, differential canard, stabilator, and differential stabilator deflections, rad or deg 
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, ,

 
= Euler roll, pitch, and yaw angles, rad or deg 

 
= parameter vector 

 
= covariance matrix 

 
= frequency, rad/sec 

superscripts

 

T

 

= transpose 

†

 

= complex conjugate transpose 

ˆ

 

= estimate 

 

= time derivative 

 

= Fourier transform 

–1 = matrix inverse 

subscripts

 

o = reference value 

I. Introduction 

YNAMIC modeling in real time has many important practical uses, such as improving the efficiency of 

stability and control flight testing, flight envelope expansion, adaptive or reconfigurable control, vehicle health 

monitoring, and fault detection.  Several methods1-5 have been investigated for identifying local linear dynamic 

models from flight data in real time.  One of these methods4,6 is based on a recursive Fourier transform and 

equation-error modeling in the frequency domain.  This method, sometimes called the Fourier Transform Regression 

(FTR) method, produces very accurate results with valid error measures and has many practical advantages.  The 

FTR method has also been independently evaluated7,8 as the best method available for real-time dynamic modeling.  

For these reasons, the FTR method was chosen for further study and application.    

The FTR method has been successfully applied4,6-11 to identify accurate linear dynamic models in real time at 

individual flight conditions.  While this capability is important and useful, further progress requires that this 

capability be extended to continuous application as the aircraft flies through a wide range of changing flight 

conditions throughout the flight envelope.  Ultimately, local real-time modeling results could be integrated into a 

global aerodynamic model that could be updated in real time as the aircraft changes flight conditions, changes 

configuration, ages, or becomes damaged in some way.  This vision of real-time global dynamic modeling has many 

important implications for efficient flight testing, accurate flight simulation, adaptive or reconfigurable control, and 

aircraft safety.    

One important aspect of applying real-time dynamic modeling for varying flight conditions and aircraft 

configurations is determining the data information content requirements for accurate dynamic modeling results.  

Changing aircraft flight conditions or aircraft configurations means that parameters in the approximating dynamic 

model change.  Dynamic motion of the aircraft, either from ordinary flight operations or from applied control 

surface excitation, is necessary so that the measured data will exhibit the aircraft dynamics to be modeled.  

Naturally, if the real-time dynamic modeling is to be done continuously or on a regular basis, it is important that 

only the minimum necessary aircraft excitation be applied, and the resulting aircraft motion should be as small and 

unobtrusive as possible.    

This paper investigates data information requirements for accurate real-time dynamic modeling.  Flight 

experiments on a modified F-15B fighter aircraft are used to illuminate issues related to data information content 

necessary for accurate real-time modeling.  Real-time modeling is also applied to operational flight data from a 

subscale jet transport model, to evaluate the feasibility of real-time modeling without specific excitation.  This is an 

important step in extending local real-time modeling to the case of changing conditions, interpreted broadly to 

include flight condition changes, configuration changes, damage, and failure scenarios.  Issues such as data 

information content necessary for fast and accurate local modeling, model validation, necessary excitation, data 

forgetting, and methods for incorporating prior information are studied.    

The next section describes the methods used.  A model formulation is developed that retains full nonlinear 

dynamics, with linearized aerodynamic models.  The FTR method is described, along with explanations of methods 

for data forgetting and incorporating prior information into the real-time parameter estimation algorithm.  Next, the 

flight test aircraft are described, including flight instrumentation and characteristics of the flight data.  The results 

section includes simulation and flight test investigations examining data information requirements for accurately 
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identifying local dynamic models in real time.  Finally, the concluding remarks summarize progress made so far and 

outline some possible next steps.   

II. Methods 

A. Aerodynamic Modeling  

Non-dimensional aerodynamic force and moment coefficients for an aircraft can be computed from flight 

measurements as follows6:  

1
X x xC m a T

q S

 

(1a)  

1
Z z zC m a T

q S

 

(1b)  

2 21
m y x z xz TC I q I I pr I p r M

qSc

 

(1c)  

y
Y

m a
C

q S

 

(2a)  

1
l x xz z yC I p I pq r I I qr

qSb

 

(2b)  

1
n z xz y xC I r I p qr I I pq

qSb

 

(2c)  

These expressions retain the full nonlinear dynamics in the aircraft equations of motion.  For local real-time 

modeling over a short time period, the force and moment coefficients computed from Eqs. (1) and (2) can be 

modeled using linear expansions in the aircraft states and controls:  

2q oX X X X X

qc
C C C C C

V

 

(3a)  

2q oZ Z Z Z Z

qc
C C C C C

V

 

(3b)  

2q om m m m m

qc
C C C C C

V

 

(3c)  

2 2p r oY Y Y Y Y Y

pb rb
C C C C C C

V V

 

(4a)  

2 2p r ol l l l l l

pb rb
C C C C C C

V V

 

(4b)  

2 2p r on n n n n n

pb rb
C C C C C C

V V

 

(4c) 

The 

 

notation indicates perturbation from a reference condition.  In each expansion, a single term is shown to 

represent all relevant and similar control terms, to simplify the expressions.  For example, in Eq. (3c), the term 
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mC

 
represents all the control terms for mC , e.g., 

e f
m m e m fC C C .  In Eq. (3c), 

omC

 
represents the non-dimensional pitching moment at a reference condition, and similarly for the other expansions.    

The linear aerodynamic models in Eqs. (3) and (4) contain parameters called stability and control derivatives, 

such as mC

 
and mC , which characterize the stability and control of the aircraft.  For short periods of time, the 

stability and control derivatives are considered to be constant model parameters to be estimated from flight data.  

Repeating the parameter estimation at short time intervals produces piecewise constant estimates for the stability and 

control derivatives, which in general vary with flight condition and changes to the aircraft, such as configuration, 

age, damage, or failures.    

The next subsection describes how the unknown stability and control derivatives in the linear aerodynamic 

models of Eqs. (3) and (4) can be estimated from flight data using equation-error parameter estimation in the 

frequency domain.   

B. Stability and Control Derivative Estimation in the Frequency Domain  

This section describes the FTR method for estimating unknown parameters in a dynamic model in real time.  

Some of the material presented here can also be found in Refs. 4 and 6.    

The first step required for modeling in the frequency domain is to transform the measured flight data from the 

time domain into the frequency domain.  The finite Fourier transform is the analytical tool used for this task.  For an 

arbitrary scalar signal x t  on the time interval 0,T , the finite Fourier transform is defined by  

0

T j t
x t x x t e dt

 

(5) 

which can be approximated by  

1

0

N
j i t

i

x t x i e

 

(6) 

where x i x i t , T N t , and t

 

is a constant sampling interval.  The summation in Eq. (6) is defined as 

the discrete Fourier transform,  

1

0

N
j i t

i

X x i e

 

(7) 

so that the finite Fourier transform approximation in Eq. (6) can be written as  

x X t

 

(8) 

Some fairly straightforward corrections12 can be made to remove the inaccuracy resulting from the fact that Eq. (8) 

is a simple Euler approximation to the finite Fourier transform of Eq. (5).  However, if the sampling rate is much 

higher than the frequencies of interest, as is typically the case for dynamic modeling from flight data, then the 

corrections are small and can be safely ignored.    

The Fourier transform is applied to the non-dimensional force and moment coefficients computed from Eqs. (1) 

and (2) using measured time-domain data.  This results in the non-dimensional force and moment coefficients in the 

frequency domain.  Often, measurements of the angular accelerations and p, q, r  are not available.  In the frequency 

domain, these derivatives can be calculated by multiplying the Fourier transforms of and p, q, r

 

by j .  For 

example, the Fourier transform of the rolling moment coefficient can be computed as: 
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xz z yx xz

l l

I pq I I qrI p I r
C C j

qSb qSb

 
(9) 

and similarly for mC

 
and nC .  This approach implements the derivative of the body-axis angular momentum in the 

frequency domain, including the time variation in the inertia quantities.  Note that the Fourier transform of the 

nonlinear terms is handled by computing the nonlinear terms in the time domain, then applying the Fourier 

transform to the resulting time history.  Treatment of the dynamic pressure q

 

in Eq. (9) is consistent with an 

assumption that the dynamic pressure varies slowly, which is a good practical assumption.    

To obtain the perturbation states and controls in Eqs. (3) and (4), time histories of the measured states and 

controls are high-pass filtered to remove the steady part of each signal. Then, each perturbation signal is transformed 

into the frequency domain using the discrete Fourier transform.  The break frequency for the high-pass filter is set 

just below the lowest frequency selected for the modeling.  High-pass filtering is implemented with a fourth-order 

Butterworth digital filter.  Similarly, the quantities transformed in Eq. (9) (shown within the square brackets) are 

high-pass filtered prior to Fourier transformation.  This approach effectively drops out the bias terms in the models 

of Eqs. (3) and (4).  The high-pass filtering also prevents leakage from the relatively large spectral component at 

zero frequency, associated with the steady component of each signal, from polluting transformed data at low 

frequencies.    

For each aerodynamic model in Eqs. (3) and (4), the parameter estimation problem can be formulated as a 

standard least squares regression problem with complex data6,  

z X e

 

(10) 

where, for example, using the pitching moment equation (3c),  

1

2

m

m

m

C

C

C M

z

 

(11)  

1 1 1 1

2 2 2 2

n e f

n e f

n e f

q

q

M q M M M

X

 

(12)  

q

e

f

m

m

m

m

C

C

C

C

 

(13) 

The notation nq

 

represents 2qc V

 

and e

 

represents the complex equation error vector in the frequency 

domain.  The symbols 1 2k , k , , , M

 

denote the Fourier transform of the angle of attack perturbation state 

for each frequency k , and similarly for other quantities.  Each transformed variable depends on frequency.  The 
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frequencies k

 
can be chosen arbitrarily, and are therefore chosen to cover the frequency band where the aircraft 

dynamics lie, as will be discussed later.  The least squares cost function is  

1

2
z X z X

†
J

 
(14) 

This cost function contains M squared error terms in summation, corresponding to M frequencies of interest.  Similar 

cost expressions can be written for individual lines from Eqs. (3) and (4).  The parameter vector estimate that 

minimizes the least squares cost function is computed from6  

1

X X X z† †ˆ Re Re

 

(15) 

The estimated parameter covariance matrix is6  

1
2 X X

T †ˆ ˆ ˆC ov E Re

 

(16) 

where the equation-error variance  can be estimated from the residuals,  

1
z X z X

†

p

ˆ ˆˆ
M n

 

(17) 

and pn

 

is the number of unknown parameters, i.e., the number of elements in parameter vector .  Parameter 

standard errors are computed as the square root of the diagonal elements of the ˆC ov  matrix from Eq. (16), using 

ˆ  from Eq. (17).  Reference 6 explains why the estimated parameter standard errors are computed in this way, and 

also why this calculation in the frequency domain produces parameter error measures that are consistent with the 

scatter in parameter estimates from repeated maneuvers.  Realistic simulation testing has shown that the accuracy of 

model parameters estimated with this method is comparable to using a time-domain output-error method employing 

iterative nonlinear optimization in post-flight batch mode13.    

The model formulation given here is widely applicable, because the assumption of constant linear aerodynamic 

models over short time periods is very accurate for non-dimensional stability and control derivatives, where the 

effects of changing dynamic pressure and mass properties are removed.    

To implement this least squares parameter estimation in the frequency domain, the parameter estimation 

calculations in Eqs. (15)-(17) are applied to frequency-domain data at selected times, normally at regular time 

intervals.  The frequency-domain data must therefore be available at any time, so the Fourier transforms are 

computed using a recursive Fourier transform, described next.   

C. Recursive Fourier Transform  

For a given frequency , the discrete Fourier transform in Eq. (7) at time i t , denoted by iX , is related to 

the discrete Fourier transform at time 1i t  by  

1
j i t

i iX X x i e

 

(18) 

where  

1j i tj i t j t
e e e

 

(19) 
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The quantity  j t
e

 
is constant for a given frequency 

 
and constant sampling interval t .  It follows that the 

discrete Fourier transform can be computed for a given frequency at each time step using one addition in Eq. (18) 

and two multiplications – one in Eq. (19) using the stored constant j t
e

 
for frequency , and one in Eq. (18).  

There is no need to store the time-domain data in memory when computing the discrete Fourier transform in this 

way, because the data for each sample time is processed immediately.  Time-domain data from the past can be used 

in all subsequent analysis by simply continuing the recursive calculation of the Fourier transform.  In this sense, the 

recursive Fourier transform acts as memory for the information in the data.  More data from more maneuvers 

improves the quality of the data in the frequency domain without increasing memory requirements to store it.  

Furthermore, the Fourier transform is available at any time i t .  The approximation to the finite Fourier transform 

is completed using Eq. (8).    

The recursive computation of the Fourier transform does not use a Fast Fourier Transform FFT

 

algorithm14, 

and therefore would be comparatively slow, if the entire frequency band up to the Nyquist frequency 1 2 t

 

were 

of interest.  However, rigid-body dynamics of aircraft lie in a rather narrow frequency band of approximately 

0.01-2.0 Hz.  Since the frequency band is limited, it is efficient to compute the discrete Fourier transform using 

Eqs. (18) and (19) (which represents a recursive formulation of Eq. (7)) for only the selected frequencies 

1 2k , k , , ,M .  With this approach, it is possible to select closely-spaced fixed frequencies for the Fourier 

transform and the subsequent modeling and still do the calculations efficiently.    

Using a limited frequency band for the Fourier transformation confines the data analysis to the frequency band 

where the dynamics lie, and automatically filters wide band measurement noise or structural responses outside the 

frequency band of interest.  These automatic filtering features are important for real-time applications, where 

instrumentation error corrections and noise filtering would require additional computational resources.    

In past work on fighter aircraft short-period modeling, frequency spacing of 0.04 Hz on an interval of 

approximately [0.1-2] Hz was found to be adequate9-11.  Finer frequency spacing requires slightly more computation, 

but was found to have little effect on the results.  When the frequency spacing is very coarse, there is a danger of 

omitting important frequency components, and this can lead to inaccurate parameter estimates.  In general, a good 

rule of thumb is to use frequencies evenly spaced at 0.04 Hz over the bandwidth for the dynamic system.  For good 

results, the bandwidth should be limited to the frequency range where the signal components in the frequency 

domain are at least twice the amplitude of the wide band noise level.  However, the algorithm is robust to these 

design choices, so the selections to be made are not difficult.    

The recursive Fourier transform update need not be done for every sampled time point.  Systematically skipping 

time points effectively lowers the sampling rate of the data prior to Fourier transformation.  This saves computation, 

and does not have a significant adverse impact on the parameter estimation results until the Fourier transform update 

rate gets below approximately 5 times the highest frequency of interest for the dynamic system.  The parameter 

estimation and covariance calculations in Eqs. (15)-(17) can be done at any time, but are usually done at 1 or 2 Hz, 

to save computations.  Linearized aerodynamic characteristics rarely change faster than this, except in cases of 

strong nonlinearity, damage, failure, or rapid maneuvering.  For these cases, the update rate can be increased, at the 

cost of more computations.    

Reference 6 explains that computing standard errors from the covariance matrix in Eq. (16) does not require 

correction for colored residuals.  The standard errors computed from Eq. (16) are therefore a good representation of 

the error in the estimated parameters.  Having high quality error measures is important for problems such as failure 

detection and control law reconfiguration.   

D. Data Forgetting  

The recursive Fourier transform in Eqs. (18) and (19) represents a data information memory for as long as the 

running sum is incremented.  It follows that when the aircraft dynamics change, the older data should be discounted 

in some way, as has been done for time-domain approaches using a forgetting factor6.  If this is not done, then the 

speed of response for the real-time parameter estimator is progressively degraded, as new information has to 

overwhelm an increasingly longer memory.  Consequently, there is a trade-off between the desired rapid response of 

the parameter estimator to changes in the aircraft dynamics, versus retaining enough information from past data for 

sufficiently accurate model parameter estimates.    

If past values of the Fourier transform iX

 

computed from Eq. (18) are saved in computer memory, then it is 

possible to implement selective amnesia by simply subtracting past values of the running sum corresponding to the 
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Fourier transform, or differences between past values of the running sum.  For example, forgetting all data 

information content older than 10 sec (i.e., removing that data information content from the complex regression 

problem) could be implemented by subtracting the value of the running sums for the Fourier transforms at 10 sec 

ago from the current running sums.  Similarly, to forget data information content collected between 5 and 7 sec ago, 

the difference between the running sums at 5 and 7 sec ago would be subtracted from the current running sum.  The 

price to pay for this capability is the computer memory required to store past values of the running sums associated 

with the Fourier transforms for each signal at each frequency.  The memory requirements could be reduced by 

perhaps only saving the running sums at intervals of 0.5 sec, for example.    

The simplicity of Eq. (18) also makes it easy to see how exponential data forgetting could be implemented.  In 

exponential data forgetting, each past value of the time-domain signal is multiplied by a forgetting factor 1

 

at 

each time step.  In this way, old data is gradually devalued and eventually discarded.  Usually, 

 

is chosen in the 

range 0 90 1 00. . .  To implement this, Eq. (18) is modified slightly to  

1
j i t

i iX X x i e

 

(20) 

and everything else remains the same as before.  This simple approach is possible because the Fourier transform is 

linear with respect to the measured data x i .    

The challenge with data forgetting is not in the implementation, but rather in deciding how much data 

information content to forget, and when.  At the present time, there are no concrete guidelines, so the choices are 

made based on analysis of results from simulation and flight data.   

E. Incorporating Prior Information  

Model parameter estimates can sometimes be improved by including information based on models identified 

from prior data.  In the case of real-time dynamic modeling, including prior information of this kind can reduce 

variations in the real-time parameter estimates, and improve convergence speed.    

One way to incorporate prior information is by using a mixed estimator formulation of the least squares cost 

function6.  Assuming that the fit error variance 2
p

 

for the prior modeling is approximately equal to the fit error 

variance 2

 

for a model based on the current data alone, and denoting the vector of parameter estimates from a 

prior analysis by p , with associated covariance matrix p , the least squares cost function that incorporates this 

prior information is formulated as6  

11 1

2 2

T†

p p pJ z X z X

 

(21) 

The vector of parameter estimates that minimize this modified least squares cost function is  

1
1 1† †

p p p
ˆ Re ReX X X z

 

(22) 

with covariance matrix  

1
2 1†

p
ˆCov Re X X

 

(23) 

where 2

 

is estimated from Eq. (17), as before.  Reference 6 provides further details on the mixed estimator 

formulation of the least squares parameter estimation problem, and the associated solution.   

F. Optimized Excitation  

References 6, 11, and 15 describe a method for designing optimized inputs for use as control surface 

perturbations to excite aircraft dynamics.  The form of each input is a sum of sinusoids with unique frequencies and 
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phase shifts.  Multiple inputs are designed to be mutually orthogonal in both the time domain and the frequency 

domain, and are optimized for maximum data information content in multiple axes over a short time period, while 

minimizing excursions from the nominal flight condition.  The mutual orthogonality of the inputs allows 

simultaneous application of multiple inputs, which helps to minimize excitation time.  Optimized inputs of this type 

were applied to the modified F-15B to collect data for real-time dynamic modeling.  The optimized inputs were 

applied as control surface excitations by summation with the actuator commands from the control system just before 

the actuator command rate and position limiting.  Flight test examples are shown below in the Results section.   

III. Test Aircraft and Flight Data 

A. Fighter Aircraft Description  

The fighter aircraft used for this research is a 

pre-production Boeing F-15B that has been highly modified 

to support various test programs.  The most visible 

modification is the inclusion of a set of canards near the pilot 

station, see Fig. 1.  The canards are a set of modified 

horizontal stabilators from a Boeing F/A-18 aircraft.  The 

purpose of the canard addition was to increase 

maneuverability and load capability.  An additional effect of 

the canards was to cause the aircraft to be statically unstable 

longitudinally at most subsonic speeds.  The propulsion 

system consists of two Pratt & Whitney F100-PW-229 

engines, each equipped with an axisymmetric thrust 

vectoring pitch/yaw balance beam nozzle.  The thrust 

vectoring feature, however, was not used during the flight testing described here.  Further information on the 

modified F-15B aircraft and associated flight test operations can be found in Ref. 16.   

1. Control Surfaces  

The aircraft has five pairs of control surfaces: stabilators, canards, ailerons, trailing edge flaps, and rudders.  

Flaps and aileron droop are manually set by the pilot and only used for takeoff and landing configurations.  

Conventional pitch control is provided by symmetric deflection of the all-moving horizontal stabilators and canards.  

Roll control uses aileron and differential stabilator.  Directional control is provided by rudder and differential canard 

deflection.  Definitions of control surface deflections are given below.  Trailing edge down is positive deflection for 

the wing and stabilator surfaces, and trailing edge left is positive for the rudder.    

1

2 right lefts s s        
1

2 right leftc c c

 

(24a)  

1

2 right lefta a a        
1

2 right leftr r r        
1

2 right leftdc c c        
1

2 right leftds s s

 

(24b)  

For the nominal flight control system, pilot stick and rudder pedal inputs result in high correlation between the 

symmetric canard and angle of attack, rudder and differential canard, and differential stabilator and aileron.  Flight 

data analysis showed that the symmetric canard and angle of attack exhibited nominal pair-wise correlation of 0.93, 

rudder and differential canard were correlated at 0.99, and the differential stabilator and aileron were perfectly 

correlated at 1.00.  Given these high levels of correlated inputs, it would be impossible with pilot input maneuvers to 

distinguish, for example, between rolling moment generated by the aileron and rolling moment generated by the 

differential stabilator.  Consequently, the complete stability and control derivative set cannot be obtained with pilot 

input maneuvers.  

2. Instrumentation and Data Acquisition  

The modified F-15B aircraft was equipped with a research-quality instrumentation system.  A nose boom was 

installed and calibrated for free stream pitot-static pressure and flow angle measurements.  An inertial 

instrumentation package provided 3-axis linear accelerometer and angular rate measurements.  Heading, pitch, and 

bank angle were obtained from the aircraft inertial navigation system.  Control surface positions were measured 

using variable differential transformer sensors.  Fuel measurements were obtained from the three fuselage and two 

 

Figure 1. Modified F-15B Fighter Jet Aircraft
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Figure 2. S-2 Subscale Jet Transport Aircraft 

wing tanks.  Fuel measurements were used to compute total aircraft weight, center of gravity, and mass moments of 

inertia.  Mass and geometry characteristics of the aircraft are given in Table 1.  Sensor positions and the center of 

gravity (c.g.) location were used to correct the linear accelerometer and flow angle measurements to the c.g.  

Angular accelerations were not measured.  Flight data was collected at 40 Hz.   

B. S-2 Subscale Jet Transport Aircraft Description  

The S-2 aircraft is a subscale model of a jet transport 

aircraft  A photograph of the aircraft in flight is shown in 

Fig. 2.  The subscale aircraft has a single jet engine mounted in 

the aft fuselage and retractable tricycle landing gear.  Mass and 

geometry characteristics of the aircraft are given in Table 1.  

Further information on the S-2 subscale jet aircraft and 

associated flight test operations can be found in Ref. 17.   

1. Control Surfaces  

Control surfaces on the aircraft are conventional elevator, 

aileron, rudder, and inboard trailing-edge flaps.  Definitions of 

control surface deflections are given below.  Trailing edge 

down is positive deflection for the wing and elevator surfaces, 

and trailing edge left is positive for the rudder:  

1

2 right lefte e e        
1

2 right lefta a a

 

(25)  

The aircraft can be flown by a safety pilot using direct visual contact and conventional radio control.  A research 

pilot executes flight test maneuvers from inside a mobile control room, using a synthetic vision display drawn from 

telemetry data and a local terrain database.  Inputs from the research pilot and ground-based flight control are used 

to compute control surface commands which are transmitted by telemetry to the aircraft.   

2. Instrumentation and Data Acquisition  

The S-2 aircraft was equipped with a micro-INS, which provided 3-axis linear accelerometer measurements, 

angular rate measurements, estimated attitude angles, and GPS velocity and position.  Air data probes on each 

wingtip (visible in Fig. 2) measured angle of attack, sideslip angle, static pressure, and dynamic pressure.  

Measurements from static pressure sensors and ambient temperature sensors were used to compute air density and 

altitude.  Engine speed in rpm was measured and used as input to an engine model to compute thrust.  The engine 

model was identified from ground test data, with adjustments for ram drag identified from flight data18.  

Potentiometers on the rotation axes of all control surfaces measured control surface deflections.  Mass properties 

were computed based on measured fuel flow, pre-flight weight and balance, and careful inertia measurements of the 

aircraft on the ground.  The pilot stick and rudder pedal commands and throttle position were also measured and 

recorded.  Flight data was collected at 50 Hz.   

IV. Results 

A. Data Information Requirements for Real-Time Dynamic Modeling  

In this section, results will be presented from investigations concerning data information content necessary for 

accurate real-time modeling.    

Figure 3 shows a relationship between signal-to-noise ratio of aircraft measured responses to the mean error in 

real-time parameter estimates computed using the FTR method described earlier.  Data for this analysis was 

generated with a linear simulation of the modified F-15B lateral dynamics at a flight condition of Mach 0.75, trim 

angle of attack 2 deg, and 20,000 ft altitude.  Optimized multi-sine inputs were applied simultaneously to the lateral 

control surfaces, as shown in Fig. 4.  Repeated simulated data runs with different output signal-to-noise ratios were 

generated by uniformly reducing the amplitudes of the inputs shown in Fig. 4, generating new simulated outputs, 

then adding a single realization of noise sequences extracted from flight data to the simulated outputs.  This caused 

the output signal-to-noise ratios to vary in a uniformly decreasing fashion.  For each data run, the FTR method was 

applied, with no prior information, to produce real-time parameter estimates.  Final parameter estimates and 
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standard errors from each 18 sec run were used to generate the data points for the solid line in Fig. 3.  Because the 

problem involves multiple parameters and multiple outputs, average values of the parameter estimate accuracies and 

output signal-to-noise ratios were used to make the simple summary plot shown in Fig. 3.  Based on the solid line in 

Fig. 3, signal-to-noise ratios of the measured 

aircraft responses should preferably be 10 or 

more, and not less than about 3, for reasonable 

accuracy of the real-time parameter estimates.  

This finding is important in designing excitation 

inputs, and also suggests that lower levels of 

excitation could be used to obtain accurate real-

time dynamic modeling if noise levels were 

decreased.  It is of interest to obtain good real-

time parameter estimation results with the 

lowest possible signal-to-noise ratio on the 

measured outputs, so that the aircraft and pilot 

are disturbed as little as possible by any 

excitation applied to the control surfaces.  For 

output signal-to-noise ratio equal to 10, the 

input amplitudes were 0.24 deg, and the mean 

parameter estimate error was 2.7 percent.  This 

choice of input amplitudes produced excellent 

parameter estimate accuracy, while keeping the 

root-mean-square value of the lateral acceleration ya

 

below 0.02 g.  A typical value for root-mean-square lateral 

acceleration in moderate turbulence is 0.05 g.    

Similar optimized multi-sine inputs shown in Fig. 5 were applied to the modified F-15B aircraft in flight at the 

same flight condition, Mach 0.75, 2 deg trim angle of attack, and 20,000 ft altitude.  The aircraft is longitudinally 

unstable at this flight condition, so feedback control was operating when the control surface excitations were applied 

by summation with actuator commands from the control system.  As shown in Fig. 5, all longitudinal and lateral 

control surfaces were moved simultaneously.  The dashed lines show the optimized multi-sine input design, where 

the inputs are mutually orthogonal in both the time and frequency domains.  The solid lines show the actual control 

surface measurements in flight, which are distorted from the optimal waveforms.  The highest pair-wise correlation 

for control surface deflections is between stabilator s

 

and canard c , because of the high-gain feedback necessary 

to compensate for the longitudinal instability at this flight condition.  Nevertheless, the control surface deflections 

were largely uncorrelated, as shown by the pair-wise correlation coefficients listed in Table 2.  These correlation 

levels are well below the 0.9 correlation level typically used as an upper limit for allowable correlation of 

explanatory variables6.  Although the relatively high-gain feedback control ruined the input orthogonality, the data 

still exhibited very low correlations among the control surface deflections, which is desirable for accurate dynamic 

modeling6.    

Using optimized multi-sine inputs, the effect of input amplitude was investigated by repeating maneuvers with 

varying input amplitudes.  Figure 6 shows the variation in amplitudes for lateral control surface deflections in flight.  

Selected real-time parameter estimates are shown in Fig. 7.  The markers (x, o, +) indicate real-time parameter 

estimates, while the lines only connect these markers to more clearly show the evolution of the parameter estimates.  

Real-time modeling was done using the FTR method with no prior information, frequency vector 

0 10 0 12 2 00 Hz. . .f , recursive Fourier transform run at a data rate of 40 Hz, and real-time parameter 

estimation calculations were done at 2 Hz.  Selections for the frequency vector and update rates were not critical to 

the results produced – similar results could be obtained for a fairly wide-range of choices of these quantities.  The 

results shown in Fig. 7 are typical of all of the real-time parameter estimation results.  The excitation amplitudes 

made little difference in either the speed of convergence or the final parameter estimates.  In general, control 

derivative estimates (e.g., 
ds

lĈ ) were the fastest to converge and usually the most accurate, followed by static 

stability derivative estimates (e.g., nĈ ) and damping parameter estimates (e.g., 
rl

C ).  Roughly 8 sec of excitation 

was required for all model parameters to converge, with no prior information.  Standard errors are not shown in 

Fig. 7, to reduce clutter on the plots.   
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Figure 3. Dependence of mean real-time parameter 

estimation error on output signal-to-noise ratio 
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The mean signal-to-noise ratios for the measured lateral aircraft responses in flight to low, medium, and high 

amplitude inputs were 6.5, 8.4, and 11.5, respectively, with mean parameter estimate errors 19.0, 10.1, and 6.1 

percent, respectively.  These results are shown by the x markers in Fig. 3, and exhibit the same character as the 

simulation results shown in Fig. 3, but with higher mean parameter errors.  This is expected, because flight data has 

noise components from structural responses, nonlinearities, and model structure errors that are not present in the 

linear simulation.  This results in higher mean parameter errors for flight data analysis and modeling.  The root-

mean-square values of the lateral acceleration ya

 

for low, medium, and high amplitude inputs were 0.012 g, 0.024 

g, and 0.045 g, respectively, compared to 0.05 g, which is typical for moderate turbulence.    

Variation in the frequency content of the excitation inputs was studied by applying two different optimized 

excitation input designs in flight, one for a short (6 sec) time length and consequently more sparse frequency 

content, and one with a longer (15 sec) time length and richer frequency content.  A comparison of the frequency 

content for the two optimized input designs is shown in Fig. 8 for the longitudinal controls only.  The spectra 

comparison for lateral controls was similar.  Both optimized input designs were flown on the modified F-15B 

aircraft, at the same flight condition as before.  Typical real-time parameter estimation results are shown in Fig. 9, 

with 95 percent confidence intervals, based on estimated parameter standard errors, shown by the vertical bars 

through each estimate.  In general, the more sparse frequency content led to slightly poorer convergence and 

accuracy, except for control derivatives like 
r

nĈ .  Figure 9 shows that a more effective approach for short 

excitation times is to truncate a maneuver designed for a longer time length, because the longer maneuver has a 

wider variety of frequencies, more closely spaced along the frequency axis, cf. Fig. 8.    

Figure 10 shows a comparison of selected real-time parameter estimates based on flight data from the modified 

F-15B aircraft at the same flight condition.  Optimized multi-sine excitation was done first by moving only the 

longitudinal control surfaces  and s c

 

simultaneously, then again moving all longitudinal and lateral control 

surfaces  and s c a r dc ds, , , , ,

 

simultaneously.  The results in Fig. 10 show that there was essentially no 

difference in the real-time parameter estimation behavior for these cases, indicating that the multiple input design 

was effective, the equation-error parameter estimation worked as expected on each equation individually, and finally 

that there was negligible aerodynamic coupling for the maneuvers resulting from these optimized excitation inputs.  

Similar results were found when comparing lateral excitation alone to combined longitudinal and lateral excitation.  

Real-time parameter estimate behavior for other model parameters was similar to what is shown in Fig. 10 for the 

three selected longitudinal parameters.    

The results in Fig. 10 indicate that combined longitudinal and lateral maneuvers with all control surfaces moving 

at once should be used for maximum efficiency in real-time dynamic modeling.  This approach can provide a full set 

of stability and control modeling results in a single relatively short maneuver.  Finally, Fig. 10 shows that the FTR 

method has no trouble identifying dynamic model parameters when the aircraft is statically unstable longitudinally 

0mC , as in this case.   

B. Prior Information  

The real-time dynamic modeling results shown in Figs. 7, 9, and 10 were generated with the FTR algorithm 

assuming no priori information.  If instead the FTR algorithm is provided some information on the values of the 

model parameters, in terms of parameter estimates and associated covariance matrix from a prior analysis, the 

convergence behavior of the real-time parameter estimates from the FTR method changes.  Figure 11 shows real-

time parameter estimate histories for a combined longitudinal and lateral maneuver using medium-amplitude 

optimized multi-sine excitation and no prior information, along with real-time parameter estimate histories using the 

same data, but with prior information from parameter estimates and associated covariance matrix at the end of a 

low-amplitude combined maneuver.  Real-time estimate variations are greatly reduced with the addition of prior 

information, particularly at the beginning of the maneuver.  However, this regularization also results in something 

like a weighted average for the final parameter estimate, which is different from what would be computed with no 

prior information, as can be seen in the top plot of Fig. 11 for 
qmĈ .  The extent of this effect depends on the values 

and accuracy of the parameter estimates provided as prior information.   
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C. Model Validity  

The quality of the estimated parameter error bounds can be judged by how well the error bounds characterize the 

difference between the associated real-time parameter estimate and the final converged parameter estimate.  The 

computed error bounds from the FTR method accurately characterized these differences, which is consistent with 

similar findings in previous work6,13.  Although such a measure is easy to compute post-flight (when the converged 

values are known), metrics that can be computed in real time must be devised.  Adequacy of local real-time dynamic 

models can be assessed using short-term prediction tests or tests involving the size of the estimated parameter 

standard errors.  Various metrics have been proposed, but research continues toward devising a generally-applicable 

metric for real-time model validation.    

Table 3 gives parameter estimates and standard errors from the FTR method at the end of a high amplitude 

lateral maneuver (for the lateral parameters) and a medium amplitude longitudinal maneuver (for the longitudinal 

parameters), with no prior information.  Separate maneuvers with different amplitudes were chosen to more closely 

match the amplitudes of doublet maneuvers used for prediction testing.  Model parameters given in Table 3 were 

used with control surface deflections from pilot doublet maneuvers to check prediction capability of the identified 

models.  Bias terms for the aerodynamic models were estimated in the time domain6, because the frequency-domain 

modeling excludes the biases.    

Figure 12 shows model predictions using flight data from a longitudinal pilot doublet maneuver (on the left) and 

a lateral/directional pilot doublet maneuver (on the right).  For these pilot doublet maneuvers, the control surface 

deflections were highly correlated with one other and with aircraft responses.  Consequently, pilot doublet 

maneuvers could only be used for prediction cases, and not for model identification.  In Fig. 12, the responses 

predicted with models identified from multi-sine inputs match the flight data within the noise level of the measured 

responses of the aircraft for most of each maneuver.  The prediction capability shown in Fig. 12 is excellent for 

these doublet maneuvers, which have very different input forms than the multi-sine inputs used in the identification 

maneuvers.  This gives high confidence in the validity of the identified models.   

D. Real-Time Dynamic Modeling in Operational Flight  

All of the flight testing for dynamic modeling on the modified F-15B aircraft was at a single flight condition, 

using various optimized excitation inputs.  To investigate the performance of the real-time dynamic modeling 

method in operational flight with low data information content, flight data from the S-2 subscale jet transport aircraft 

in normal approach (i.e., without specific excitation inputs) was used.  Figure 13 shows real-time parameter 

estimation results for the S-2 aircraft during approach in landing configuration (full flaps, landing gear down).  The 

real-time parameter estimates shown in Fig. 13 were obtained with no prior information.    

The real-time dynamic modeling results in this case are of similar quality to the results obtained with optimized 

multi-sine excitation inputs.  Part of the reason for this is that the S-2 aircraft must be actively controlled by the pilot 

during approach to landing, and there is no feedback control system operating.  However, these results show 

encouraging success in estimating real-time dynamic model parameters without specific control surface excitation.  

Further flight research is planned for the S-2 aircraft, which has been equipped with the capability to apply arbitrary 

excitations to any or all control surfaces.  This capability will be used to investigate lower limits on signal-to-noise 

ratios for real-time dynamic modeling in changing flight conditions and for real-time dynamic modeling near stall 

and departure.    

Real-time dynamic modeling was also applied in S-2 flight testing during 3-axis pilot doublet maneuvers (pitch, 

yaw, and roll doublets, in sequence), with results displayed inside the mobile operations station (MOS)18 in real 

time.  Figure 14 shows the real-time display for selected parameter estimates during a 3-axis pilot doublet maneuver 

at 80 knots and 800 ft altitude.  The dashed lines (added post-flight) indicate values of the parameter estimates 

obtained using a time-domain output-error method that employs an iterative nonlinear optimizer in post-flight batch 

mode6.  It is evident that after only a few seconds of data, the real-time dynamic modeling algorithm (operating with 

no prior information) computed very accurate stability and control derivative estimates.  Note that each stability or 

control derivative is inaccurate until the relevant measured quantity shows some significant variation (i.e., data 

information content), after which the associated derivative estimate converges quickly.  Finally, the 95 percent 

confidence intervals for the parameter estimates, indicated by the vertical bars through each parameter estimate 

marker, properly characterize the accuracy of the real-time parameter estimates.   
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V. Concluding Remarks  

Simulated data and flight test results were used to investigate data information requirements for accurate real-

time dynamic modeling.  This technology provides the capability to identify local dynamic models in real time from 

noisy data records.  With proper data information management, the approach could be applied to changing flight 

conditions that occur throughout a flight, and/or could identify local dynamics for cases of failure or damage that 

can be characterized by model parameter changes.    

A real-time dynamic modeling algorithm was described in detail.  The algorithm uses equation-error in the 

frequency domain, and a recursive Fourier transform.  Modifications necessary to incorporate information from a 

previous analysis into the least squares formulation, or to implement data forgetting in the frequency domain, were 

developed and explained.    

Results from flight investigations on a modified F-15B aircraft showed that optimized multi-sine inputs provided 

excellent data information content for real-time dynamic modeling, even with a relatively high-gain feedback 

control system operating.  Mean signal-to-noise ratio of aircraft flight responses was inversely correlated with mean 

real-time parameter estimation error, based on analysis of both simulation data and flight data from the modified 

F-15B aircraft.  This suggests that smaller excitations can be used as measurement noise levels get smaller, making 

the required excitations less noticeable to the pilot.  Refinements to the optimized excitation input designs were 

identified based on flight results.  Combined longitudinal and lateral optimal excitations were found to efficiently 

provide data information content for real-time dynamic modeling in all axes simultaneously.  Incorporating 

information about the dynamic model parameters from a prior analysis into the real-time modeling algorithm was 

shown to effectively reduce variability in real-time parameter estimates, particularly at the start of a maneuver.  

However, using this approach makes the parameter estimator respond more slowly to changing aircraft stability and 

control characteristics.  Real-time estimates of parameter errors computed from flight data were found to properly 

characterize the accuracy of the real-time parameter estimates.  Dynamic models identified in real time showed 

excellent prediction capability for maneuvers with dissimilar input forms.  Finally, flight data from a subscale jet 

transport aircraft was used to show that the real-time dynamic modeling can also work well for 3-axis pilot doublet 

maneuvers, as well as ordinary flight operations maneuvers, such as approach to landing.    

Future work could focus on the data management problem, i.e., how much data information to forget and when, 

as well as determining when control surface excitations should be applied.  Other extensions include real-time 

modeling for changing flight conditions and different aircraft configurations, as well as real-time modeling for 

aircraft degradations such as aging, damage, and failures.    

Uses for local real-time dynamic modeling results include improving stability and control flight testing 

efficiency, and prediction of dynamic behavior and departure.  Identified local linear models can be also used in real 

time to track eigenvalues and eigenvectors of the dynamic system.  This information can be used in bifurcation 

analysis for nonlinear flight regimes.   
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Table 1.  Geometry and mass properties  

Modified 

F-15B 
S-2 

length c , ft 15.94 0.908 

wing span b , ft 42.70 7.083 

wing area S , ft2 608.0 7.046 

refx , in 557.2 42.628 

refy , in 0.000 0.000 

refz , in 116.3 0.000 

cgx , in 560.40 42.728 

cgy , in 0.14 0.000 

cgz , in 117.41 0.519 

m , slugs 1234 1.502 

xI , slugs-ft2 24,830 1.077 

yI , slugs-ft2 196,225 4.163 

zI , slugs-ft2 216,155 5.016 

xzI , slugs-ft2 –5329 0.416 

  

Table 2.  Pair-wise correlation matrix for control surface deflections  

s

 

c

 

a

 

r

 

dc

 

ds

 

s

 

1 –0.293 –0.085 –0.026 0.126 0.016 

c

  

1 –0.120 –0.065 –0.043 –0.149 

a

   

1 0.083 0.011 –0.010 

r

    

1 0.177 –0.029 

dc

     

1 –0.059 

ds

      

1                     
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Table 3.  Converged real-time parameter estimates for the modified F-15B 

from combined longitudinal/lateral optimized multi-sine flight test maneuvers 

793 ft/sec,  20 000 ft,  2 dego o o oV h ,

 
Parameter 

 
Estimate 

ˆ

 
Standard 

Error  

s 

ZC

 

4.5302 0.0397 

qZC

 

12.6864 0.6370 

s
ZC

 

0.4958 0.0150 

c
ZC

 

0.1816 0.0238 

mC

 

0.2339 0.0234 

qmC

 

2.9742 0.3746 

s
mC

 

0.5521 0.0088 

c
mC

 

0.2544 0.0140 

YC

 

0.7646 0.0114 

rYC

 

1.7568 0.1402 

a
YC

 

0.0264 0.0064 

r
YC

 

0.2068 0.0038 

dc
YC

 

0.0980 0.0057 

ds
YC

 

0.1546 0.0068 

lC

 

0.0678 0.0037 

plC

 

0.2009 0.0104 

rl
C

 

0.2383 0.0432 

a
lC

 

0.0625 0.0020 

r
lC

 

0.0048 0.0012 

dc
lC

 

0.0005 0.0018 

ds
lC

 

0.0777 0.0024 

nC

 

0.0945 0.0041 

pnC

 

0.0348 0.0115 

rnC

 

0.3154 0.0477 

a
nC

 

0.0092 0.0023 

r
nC

 

0.0805 0.0013 

dc
nC

 

0.0518 0.0020 

ds
nC

 

0.0474 0.0027 
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Figure 5. Optimized multi-sine input distortion, modified F-15B aircraft 
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Figure 4. Simulated data for optimized multi-sine inputs, modified F-15B aircraft 
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Figure 7. Real-time parameter estimates for varying input amplitudes, 

modified F-15B aircraft 

Figure 6. Input amplitude variation, modified F-15B aircraft 
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nĈ

r

dsdc

a

deg

deg

deg

deg



 

American Institute of Aeronautics and Astronautics  

20

   

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5
p

o
w

e
r 

s
p
e

c
tr

a
l 
d
e

n
s
ity

frequency, Hz

6 sec maneuver design  

stabilator

canard

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

p
o
w

e
r 

s
p
e

c
tr

a
l 
d
e

n
s
ity

frequency, Hz

15 sec maneuver design  

stabilator

canard

Figure 8. Excitation input spectra for 6 sec and 15 sec longitudinal controls, modified F-15B aircraft 

0 2 4 6 8 10 12 14 16 18 20 22
-6

-5.5

-5

-4.5

-4

-3.5

  

15 sec

 

6 sec

 

0 2 4 6 8 10 12 14 16 18 20 22
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

 

0 2 4 6 8 10 12 14 16 18 20 22
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time, sec 

Figure 9. Real-time parameter estimates for varying frequency content, 

modified F-15B aircraft 
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Figure 10. Real-time parameter estimates for combined maneuver 
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Figure 11. Real-time parameter estimates with and without prior 
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Figure 12. Prediction cases using real-time parameter estimates, modified F-15B aircraft 
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Figure 13. Real-time parameter estimates during approach in landing 

configuration, S-2 aircraft 

mĈ

lĈ
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Figure 14. Real-time parameter estimates for a 3-axis pilot doublet maneuver, S-2 aircraft 
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