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Real-Time Dynamic Pricing with Minimal and
Flexible Price Adjustment

Qi (George) Chen, Stefanus Jasin, Izak Duenyas
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georgeqc, sjasin, duenyas@umich.edu

We study a standard dynamic pricing problem where the seller (a monopolist) possesses a finite amount of

inventories and attempts to sell the products during a finite selling season. Despite the potential benefits

of dynamic pricing, many sellers still adopt a static pricing policy due to (1) the complexity of frequent

re-optimizations, (2) the negative perception of excessive price adjustments, and (3) the lack of flexibility

caused by existing business constraints. In this paper, we develop a family of pricing heuristics that can be

used to address all these challenges. Our heuristic is computationally easy to implement; it requires only a

single optimization at the beginning of the selling season and automatically adjusts the prices over time.

Moreover, to guarantee a strong revenue performance, the heuristic only needs to adjust the prices of a small

number of products and do so infrequently. This property helps the seller focus his effort on the prices of the

most important products instead of all products. In addition, in the case where not all products are equally

admissible to price adjustment (due to existing business constraints such as contractual agreement, strategic

product positioning, etc.), our heuristic can immediately substitute the price adjustment of the original

products with the price adjustment of similar products and maintain an equivalent revenue performance.

This property provides the seller with extra flexibility in managing his prices.

Key words : dynamic pricing; revenue management; heuristic; asymptotic analysis.

History : .

1. Introduction

Nowadays, Revenue Management (RM) practice has become very prevalent in many industries such

as airlines, hospitality, fashion, ground transportation, and many others (Talluri and van Ryzin

2005, chap.10). In a typical RM setting, the seller possesses a finite amount of inventories and

attempts to maximize his revenue by selling a collection of products during a finite selling season.

Often times, replenishment of inventory is not viable during the selling season and the leftovers

have little salvage value (e.g., empty hotel rooms). There are two types of RM commonly found in

practice: quantity-based RM and price-based RM. In the first category, prices are fixed over the

selling season and the focus is on making a dynamic resource allocation. As for the second category,

prices become the key decision variables and the seller adjusts his prices as often as he wishes and

sells all products until stock-out. Although the two types of RM are not mutually exclusive, market

context and the seller’s value proposition may dictate which of the two is more appropriate. In
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this paper we are primarily interested in price-based RM. (For a review of quantity-based RM, see

Talluri and van Ryzin (2005, chap.2).)

Pricing is, without doubt, one of the most important decisions that affect the seller’s profitability.

According to a study by McKinsey & Company, “Pricing right is the fastest and most effective way

for managers to increase profits” (Marn et al. 2003). The study argues that a 1% price increase in

a typical S&P 1500 company would generate an 8% increase in operating profit, an impact which

is almost 50% greater than that of a 1% reduction in variable cost and more than three times

greater than that of a 1% increase in volume. Perhaps more strikingly, an annual report of the

operating profit for airlines and rental car companies in the US during 2009 reveals that a 1%

increase in average price improved total operating profit by up to 67% and 30%, respectively (Sen

2013). (Although a 67% improvement in profit is arguably rather unusual, a moderate 8%− 25%

increase via dynamic pricing is not uncommon (Sahay 2007).) And yet, despite its apparent benefit,

dynamic pricing still poses several serious challenges. First, the complexity of the required large-

scale optimization leads to prohibitive computational burden. To illustrate, a typical major US

airline operates thousands of flights daily and posts fares several months into the future. Accounting

for the number of different booking classes per flight, this can easily translate into daily pricing

decisions formillions of itineraries. Hotel industry is no exception. Koushik et al. (2012) reports that

a single run of price optimization at the InterContinental Hotels Group (excluding the estimation

time) takes about four hours to complete. Similarly, Pekgun et al. (2013) also reveals that it takes

about six hours for the Carlson Rezidor Hotel Group to complete its price optimization once. Given

the increased competition in many industries where the prices of some products are now being

adjusted even hourly (Rigby et al. 2012), this begs the question whether there exists a scalable

pricing heuristic which can be easily implemented in real-time.

Second, dynamic pricing typically involves frequent price adjustments of many products, which

may not be desirable for the firms. For one thing, even when full-scale dynamic pricing tools are

readily available, the seller may want to intentionally avoid excessive price adjustments due to

brand positioning and customer relationship considerations. Widely accepted as it is in the airline

industry, dynamic pricing suffers a considerable setback in some other industries due to negative

customers’ perception. For example, in hotel industry, the most common criticism of dynamic

pricing is that it treats customers unequally and unfairly (Ramasastry 2005), and lab experiments

confirm the unfairness perception of price discrimination (Haws and Bearden 2006). Aside from the

customers’ perception issue, frequent price adjustments of many products may also not be feasible

due to existing business constraints, i.e., the seller may not have the flexibility to adjust the prices

of some products because of existing regulations and contractual agreement. For example, hotels

often face customers from the so-called negotiated segment and provide fixed corporate rates for
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large travel buyers such as IBM and HP (Koushik et al. 2012). Thus, hotels are practically forced

to provide a fixed price that cannot be adjusted over time to the negotiated segment while at the

same time are free to dynamically adjust the prices for other customer segments. This situation

is not unique to hotel industry alone. The practice of selective dynamic pricing, which combines

dynamic pricing of some products with fixed pricing of other products, is not uncommon and can

be found in many industries (e.g., with the exception of Sears, Amazon.com, and Kmart, most

retailers only change their prices daily on less than 10% of their assortments (Rigby et al. 2012)).

And yet, despite its common practice, we are not aware of any work in the academic literature

that rigorously analyzes the feasibility and effectiveness of such approach.

The preceding discussions lead to several important research questions: (1) Can we construct

a pricing heuristic that is easy to implement and does not require frequent price adjustments?

(2) Can we adjust the price of only a small number of products in order to mitigate customers’

negative perception while at the same time maintaining a decent revenue performance? If such

minimal price adjustment is possible, (3) how should we pick the set of products whose prices are

to be updated? Is there a simple rule that can be used as a guidance? Moreover, in the case where

the seller’s business constraints disallow him to dynamically adjust the prices of some products,

(4) can he still maintain an equivalent revenue performance by dynamically adjusting the price of

other products? If yes, which other products should be used? In this paper we address all these

questions. In particular, we will construct a family of real-time heuristics which, depending on the

firm’s need, can be used to address any of the aforementioned issues.

Static price control and re-optimization. There is a rich operations management (OM) lit-

erature on dynamic pricing. (See Bitran and Caldentey (2003) and Elmaghraby and Keskinocak

(2003) for overviews.) In the RM context, motivated by the well-known curse of dimensionality

of Dynamic Program (DP), many existing works have focused on the construction of easy-to-use

heuristics. There are two popular approaches that can be found in the literature. The first is based

on the so-called Approximate Dynamic Programming (ADP). Some works along this line are Erde-

lyi and Topaloglu (2011) and Kunnumkal and Topaloglu (2010). The second approach, which is

closer to our work in this paper, is based on solving a deterministic analog of the original stochas-

tic problem. One of the seminal works on this approach is Gallego and van Ryzin (1997). The

trade-off between the two approaches is obvious. On the one hand, the sophisticated ADP requires

more computational power than the deterministic approach. On the other hand, while the former

yields an “adaptive” price sequence, which depends on sales realization, the latter only results in

a deterministic (static) price. The good news is that static price control is asymptotically optimal

(Gallego and van Ryzin 1997). This may partly explain its decent performance, hence its wide
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adoption, in many industries. Yet, a considerable amount of revenue is still lost. As noted earlier,

the main drawback of static pricing is that it completely ignores the observed demand realizations

and the remaining inventory levels. One potential way of utilizing this progressively revealed infor-

mation is to periodically re-optimize the aforementioned deterministic optimization. The impact

of re-optimization in quantity-based RM has been extensively studied in the literature (e.g., see

Chen and de Mello (2010), Reiman and Wang (2008), Secomandi (2008), Ciocan and Farias (2012),

Jasin and Kumar (2012, 2013)). As for price-based RM, Maglaras and Meissner (2006) is the first

to show that re-optimizing static price control guarantees at least the same asymptotic perfor-

mance as static price without re-optimization. Thus, although re-optimization does not necessarily

result in a monotonically increasing revenue, it cannot severely degrade revenue either. This is in

contrast to the potentially negative impact of re-optimization in quantity-based RM (Jasin and

Kumar 2013). Chen and Farias (2013) analyze the impact of re-optimization in the presence of

imperfect forecast for a single product RM. They show that a combination of re-optimization and

re-estimation yields a significant improvement in revenue. The paper that is perhaps closest to

ours is Jasin (2014). The author provides a tighter bound for the expected revenue loss of the

re-optimized static price control studied in Maglaras and Meissner (2006). This confirms the theo-

retical benefit of re-optimization for a very general class of multi-product and multi-resource RM.

In addition, the author also proposes a simple pricing heuristic that can be implemented in real-

time. (See Section 4 for further discussions on this.) A parallel but independent work by Atar and

Reiman (2012) studies a continuous time version of the same problem and shows that the problem

can be reduced to a diffusion control problem whose optimal solution is a Brownian bridge. The

Brownian bridge structure motivates them to develop a diffusion-scale dynamic pricing heuristic

that has similar error correction terms as the simple heuristic developed in Jasin (2014).

Although re-optimization is intuitively appealing and enjoys a good theoretical guarantee, unfor-

tunately, it is not always practically feasible. As previously discussed, even a single optimization of

a large-scale real problem instance can take hours to complete (Pekgun et al. 2013). This obviously

serves as a bottleneck for the number of re-optimizations that can be implemented in one day. A

recent work by Golrezaei et al. (2014) in the context of assortment optimization also highlights the

same issue. The problem being re-optimized in their setting is a linear program, which is considered

by many as one of the most tractable family of optimization problems. And yet, their simulation

shows that the running time of frequent re-optimizations can be 800 times larger than that of a

single optimization. While the resulting time-lag due to re-optimization may not be too detrimen-

tal for brick-and-mortar stores who update their prices less frequently, it is clearly less feasible for

online retailers with more frequent price adjustments. In such settings, any proposed control must

ideally be implementable in real-time without unnecessarily invoking large-scale re-optimization.
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The proposed heuristic. In this paper, we introduce a new family of dynamic pricing heuristics,

which we call Linear Price Correction (LPC). LPC only requires a single deterministic optimization

at the beginning of the selling season and can be implemented in real-time. In addition, LPC only

needs to adjust the price of a small number of products, admits a general asynchronous update

schedule, and allows update substitution among “similar” products. Needless to say, it is also

possible to couple LPC with occasional re-optimizations to further improve its performance. All

these properties taken together allow the seller to enjoy the benefit of dynamic pricing while at

the same time reducing the computational burden of re-optimization and mitigating the negative

effect of frequent price changes on customers’ perception.

The remainder of the paper is organized as follows. Section 2 describes the problem setting and

the asymptotic approach we take to analyze the performance of any dynamic pricing heuristic.

The proposed heuristic LPC is formally introduced in Section 3 where we also discuss its minimal

and asynchronous price adjustment properties which allow LPC to achieve good performance by

adjusting the prices of only a small number of products and do so infrequently. In Section 4, we

show the flexibility of LPC in choosing the prices of which products to adjust by demonstrating

how to achieve equivalent revenue performances by adjusting prices of different sets of products

that are “equivalent”. Section 5 uses numerical experiments to show the strong performance of

LPC and its modifications, and to illustrate the managerial insights drawn from previous sections.

Finally, Section 6 concludes. The proof of Theorem 1 can be found in the Online Supplement and

the proofs of other results are deferred to Appendix A and B.

2. Problem Formulation

We consider a multi-period and multi-product pricing problem where the seller sells a catalog of

n products (indexed by j), each of which is made up of a combination of m types of resources

(indexed by i) whose initial inventory levels are given by C ∈ R
m. As is usually the case, the

number of products is much larger than the number of resources. We introduce a matrix A= [Aij],

commonly known as the consumption matrix, whose element Aij indicates the amount of resource

i required by one unit of product j. Without loss of generality, we assume that the rows of A are

linearly independent. The selling season is finite and divided into T periods. At the beginning of

period t, the seller posts the price pt = (pt,j). The price then induces a demand Dt(pt) = (Dt,j(pt))

with rate λ(pt) =E[Dt(pt)]. As is common in the literature, we allow at most one customer arrival

per period. Hence, the function λ(pt) can also be interpreted as the arrival probability in period

t. Let r(pt) := p′t λ(pt) denote the revenue rate in period t, where p′t indicates the transpose of pt.

Let Ωp and Ωλ denote the convex set of feasible prices and demand rates, respectively. We make

the following assumptions:
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(A1) The demand function λ(pt) : Ωp → Ωλ is invertible, twice differentiable, monotonically

decreasing in its individual argument, and bounded from above by λ̄.

(A2) The revenue function r(pt) = p′t λ(pt) = λ′
t p(λt) = rt(λt) is continuous, strictly jointly con-

cave in λt, and bounded from above by r̄.

(A3) For each product j, there exists a turn-off price p∞j such that if {pk} is any price sequence

satisfying pkj → p∞j , then we have λj(p
k)→ 0.

(A4) The absolute eigenvalues of ∇2λj(pt) and ∇2r(pt) are bounded from above by v̄.

Assumptions (A1) - (A3) are similar to the standard regularity conditions in Gallego and van

Ryzin (1997). (A1) is a mild assumption to ensure basic analytical properties of the demand rate.

(A2) follows from the invertibility assumption in (A1) and is needed to guarantee that the function

r(.) has a unique, bounded optimizer. The revenue functions under a vast class of demand models

such as linear and logit demand satisfy these assumptions. As for (A3), the existence of turn-off

prices allow us to effectively shut down the demand for any product whenever desirable. (A4) is

easily satisfied in general, especially for compact Ωp. The constants λ̄, r̄ and v̄ are independent of

t.

The RM pricing problem. The optimal stochastic pricing problem can be written as:

(SPP): JStoc = max
π∈Πp

E

[

T
∑

t=1

(pπt )
′Dt(p

π
t )

]

s.t. A

[

T
∑

t=1

Dt(p
π
t )

]

≤C,

where Πp is the set of all non-anticipating pricing policies and the constraints must hold almost

surely. Alternatively, by the invertibility of demand function, we can also use {λt} as the decision

variables and replace pt and Dt(pt) with pt(λt) and Dt(λt) respectively. We then replace the random

variables in SPP by their mean and obtain a more tractable deterministic formulation below.

(DPP): JDet = max
T
∑

t=1

r(λt) s.t.
T
∑

t=1

Aλt ≤C and λt ∈Ωλ, ∀t.

Let {λD
t } denote the unique optimal solution to DPP. Correspondingly, we define pDt := p(λD

t ).

Since demand is time-homogeneous, it can be shown that λD
t = λD

1 := λD and pDt = pD1 := pD for all

t. This explains the name static pricing. For analytical tractability, we will assume that λD lies in

the interior of Ωλ. We formally state this assumption below.

(A5) There exist strictly positive constants φL and φU such that [λD −φLe, λ
D +φUe]⊆Ωλ.

Assumption (A5) essentially says that all products matter. It implies the optimal deterministic

price is neither so low that it induces too many requests nor so high that it completely shuts down

the demand of some products. As a practical rule of thumb, if some products are not profitable (i.e.
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λD
j = 0 for some j), they can be discarded from the catalog and we can re-run the optimization.

This helps the seller to focus on the products that matter. Hence, (A5) is not restrictive at all.

Performance measure and asymptotic regime. Ideally, we would like to define revenue loss

of any control π as the difference between the revenue earned under the optimal pricing policy and

the revenue earned under the control. Since the former is not easy to compute, we resort to using

an upper bound as an approximation. It is known that JStoc ≤ JDet. (This is a standard result in

the literature and is an immediate consequence of Jensen’s inequality. We omit its proof.) Let Rπ

denote total revenue earned under heuristic π throughout the selling season. The expected revenue

loss of heuristic π is then defined as: RLπ = JDet−E[Rπ]. Following Gallego and van Ryzin (1997),

in this paper we consider a sequence of increasing problems parameterized by θ > 0. To be precise,

in the θth problem, we scale both the length of selling season and the initial inventory levels by

a factor of θ while keeping all the other parameters unchanged. If we let T (θ) and C(θ) denote

the length of the selling season and initial inventory levels in the θth problem, respectively, then

T (θ) = θT and C(θ) = θC. One may interpret the parameter θ as the scale, or relative size, of the

problem. (If C is normalized to 1, then θ has an immediate interpretation as the size of initial

inventory levels. Alternatively, if T is normalized to 1, the scale θ can be interpreted as the size

of potential demands.) Notationwise, we will simply attach (θ) as a reference to the θth problem.

Observe that the optimal solution of the scaled deterministic problem is the same as the optimal

solution of the unscaled one (i.e., λD
t (θ) = λD and pDt (θ) = pD), so we have JDet(θ) = θJDet.

3. Minimal and Asynchronous Price Adjustments

In this section, we will develop a pricing heuristic that adjusts the prices of only a small number

of products and admits a general asynchronous update schedule. We show that our heuristic guar-

antees a strong asymptotic performance despite the fact that it only adjusts the prices of a small

number of products. This has an obvious managerial significance. For example, at Chicago O’Hare

airport, United Airlines operates more than forty routes to and from the North East and another

thirty or so routes to and from the West Coast and the Mountain Area (see www.united.com).

Assuming one fare class per flight, the company needs to price approximately 40 × 30 = 1,200

itineraries from the North East to the West Coast and the Mountain Area that make one stop

at O’Hare airport. Our result suggests that United only needs to dynamically price 40 + 30 = 70

itineraries instead of 1,200. Moreover, the price of these 70 itineraries can be adjusted asyn-

chronously instead of simultaneously.

To introduce our heuristic, we start with a notion of a base. (This is the set of products whose

prices are to be adjusted under the heuristic. We will allow more adjustable prices in Section 4.) A

subset of products B is said to be a base if (1) it contains exactly m products and (2) the products
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in B span the resource space, meaning the columns of matrix A∇λ(pD) that correspond to the

products in B (by the same index) span the whole R
m. Note that, since the rows of A are linearly

independent and ∇λ(pD) is invertible, the rank of A∇λ(pD) is m. So, there always exists at least

one base. Let H be a real n by m matrix satisfying AH = I, where I is an m by m identity matrix.

We call H a projection matrix and say that a projection matrix H selects the base B if the rows

of ∇p(λD)H (by the same index) that correspond to the products not in B are all zero vectors.

As will be evident shortly, a proper choice of matrix H is important to ensure that only the prices

of the base products are dynamically adjusted while the prices of the non-base products are never

changed. The following lemma establishes the existence of a projection matrix for any given base.

Lemma 1. For any base B, there exists a unique projection matrix H that selects it.

The heuristic. Fix a base B and assume without loss of generality that B = {1, . . . ,m}. For

each j ∈ B, define γj = {tjl : 1≤ l ≤Kj} to be the updating schedule for product j. (An updating

schedule can be viewed as a business constraint that prescribes when the price of a given product

is adjustable.) In particular, the lth updating time is denoted by tjl and the number of updates

is Kj. For convenience, we will write tj0 = 1 and tjKj+1 = T + 1. Let kj
t = max

{

k : tjk ≤ t
}

denote

the number of price updates for product j by time t. This setting is very general: We allow the

price of each product in the base to be updated asynchronously (i.e., independently of the other

products in the base). Let H be a projection matrix that selects B. For any set A ⊆ {1, . . . , n},
let EA denote an n by n diagonal matrix with EA

ii = 1 if i ∈ A and 0 otherwise. (This matrix

helps select a set of rows of another matrix when it is left-multiplied, e.g., Ej∇p(λD)H is a matrix

whose jth row is the same as the jth row of ∇p(λD)H and all its other rows are zeros.) Define

∆t(pt) :=Dt(pt)−E[Dt(pt)] =Dt(pt)−λ(pt) and ∆̃j
l :=

∑t
j
l
−1

s=t
j
l−1

∆s(ps), l= 1, . . . ,Kj +1. The term

∆t(pt) can be interpreted as demand error during period t and the term ∆̃j
l can be interpreted

as cumulative demand errors between two subsequent updating times for product j. (For brevity,

whenever there is no confusion, we will often suppress notational dependency on pt and simply

write ∆t, Dt, and λt.) Let Ct denote the remaining inventory levels at the end of period t. The

definition of our heuristic is given below.

Linear Price Correction (LPC)

1. During period 1, set p1 = pD .

2. At the beginning of period t > 1, do:

a. First compute p̂t = pD −
m
∑

j=1

Ej ∇p(λD)H





k
j
t

∑

l=1

A∆̃j
l

T − tjl +1



 .
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b. Set the price according to the following rule:

(1) If Ct−1 ≥Aj for all j, and p̂s ∈Ωp for all s≤ t, set pt,j = p̂t,j;

(2) Otherwise, set pt,j = p∞j .

The idea behind LPC is to use static price pD as baseline prices and apply real-time adjustment

to only the prices of m products in the chosen base. The proposed adjustment has an intuitive

interpretation: If past demand realization is higher than expected (i.e., the term ∆̃’s are positive),

then LPC immediately increases future prices; if, on the other hand, past demand realization

is lower than expected, then LPC immediately decreases future prices. To see that the given

update formula only adjusts prices of base products, define ξ̃jl ej := Ej ∇p(λD)HA∆̃j
l and ξjsej :=

Ej ∇p(λD)HA∆s, where ej is a vector with proper size whose jth element equals one and any of

its other elements equals zero. Note that we can write p̂t as:























p̂t,1
...

p̂t,m

p̂t,m+1

...
p̂t,n























=



























pD1 −
∑k1t

l=1

ξ̃1l
T−t1

l
+1

...

pDm −
∑kmt

l=1

ξ̃ml
T−tm

l
+1

pDm+1
...
pDn



























.

Obviously, only the prices of the first m products are adjusted. Moreover, for each j ∈ B, if the
current period t is such that tjl−1 < t < tjl for some l, then pt,j = pt−1,j. So, the price of product

j ∈ B in the periods between two subsequent updating times does not change. To help the reader

better understand the mechanism of this pricing heuristic, we give an example below.

Example 1. Consider a network RM with 3 products and 2 resources. Without loss of generality,

we assume that B= {1,2} is a base. Suppose that γ1 = {2,5, ...} and γ2 = {4,5, ...} (i.e., we want to

adjust the price of product 1 in periods 2, 5, etc. and the price of product 2 in periods 4, 5, etc.).

Assuming no stock-out, the price formula for the first five periods, are given by:











p1,1

p1,2

p1,3











=











pD1

pD2

pD3











,











p2,1

p2,2

p2,3











=













pD1 − ξ11
T−1

pD2

pD3













,











p3,1

p3,2

p3,3











=













pD1 − ξ11
T−1

pD2

pD3













,











p4,1

p4,2

p4,3











=















pD1 − ξ11
T−1

pD2 − ξ21+ξ22+ξ23
T−3

pD3















, and











p5,1

p5,2

p5,3











=















pD1 −
(

ξ11
T−1

+
ξ12+ξ13+ξ14

T−4

)

pD2 −
(

ξ21+ξ22+ξ23
T−3

+
ξ24

T−4

)

pD3















.
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General performance bound. We will now discuss the performance of LPC. We first provide a

general bound that can be applied to arbitrary updating schedule and then we discuss its implica-

tion for several specific schedules. For the sake of generality, we will allow the choice of updating

schedule to also depend on θ, i.e., γj(θ) = {tjl (θ) : 1≤ l ≤Kj(θ)}, j ∈ B. Let RH,γB(θ) denote the

total revenue earned under LPC with projection matrixH and updating schedules γB := {γj(θ)}j∈B.

Let ||.||2 denote the usual spectral norm of a matrix, i.e., ||X||22 equals the maximum eigenvalue of

X ′X. We state our result below.

Theorem 1. There exist positive constants Ψ and Ψ̄ independent of θ≥ 1, the projection matrix

H that selects B, and the choice of updating schedules {γj(θ)}j∈B such that

JDet(θ)−E [RH,γB(θ)] ≤ Ψ + Ψ̄
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We want to stress: The above bound is very general. It characterizes the performance of LPC

for any given base and any given updating schedule1, either synchronous or asynchronous. (The

implications of Theorem 1 for specific schedules will be discussed below.) Note that the bound is

separable over the products in the base. This suggests that the seller cannot compensate the lack of

updating of one product in the base by applying more frequent updates to the remaining product(s)

in the base. If there exist multiple feasible bases, the bound in Theorem 1 suggests that we use

the base B and the corresponding projection matrix H that minimizes ||∇p(λD)HA||2. Although,
in general, it is not possible to explicitly characterize the “optimal” base products chosen by this

selection rule, it turns out that we can provide a very intuitive characterization of the “optimal”

base product for the case of single-resource RM.

Lemma 2. Suppose that m= 1. Among all projection matrices that select a base, the projection

matrix H∗ that achieves the smallest ||∇p(λD)HA||2 selects the base that consists of product j∗ =

argmaxj=1,...,n |(A∇λ(pD))j |.

1 In the setting of quantity-based RM, Jasin and Kumar (2012) also provide a bound for revenue loss which depends
on a general choice of updating schedule. However, they assume that the admission control for all products must be
simultaneously updated at the same time. In contrast, LPC allows each product to have its own updating schedule.
This level of generality, together with the non-linearity of the objective function and capacity constraints, introduces
non-trivial analytical subtleties which do not previously exist in the analysis of Jasin and Kumar (2012).
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The intuition of the above lemma is most easily explained if we consider a special case of single-

resource RM with A = [1, . . . ,1] and separable demands (i.e., λj(p) only depends on pj). In this

setting, A∇λ(pD) becomes a row vector whose jth element equals the demand sensitivity of product

j with respect to its own price, λ′
j(p

D
j ). Thus, under LPC, the optimal projection matrix selects

the most price-sensitive product into the base. This can be intuitively explained as follows: Among

all products, product j∗ needs the smallest price perturbation to correct the same demand error.

Since we are using the deterministic model as our performance benchmark, ideally, we would want

to have a price trajectory that stays as close as possible to the baseline price pD. This can be

achieved by adjusting the product that requires the smallest perturbation. As for the more general

case of single-resource RM with general demand and general capacity consumption matrix A, a

similar intuition also holds: We want to pick the product whose price adjustment has the largest

impact on capacity consumption.

Special updating schedules. We will now apply the result of Theorem 1 to derive an explicit

performance bound for several special updating schedules that only adjust the prices of base prod-

ucts and draw some managerial insights. We start with the most commonly used update schedule

where prices are being adjusted periodically according to some frequencies.

Corollary 1. (h-Periodic Schedule) Fix h(θ)≥ 1 and define tjl (θ) = tl(θ) = l h(θ) + 1 for

all j ∈ B. There exist positive constants Ψ, Ψ̂, and Ψ̄ independent of θ≥ 1 and h(θ)≥ 1 such that

the expected revenue loss of LPC is bounded by Ψ+Ψ̂
√

h(θ)+ Ψ̄ log2 θ.

Two comments are in order. First, if h(θ) = T (θ), then the periodic schedule reduces to static

pricing and the revenue loss is O(
√
θ). This bound is consistent with the result in Gallego and

van Ryzin (1997). If, on the other hand, h(θ) = 1, the revenue loss is reduced to O(log2 θ). Since

LPC requires only one optimization followed by simple price updates, it provides a significant

improvement2 over static pricing with negligible computational effort. Second, although Corollary 1

assumes a synchronous schedule, it is not difficult to derive a bound for an asynchronous periodic

update schedule because the bound is separable in individual product. For example, one plausible

asynchronous schedule would be to adjust the prices of base products on weekly basis, but on

different days of the week. The asymptotic performance bound will remain the same as in Corol-

lary 1. One caveat of periodic schedule is that, in order to reduce the revenue loss to O(log2 θ), a

very frequent updates of the prices of all base products (roughly Θ(θ) times) is required. But, per

2 Since θ represents the size of the problem, the percentage revenue loss under LPC is approximately log2 θ
θ

× 100%

whereas the percentage revenue loss under static pricing is about
√
θ
θ

x 100%. Numerically, for a problem instance
with initial inventory levels equal to 100, as in a typical airplane with 100 seats, our experiments in Section 6 show
a 2% improvement in revenue, which is quite significant for typical RM applications.
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our discussions in Section 1, this may not be practically feasible – or even if it is, it may not be

strategically desirable due to customers’ perception issue. To address this, below we propose two

schedules that still guarantee O(log2 θ) revenue loss albeit with much fewer price updates.

Corollary 2. (α-Power Schedule) Fix α ≥ 1. For all j ∈ B, let tj0(θ) = t0(θ) = 1 and

define tjl (θ) = tl(θ) =
⌈

T (θ)−
∑K(θ)−l+1

s=1 sα
⌉

for 1 ≤ l ≤ K(θ), where K(θ) := {k :
∑k

s=1 s
α <

T (θ),
∑k+1

s=1 s
α ≥ T (θ)}. Then K(θ)≤ ((α+1)T (θ))1/(α+1) and there exist positive constants Ψ and

Ψ̄ independent of θ≥ 1 such that the expected revenue loss of LPC is bounded by Ψ+Ψ̄ log2 θ.

Corollary 3. (β-Geometric Schedule) Fix β > 1. For all j ∈ B, let tj0(θ) = t0(θ) = 1, and

for l≥ 1, iteratively define tjl (θ) = tl(θ) =
⌈

(β−1)T (θ)+ tl−1(θ)

β

⌉

as long as tl−1(θ)<T (θ). Let K(θ)

be such that tjK(θ)(θ) = T (θ). Then, K(θ)≤ 1+ logβ T (θ), and there exist positive constants Ψ and

Ψ̄ independent of θ≥ 1 such that the expected revenue loss of LPC is bounded by Ψ+Ψ̄ log2 θ.

Corollaries 2 and 3 offer two interesting insights. First, by carefully choosing the update times, we

can use a small number of updates (only about θ
1

α+1 updates with power schedule and logβ θ updates

with geometric schedule) to guarantee a O(log2 θ) revenue loss.3 Second, for both schedules, most

of the updates happen near the end of the selling season. This implies that the crucial moments for

dynamic pricing is near the end of the selling season instead of at the beginning, which suggests

that the seller can perhaps apply static price at the beginning of the season and only switch to

dynamic pricing later. Needless to say, although Corollaries 2 and 3 assume synchronous schedules,

it is also possible to use asynchronous schedules. For example, the prices of some base products

can be updated using power schedule and the prices of other base products can be updated using

geometric schedule. Again, since the bound in Theorem 1 is separable over the products in the

base, the O(log2 θ) bound still holds.

The impact of adjusting the prices of fewer, or more, than m products. Since adjusting

the price of all products may not be desirable, or even feasible, it is important that we understand

the impact of restricting the number of adjustable products on revenue. Corollaries 1-3 partially

answer this question by showing a surprising result that adjusting the prices of only m products

(in the base) is sufficient to guarantee a O(log2 θ) revenue loss.4 This is a powerful result because,

3 Our simulations show that the non-asymptotic performance of 1-Power schedule is almost the same as that of
1-Periodic schedule. This is very impressive since when θ = 500, 1-Power needs 44 adjustments while 1-Periodic

requires 500 adjustments. For larger θ, the difference is even bigger.

4 Since we only have m resources, it seems “intuitive” that we should be able to perform well by adjusting the prices of
only m products. However, since adjusting the prices of only m products also affects the demands for the other n−m
products whose prices are not adjusted, it is not immediately clear what impact this would have on revenue. Our
result is different from the so-called action-space reduction discussed in pg. 220 of Talluri and van Ryzin (2005). Under
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in most RM applications, the number of resources m is typically much smaller than the number

of products n. In particular, it provides an important managerial insight that the seller does

not need to aggressively adjust the prices of all products to benefit from dynamic pricing. The

result on minimal price adjustment, however, leads to two interesting questions. First, can we still

guarantee the O(log2 θ) revenue loss by adjusting the prices of fewer than m products? The answer

is unfortunately negative and the revenue loss under such scenario is of order
√
θ in general. To

understand why this is so, consider the case where demands are separable and A= I is an m by

m identity matrix. Since this corresponds to an aggregate of m independent problems (e.g., m

independent one-stop flights), if we only dynamically adjust the price of m′ <m products, then we

are effectively applying static price control to the remaining m−m′ problems, which we already

know has Θ(
√
θ) revenue loss in general (Jasin 2014). Second, what is the incremental benefit of

adjusting the prices of more than m products? To answer this, we again consider the case of a

single-resource RM. (By minimal price adjustment property, we already know that we only need

to adjust the price of one product to guarantee a significant improvement over static pricing. The

question is whether adjusting the prices of more products has a significant impact on performance.)

Let b= (A∇λ(pD))′ and denote by b(i) the ith largest element (in absolute value) of b. For k ≥ 1,

let Πk denote the set of all non-anticipating pricing policies that adjust the price of at most k

products in each period. (If the price of product j is not adjusted in period t under π ∈Πk, then

pπt,j = pπt−1,j .) Then we have,

Theorem 2. Suppose that m= 1. There exist positive constants Ψ and Ψ̄ independent of θ≥ 1

and 1≤ k≤ n such that

min
π∈Πk

{

JDet(θ)−E[Rπ(θ)]
}

≤Ψ+
Ψ̄

∑k

i=1 b
2
(i)

log2 θ.

The above performance bound suggests that the incremental benefit of adjusting the price of

an additional product decreases as the number of the adjustable products increases. To see this,

suppose that A= [1, . . . ,1] and demands are separable and identical across different products with

λj(.) = λ1(.) for all j. This implies pDj = pD1 for all j and b(i) = λ′
1(p

D
1 ) for all i. Then, the bound in

Theorem 2 is of order log2 θ
k

. Since the function 1/k drops quickly for small k and slowly for large

k, this suggests that it is not necessary for the seller to adjust the prices of too many products to

get most of the potential revenue. (See Section 5 for numerical evidence of this observation in the

the action-space reduction scenario, we first compute the optimal aggregate decision variable and then disaggregate

this variable to recover the optimal price for each product. However, there is no guarantee that this disaggregation
will result in the adjustment of only the prices of m products. In contrast, under our scenario, the prices of n−m
products are never changed.
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multi-resource case. Our results show that the revenue improvement of adjusting the price of m

products over static pricing is about 80− 90% of the revenue improvement of adjusting the price

of all n products, in most cases. Moreover, in terms of revenue loss, while adjusting the price of

m products reduces the revenue loss of static pricing by about 1− 1.2%, adjusting the price of

n products only further reduces the revenue loss by an additional 0.1− 0.2% in most cases. (See

Table 2 in Appendix C.) Given that the average margins in RM industries are typically very small,

only about 3% (Irvine 2014), this highlights the practical significance of minimal adjustments for

real-world implementation.) In particular, if the seller wishes to adjust the prices of more than m

products to further increase revenue, then s/he only needs to consider adjusting the prices of a few

more products instead of all.

4. Equivalent Performance via Adjusting the Prices of Other Products

Corollaries 2 and 3 in the previous section provide an important managerial insight: Managers

need to update the prices of only a small subset of their products, and do so sufficiently rarely, to

guarantee a strong revenue performance. Those results, however, assume that only the prices of

the same m products are updated throughout the selling season. Can we do better? For example,

why should we update the price of one product ten times and the other products not at all if a

major concern of some practitioners is that customers get upset by frequent price changes? Can we

reduce the number of price updates per product by somehow distributing the required adjustments

across different products over different time periods (e.g., one price update per product for ten

different products instead of ten price updates for one product)? Also, what if the seller dictates

that the price of some products should not, or cannot, be changed either due to existing business

constraints or contractual agreements? Can we somehow re-assign the scheduled update for these

products to other “similar products”? As discussed in Section 1, although these questions have

significant practical relevance and are faced by many sellers, we are not aware of any existing work

in the literature addressing these issues. In this section, we will discuss a generalization of LPC

that partially addresses these issues. Our proposed heuristic provides important practical insights

on how to do equivalent pricing via adjusting the prices of similar products. To illustrate the basic

idea, we start with two examples.

Example 2. Consider a single flight RM with n types of ticket. We assume that each ticket

only requires one seat and demands are separable. Note that ∇λ(pD) is a diagonal matrix. As

Corollary 3 indicates, it is sufficient to adjust the price of only one type of ticket Θ(log2 θ) times

to obtain O(log2 θ) revenue loss. If we evenly distribute these adjustments to all n tickets, the

number of price updates per ticket is about ⌈(log2 θ)/n⌉. It turns out that this still guarantees

O(log2 θ) revenue loss. Thus, dynamically adjusting one type of ticket Θ(log2 θ) times is equivalent
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to dynamically adjusting n types of tickets Θ((log2 θ)/n) times for each. This has an important

managerial implication. As an illustration, consider economy seats. There are usually about 13

different fare classes for economy seats. Since a typical US passenger flight has fewer than 500 seats

and log2(500) = 8.96, by our previous arguments, we can either adjust the price of one fare class

nine times or the price of any nine fare classes once during the selling season.

Example 3. Consider a network RM problem with 3 resources and 6 products and suppose that

A∇λ(pD) =





-1 0 0 0 0 -2
0 -1 0 -2 -2 0
0 0 -1 -2 0 -1



 .

Obviously, B = {1,2,3} forms a base. Suppose that the previously prescribed schedule for B is

γ1 = {2,3,5}, γ2 = {3,4,5}, and γ3 = {4,6}. Unlike in the previous example where we can arbitrarily

pick any nine products, here, the choice of “similar products” is more subtle. A new set of products

is similar to the original set of products if its corresponding columns (by the same index) in

A∇λ(pD) can linearly represent the columns in A∇λ(pD) that correspond to the original set of

products. In our example, this means that we can replace updating {2,3} in period 4 with {4,5},
or replace updating {3} in period 6 with {4,5}. We cannot directly replace the price adjustment

of product 3 in period 4 with product 4 because column 4 is not parallel to column 3. But, since

product 2 will be adjusted in period 4 under both the original schedule and the new schedule, we

can achieve an equivalent revenue by bundling the price adjustment of product 2 and 3 in period

4 and substituting it with the price adjustment of {2,4}.

Equivalent pricing control. We now formally state the idea behind the preceding examples.

For clarity, we assume that B = {1, . . . ,m} is a base and H is a projection matrix that selects

B. Let γB := {γj(θ)}mj=1 denote the existing updating schedule for base products. We will show

in this section that, for any equivalent schedule of γB (to be formally defined below), we can

construct a pricing heuristic that guarantees the same asymptotic performance as LPC under γB.

In other words, if the seller wants to modify the current price updating schedules to a new one for

strategic considerations, then we can provide a new pricing control that guarantees an equivalent

performance as long as the new updating schedule is equivalent to the current updating schedule.

Before introducing equivalent schedule, we first introduce the concept of equivalent set : A set

of products G ⊆ {1, . . . , n} is said to be equivalent to the set S ⊆ B (mathematically, we write:

G ∼B S) if the columns in A∇λ(pD) that correspond to the products in S can be written as a linear

combination of the columns in A∇λ(pD) that correspond to products in G. (Note that, by our

definition, G ∼B S does not imply S ∼B G.) Let St ⊆B be a subset of products that are adjusted in

period t under γB. Let Gt be one of the (possibly) many sets that are equivalent to St. We say that
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a price updating schedule γ is an equivalent schedule of γB if in each period t only products in Gt

are adjusted under γ. Let Γ(γB) denote the set of all equivalent schedules of γB. We now define an

equivalent pricing control for any γ ∈Γ(γB). Let Gt ∼B St and denote by St and Gt the submatrices

of A∇λ(pD) whose columns correspond to the products in St and Gt, respectively. By definition of

equivalent set, there exists a |Gt| by |St| matrix Yt such that St =GtYt. For any such Gt, St and

Yt, we can construct a unique n by n matrix Qt =Q(Yt,Gt,St) as follows: its submatrix with rows

and columns not in Gt∪St equals an identity matrix, its submatrix with rows in Gt and columns in

St equals Yt, and any of its other elements equals 0. We call Q(Yt,Gt,St) a transformation matrix

because, from its construction, it uses the matrix Yt to transform the price adjustment for products

in St into price adjustment for products in Gt. The following lemma provides some important

properties of Q(Yt,Gt,St).

Lemma 3. For any Gt ∼B St and any Yt such that St = GtYt, let Qt = Q(Yt,Gt,St). Then, we

have the following:

(1) A∇λ(pD)QtE
B =A∇λ(pD)EB =A∇λ(pD)EGt∪(B−St)Qt;

(2) There exists a projection matrix Ht such that ∇p(λD)Ht = Qt∇p(λD)H and the rows in

∇p(λD)Ht that correspond to products not in Gt ∪ (B−St) are zeros;

(3) The rows in QtE
St∇p(λD)H that correspond to products not in Gt are zeros.

Define Qt(γ) := argminQ{||Q||2 :Q=Q(Y,Gt,St), St =GtY } in each period t. (This optimization

problem turns out to be a convex optimization with linear constraints and can be efficiently solved

off-line.) We are now ready to introduce the concept of equivalent pricing. Let γ be an equivalent

schedule of the existing schedule γB. Then, a pricing control π with schedule γ is said to be

equivalent to an existing LPC with updating schedule γB if, in Step 2a in the definition of LPC, it

uses the following update formula:

p̂t = pD −
m
∑

j=1

k
j
t

∑

l=1

Q
t
j
l
Ej∇p(λD)H

A∆̃j
l

T − tjl +1

for some Qt ∈Qt(γ)
5 in each period t. (In light of part (3) of Lemma 3, the above update formula

guarantees that only adjustable products under γ are adjusted in each period.)

Example 2 (cont’d). Consider again the single flight problem described in Example 2. Suppose

that n= 3 and assume, without loss of generality, that B= {1} with the corresponding projection

5 Note that, given γ ∈ Γ(γB), Qt(γ) may not be a singleton. However, as can be seen in the proof of Theorem 3,
the performance bound of an equivalent pricing control under γ depends on Qt only via its spectral norm ||Qt||2.
In particular, the smaller the norm, the smaller the revenue loss bound. This observation motivates our definition of
Qt(γ) where ||Qt||2 is minimized. Since all matrices in Qt(γ) have the same spectral norm, our performance bound
does not depend on the particular selection of Qt within Qt(γ).
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matrix H = (1, 0, 0)′. Suppose that the seller originally plans to periodically adjust the price of

only product 1 at the beginning of every period using the following update formula:











pt,1

pt,2

pt,3











= pD −
t−1
∑

s=1

∇p(λD)H
A∆s

T − s
=













pD1 −
∑t−1

s=1 p
′
1(λ

D
1 )

∆s
T−s

pD2

pD3













.

To develop an equivalent pricing control, which alternates among the three products such that the

price of only one product is being adjusted in every period, we construct a sequence of transfor-

mation matrices {Qtl} for each update time tl as follows. Let Q
1 be a 3 by 3 identify matrix. For

j ∈ {2,3}, denote by Qj the transformation matrix that transform the price adjustment of product

1 into price adjustment of product j. In particular, by the construction of transformation matrix

Q2 =







0 0 0
p′2(λ

D
2 )

p′1(λ
D
1 )

0 0

0 0 1






, Q3 =







0 0 0
0 1 0

p′3(λ
D
3 )

p′1(λ
D
1 )

0 0






.

For all l satisfying l≡ j (mod 3), set Qtl =Qj. The resulting equivalent pricing control is then given

by p̂t = pD −
∑t−1

s=1Qs∇p(λD)H A∆s
T−s

. Assuming no stock-out, the explicit formulae of the price of

all three products for the first five periods are:
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D
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D
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∆2
T−2
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p4,2
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D
1 )

∆1
T−1

pD2 − p′2(λ
D
2 )

∆2
T−2

pD3 − p′3(λ
D
3 )

∆3
T−3













, and











p5,1

p5,2

p5,3











=













pD1 − p′1(λ
D
1 )

∆1
T−1

− p′1(λ
D
1 )

∆4
T−4

pD2 − p′2(λ
D
2 )

∆2
T−2

pD3 − p′3(λ
D
3 )

∆3
T−3













.

Thus, in this example, we have shown how to adjust the prices of three products T/3 times each

instead of adjusting the price of one product T times using equivalent pricing.

Performance result. For any updating schedule γ ∈Γ(γB), letQ∈Q(γ) := {{Qt}Tt=1 :Qt ∈Qt(γ)}
denote a sequence of transformation matrices that correspond to γ and let RQ

H,γB,γ denote the

resulting revenue. The following theorem provides a uniform performance bound for equivalent

pricing control under any updating schedule γ that is equivalent to γB.
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Theorem 3. There exist positive constants Ψ and Ψ̄ independent of θ≥ 1, the projection matrix

H that selects B, and the choice of updating schedules γB such that

sup
γ∈Γ(γB)

sup
Q∈Q(γ)

{

JDet(θ)−E
[

RQ

H,γB,γ
(θ)

]}

≤ Ψ + Ψ̄
∑

j∈B

T (θ)−1
∑

t=1

min
{

1, ||∇p(λD)HA||22U j
1(T (θ), t)

}

+ Ψ̄
∑

j∈B

T (θ)−1
∑

t=1

min
{

1, ||∇p(λD)HA||22U j
2(T (θ), t)

}

,

where the terms U j
1 (T, t) and U j

2 (T, t) are defined as in Theorem 1.

Observe that the bound in Theorem 3 is similar to the bound in Theorem 1. This shows that,

for any schedule γ that is equivalent to the base schedule γB, the seller can use equivalent pricing

to guarantee the same asymptotic performance as the LPC under the base schedule γB. This result

provides the seller with an extra flexibility to manage his prices.

LPC with synchronous price adjustment of more than m products. Although the LPC

discussed in Section 3 allows for arbitrary asynchronous price adjustment, it is restricted to adjust

the price of exactly m products. Generalizing LPC to the case of arbitrary asynchronous price

adjustment of more than m products is not a trivial task and beyond the scope of this paper. It is,

however, possible to use equivalent pricing to develop a version of LPC that synchronously adjusts

the prices of k ≥m products. To illustrate how to use equivalent pricing to do synchronous price

adjustment for k ≥m products, consider the LPC discussed in Section 3 where the base is B and

γj(θ) = γ1(θ) for all j ∈ B. Let G denote a set of k ≥ m products that span the resource space

(i.e., the set of products whose corresponding columns (by the same index) in A∇λ(pD) span R
m).

Since G ∼B B, we can construct a transformation matrix Q as described above and apply equivalent

pricing with Qt =Q for all t. The resulting price update formula is given by

p̂t = pD −
k1t
∑

l=1

Q∇p(λD)H
A∆̃1

l

T − t1l +1
= pD −

k1t
∑

l=1

∇p(λD)H̃
A∆̃1

l

T − t1l +1
,

where the second equality follows from the second part of Lemma 3 with H̃ being a projection

matrix such that the rows in ∇p(λD)H̃ that correspond to products not in G are zeros. Note that

such pricing control has a practical implication: It provides the seller with an extra flexibility to

trade off the negative impact of excessive price adjustment with the incremental improvement in

revenue due to adjusting the price of more products. (See Theorem 2 and numerical experiments

in Section 5 for further discussions.)

The difference between LPC and LRC. As briefly mentioned in Section 1, Jasin (2014) has

developed a dynamic pricing heuristic which he calls Linear Rate Correction (LRC), and it adjusts
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the price in period t using the update formula p̂t = p
(

λD −H
∑t−1

s=1
A∆s
T−s

)

, where H is a projection

matrix. To see the difference between LPC and LRC, first, note that, since p(·) is not always

separable, the prices of all n products under LRC must be simultaneously updated at the same

time. (Even if the projection matrix H is chosen to select a certain base, there is no guarantee that

LRC will adjust the price of only the products in the base.) Thus, minimal price adjustment of only

m products is, in general, not possible with LRC. Second, since p(·) is not always separable, there
is no analog of the general LPC update formula for LRC. This means that neither asynchronous

update nor equivalent pricing is possible with LRC, which may limit the applicability of LRC for

real-world implementation (e.g., due to existing business constraints). Indeed, aside from the fact

that LRC and LPC are examples of linear control6, they are close only in the special case where

the prices of all products are updated at the same time (e.g., the synchronous 1-Periodic schedule).

In that special case, the update formula of LPC can be viewed as a linearization of the update

formula of LRC. (The generic asynchronous LPC, however, is not a linearization of any form of

LRC.)

5. Numerical Experiments

In this section, we run several experiments to illustrate the theoretical results in Sections 3 and 4

as well as to highlight the applicability of our heuristic in practice and its managerial implications.

For our simulations, we use a multinomial logit demand with 10 products and 4 resources. (See

Appendix C for detail.) We use T = 1 and Ci = 0.1 for each resource i. Note that, per our definition,

the actual number of selling periods and initial inventory levels are given by θT and θC, respectively.

For example, θ = 1,000 corresponds to a problem instance with 1,000 selling periods and initial

inventory levels equal to 100. We compare the expected revenue loss under different heuristics for a

wide range of θ’s. In particular, since typical RM firms sell about 100-1,000 inventories per season

(e.g., mid-size airplanes have about 100-500 seats and large-size hotels can easily have more than

1,000 rooms), we use θ ranging from 500-10,000.

We denote by Static the static price control developed in Gallego and van Ryzin (1997), and by

LRC the linear rate control developed in Jasin (2014). As for our heuristics, we denote by LPC-k

the LPC that simultaneously adjusts the prices of k ≥m products in every period. (Recall that

6 Linear control has been widely studied in engineering (Ben-Tal et al. 2009) and finance (Calafiore 2009), and has
only been recently studied in operations management (Bertsimas et al. 2010, Atar and Reiman 2012, Jasin 2014). In
general, a linear control assumes the form of a baseline control plus a linear combination of past system perturbations.
(This explains the forms of LRC and LPC.) While most existing literature on linear control focuses on finding a
way to compute the optimal control parameters, our work explicitly constructs a particular form of linear control,
which has certain desirable properties, and proposes a particular choice of parameters values that yields a strong
performance guarantee. Needless to say, once the form is assumed, it may be possible to apply standard techniques
in the literature to optimize the parameters of LPC. However, this is beyond the scope of this paper.
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to ensure LPC adjusts at most k prices, we only need to find a proper transformation matrix. We

select the transformation matrix following the proposed guideline in Section 4.) Correspondingly,

we use RSC-k to denote the heuristic that adjusts the prices of the same k products as in LPC-k

via exact re-optimization of DPP in every period, with an additional constraint that the prices of

the unadjustable products remain the same as the static price. In addition to the said heuristics, we

also test two simple modifications of LPC-k that only adjust the same k prices and can improve the

non-asymptotic performance of the vanilla LPC-k. The first one is a projection-based LPC where, in

each period, we apply LPC update formula followed by a projection into [(1−α%)pD, (1+α%)pD];

we denote the resulting heuristic by Proα-k. If α is small, Proα-k is very similar to static price

control; if α is large, Proα-k is very similar to LPC-k. Per our discussions in Section 3, since we are

using static price as our benchmark, we would ideally like to have a heuristic whose price trajectory

stays as close as possible to the static price. However, since demands are random, we must also

allow some room for price adjustments to account for demand variability. This motivates the use

of projection as a way to control the intensity of price fluctuation. The second modification of

LPC-k is a re-optimization-based LPC, denoted by Hybβ-k, where we re-optimize DPP at the first

β updating times of the 2-Geometric schedule and apply LPC in the remaining periods.

Experiment 1: Performance of LPC. Figure 1 illustrates the performance of LPC-10 and other

existing heuristics. Consistent with our asymptotic results, LPC-10 performs much better than

Static.7 Figure 1 also shows that LPC-10 performs slightly worse than LRC and RSC-10, which is

not surprising because both LRC and RSC-10 are known to have a slightly stronger performance

guarantee of O(log θ) than LPC (Jasin 2014). We want to stress that although RSC-10 performs

very well, it is also very time-consuming (see Table 1). In contrast, LPC-10 is computationally very

fast. Admittedly, there is still a revenue gap between the “ideal but not implementable” RSC-10

and LPC-10. The question is whether there is a cheap way to improve the performance of LPC-10

without resorting to heavy frequent re-optimizations. It turns out that we can significantly narrow

the gap between RSC-10 and LPC-10 by simple modifications of LPC-10. The first plot in Figure

2 shows that Pro30-10, which enforces the prices of LPC to fluctuate within a 30% band around

the static price, can reduce the revenue loss gap by almost a half. This tells us that a simple

projection can have a significant impact on revenue. (In general, we can also use product-dependent

7 It is interesting to note that not all linear price controls are guaranteed to perform well. For example, under 1-
Periodic schedule, one intuitively appealing linear price control is p̂t = pD −∑m

j=1E
j∇p(λD)H∑t−1

s=1A∆s. Similar
to LPC, this heuristic also adjusts prices to compensate for randomness in demand realizations. But, in contrast to
LPC, this heuristic adjusts the price in a myopic manner; it attempts to fully correct the errors made in the previous
period in the next period. Although this heuristic appears reasonable at first sight, our numerical experiments suggest
that it is not even asymptotically optimal. This highlights that developing a linear price control that has strong
performance is not a trivial task.
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Figure 1 Revenue loss under different heuristics.
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Figure 2 Improving LPC-10 using projection and occasional re-optimizations.
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α parameters and optimize them by running an off-line Monte-Carlo optimization.) The second

plot in Figure 2 further shows that Hyb8-10, which combines LPC with only 8 optimizations, can

reduce the revenue loss gap by more than 75%. This is fairly impressive considering the fact that,

even for small θ= 500, RSC-10 already requires 500 re-optimizations. It highlights the versatility

of LPC for practical implementation; in particular, we can use LPC in combination with occasional

re-optimizations in the case where frequent re-optimizations is clearly not feasible.

Table 1 Typical running time (in milliseconds) for a single simulation for selected heuristics.

θ RSC-10 LPC-10 Hyb8-10
500 8305.0 13.3 209.7
5000 87552.4 86.2 212.3

Experiment 2: Minimal price adjustment. In this experiment, we test the minimal adjustment

property discussed in Section 3. The plots in Figure 3 show the comparison between LPC-4 and

RSC-4, as well as the two types of modified LPC with the same projection matrix as LPC-4. All

these heuristics adjust the prices of the same m= 4 products. (Note that LRC cannot be included
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Figure 3 Improving LPC-4 using projection and occasional re-optimizations.
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in this comparison because it cannot adjust prices of fewer than n = 10 products.) Similar to

experiment 1, while RSC-4 performs very well, it requires a lot of re-optimizations, which may not

be feasible in practice. The two simple modifications of LPC-4, Pro30-4 and Hyb8-4, which are

computationally much cheaper, can attain a similar performance as RSC-4.

At the end of Section 3, we discussed the impact of increasing the number of adjustable prod-

ucts on revenue performance. Figure 4 illustrates our theoretical results. (See also Table 2 in

Appendix C.) The first plot in Figure 4 shows that, in comparison to Static that adjusts no prices

at all, allowing m = 4 adjustable products yields a significant reduction in revenue loss. This is

due to the minimal adjustment property of LPC. Beyond the initial four products, although allow-

ing more adjustable products further decreases the revenue loss, its incremental benefit becomes

much smaller. In particular, the plot shows that the impact of allowing two additional adjustable

products (see the gap between LPC-4 and LPC-6 ) captures almost half of the benefit of allowing

six more adjustable products (see the gap between LPC-4 and LPC-10 ). We observe the same

phenomenon in the second plot in Figure 4 for Hyb8 heuristics. This suggests that the managerial

insights drawn from Theorem 2 still hold in network setting: If the seller wishes to adjust the prices

of more than m products to increase revenue, then adjusting a few more products is sufficient to

capture pretty much all the potential benefit of adjusting all products.

Experiment 3: Equivalent pricing with business constraints. In this experiment, we study

a case where the seller has additional constraints on when and what prices to adjust. We assume

that (1) the prices of products 5, 8 and 9 cannot be adjusted, (2) the prices of products 2, 3, 4

can only be adjusted in the second half of the selling season, and (3) the prices of products 6,

7, 10 can only be adjusted in the first half of the selling season. These are plausible constraints

motivated by practical applications. For example, products 5, 8 and 9 can be viewed as corporate

rate rooms that cannot be adjusted over time. Products 2-4 and 6, 7, 10 can be viewed as special
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Figure 4 Revenue impact of the number of adjustable products for LPC and Hyb8.
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Figure 5 Improving LPC using projection and occasional re-optimizations.
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rate rooms for certain events (e.g., conference) whose prices cannot be adjusted in a certain time

window. Based on our discussions in Section 4, LPC can be automatically adapted to this setting via

equivalent pricing with an original base of B= {1,2,3,4}; we denote this heuristic simply as LPC.

Similar to previous experiments, we can apply re-optimized static price control with the additional

constraints that certain prices cannot be adjusted in particular periods; we denote the resulting

heuristic simply as RSC. It is also possible to use the modified LPC, which we denote as Proα and

Hybk, accordingly. Figure 5 shows that simple modifications of LPC, which is computationally easy,

can attain a similar performance as RSC which requires frequent re-optimizations and may not be

implementable in practice. This highlights the versatility of LPC for practical implementation in

the presence of business constraints.

6. Closing Remarks

In this paper, we consider a standard dynamic pricing problem and propose a new family of pricing

heuristics, which we call LPC. We show that LPC provides a strong improvement over static pric-

ing: The revenue loss is reduced from O(
√
θ) to O(log2 θ). In addition, it also has desirable features
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that can be used to address practical concerns. First, LPC only requires a single optimization

and can be implemented in real-time, which makes it useful for solving large-scale problems where

other computationally intensive heuristics are not viable. Second, LPC guarantees a strong revenue

performance by adjusting the price of a few “important” products infrequently. This helps address

the issue of acceptability of dynamic pricing in the eyes of customers due to excessive price adjust-

ments. Third, LPC allows the seller to maintain an equivalent revenue performance via adjusting

the prices of other products. This not only can be used to further reduce the number of required

price changes per product, but also provides an extra flexibility for the sellers to manage his prices

in the presence of various business constraints. Our simulation results show that LPC not only has

a good theoretical performance but also works well numerically. Furthermore, its performance can

be further improved by simple modifications such as projection and occasional re-optimizations. To

conclude, we believe that our work provides novel managerial insights that make dynamic pricing

more applicable and practically appealing for real-world implementation.
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Appendix A: Proofs of Section 3

A.1. Proof of Lemma 1

Throughout, we use superscript j and subscript i to indicate the jth column and the ith row of a matrix respectively.

Define Ā :=A∇λ(pD). By definition, a base must span the resource space which has rank m, so it must contain at

least m products. Without loss of generality, suppose that B = {1,2, ...,m}. The matrix [Ā1 Ā2 ... Ām] is invertible

and we can define its inverse Ū = [Ā1 Ā2 ... Ām]−1. We now construct an n by m matrix U as follows: Ui = Ūi for

i = 1, . . . ,m and Ui = 0 otherwise. Observe that A∇λ(pD)U = ĀU = I. Let H = ∇λ(pD)U . Since only the first m

rows of ∇p(λD)H = U are non-zeros and B = {1,2, ...,m}, we conclude that H selects B. To show the uniqueness

of H, we use contradiction. Suppose not, then we have at least two n by m matrices H ̸= H̃ that select B. Let
U =∇p(λD)H, Ũ =∇p(λD)H̃. Since ∇p(λD) is full rank and H − H̃ ̸= 0, we conclude that U − Ũ ̸= 0. Since the last

n−m rows of U and Ũ are all zero vectors, we conclude that Ui ̸= Ũi for some 1≤ i≤m which contradicts with the

uniqueness of the inverse of Ā.

A.2. Proof of Lemma 2

We will prove a more general result of picking the best k prices. For any v ∈ R
n define ||v||0 := |{i : vi ̸= 0}|.

Let a = A′, x = ∇p(λD)H, b = (A∇λ(pD))′. Since m = 1, a,x, b are all vectors in R
n. The optimization problem

minH{||∇p(λD)HA||2 :AH = 1, ||∇p(λD)H||0 ≤ k} is equivalent to minx{||xa′||22 : b′x= 1, ||x||0 ≤ k}. Since xa′ax′ is
a rank one matrix, its maximum eigenvalue is just its trace. So ||xa′||22 = tr(xa′ax′) = tr(x′xa′a) = ||x||22||a||22. Note

also that the equality constraint is equivalent to ||b||2||x||2 cos(b, x) = 1, where cos(b, x) is the cosine of the angle

between vectors b and x. Therefore, as long as ||x||2 = 1/(||b||2 cos(b, x)), the equality constraint can be satisfied. So

the problem becomes minx{||a||22||b||−2
2 cos−2(b, x) : ||x||0 ≤ k}.Let b(i) denote the ith largest element in absolute value

in b, then the optimal solution x∗ is parallel with a vector bk which has the exact same elements as b in the k largest

elements in absolute values but zeros in other elements. The optimal objective value is ||a||22(
∑k
i=1 b

2
(i))

−1.
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A.3. Proof of Corollary 1

We compute, part by part, the bound in Theorem 1 under periodic price update schedule. With-

out loss of generality, we assume that T = 1. For notational clarity, we suppress the dependence on

θ whenever there is no confusion. We start with the summation over U j1 (θ, t). First of all, we have
∑m
j=1

∑θ−1
t=1 min

{

1,
∣

∣

∣

∣∇p(λD)HA
∣

∣

∣

∣

2

2
U1(θ, t)

}

≤max{1,
∣

∣

∣

∣∇p(λD)HA
∣

∣

∣

∣

2

2
}
∑m
j=1

∑θ−1
t=1 min

{

1,U j1 (θ, t)
}

. We bound the

summation after the inequality as follows:
∑m
j=1

∑θ−1
t=1 min

{

1,U j1 (θ, t)
}

=m
∑θ−1
t=1 min

{

1, t−hkt
(θ−t)2 +

∑kt
l=1

tl−tl−1

(θ−tl+1)2

}

≤

m
∑θ−1
t=1 min

{

1, t−hkt
(θ−t)2 +

tkt
−tkt−1

(θ−tkt
+1)2

+
∫ tkt
1

1
(θ−x+1)2

dx

}

≤m
∑θ−1
t=1 min

{

1, 2h
(θ−t)2 + 1

θ−t .
}

. The first equality follows

since we update the price of the m products at the same time. The first inequality is the integral approximation

and the last inequality follows from the fact that 0 ≤ t − kt h ≤ h. Now define t∗ =
⌊

θ−
√
h
⌋

. We make further

approximation of the inequality above by breaking down the summation over t into two parts, before and

after t∗:
∑m
j=1

∑θ−1
t=1 min{1,U1(θ, t)} ≤ m

[

∫ t∗

1
2h

(θ−x)2 dx+
∫ t∗

1
1

θ−x dx+ θ− t∗
]

≤ m
(

2h
θ−t∗ + log

(

θ−1
θ−t∗

)

+ θ− t∗
)

≤
m
(

1+3
√
h+ log θ

)

where the first inequality follows from the integration approximation and the third inequality

follows from the fact that 1 ≤
√
h ≤ θ − t∗ ≤

√
h + 1. Now we compute the summation over U j2 (θ, t). Similarly,

it suffices to bound the following:
∑m
j=1

∑θ−1
t=1 min

{

1,U j2 (θ, t)
}

≤ m
∑θ−1
t=1 min

{

1, 1
θ−t

∑t
s=1

(

h
(θ−s)2 + 1

θ−s

)}

.

Again, we break the summation into two parts and use integral approximation:
∑m
j=1

∑θ−1
t=1 min{1,U2(θ, t)} ≤

m
[

∑t∗−1
t=1

1
θ−t

∫ t+1

1

(

h
(θ−x)2 + 1

θ−x

)

dx+ θ− t∗
]

≤ m
[

∑t∗−1
t=1

(

h
(θ−t−1)2

+ 1
θ−t−1

log
(

θ−1
θ−t−1

))

+ θ− t∗
]

≤
m
[

h
(θ−t∗)2 +

∫ t∗−1

1
h

(θ−x−1)2
dx+

∑t∗−1
t=1

1
θ−t−1

log
(

θ−1
θ−t−1

)

+ θ− t∗
]

≤ m
(

2+2
√
h+ log θ+ log2 θ

)

, where the last

inequality holds because
∑t∗−1
t=1

1
θ−t−1

log
(

θ−1
θ−t−1

)

≤ log
(

θ−1

θ−t∗

)

θ−t∗ +
∫ t∗−1

1

log( θ−1

θ−t−1 )
θ−t−1

dt≤ log θ+ log2 θ.

A.4. Proof of Corollary 2

We assume without loss of generality that T = 1 and suppress the dependence on θ for brevity. Note that K(θ)

is well-defined since
∑k
s=1 s

α is strictly increasing in k and is unbounded as k → ∞ for all α ≥ 1. Since θ >
∑K
s=1 s

α ≥Kα+1/(α+ 1), we have K ≤ ((α+ 1)θ)1/(α+1). We now analyze the performance bound. We first derive

bound for the summation over U j1 (θ, t). Similar to the proof of Corollary 1, it suffices to bound the following:
∑m
j=1

∑θ−1
t=1 min

{

1,U j1 (θ, t)
}

. By definition, for 1≤ l≤K, we have θ−tl+1≥∑K−l+1
s=1 sα ≥ (K−l+1)α+1

α+1
≥ (K−l+2)α+1

2α+1(α+1)
.

In addition, we also have that for 2 ≤ l ≤K, tl − tl−1 ≤ (K − l + 2)α + 1 ≤ 2(K − l + 2)α, and for l = 1, t1 − t0 ≤
θ+1−∑K

s=1 s
α− 1≤ (K +1)α ≤ 2(K +1)α. Then, for t < θ− 1, since kt <K, we have U j1 (θ, t)≤

∑kt+1
l=1

tl−tl−1

(θ−tl+1)2
≤

∑kt+1
l=1

2(K−l+2)α(α+1)222α+2

(K−l+2)2α+2 = (α + 1)222α+3∑kt+1
l=1

1
(K−l+2)α+2 . Hence,

∑m
j=1

∑θ−1
t=1 min{1,U j1 (θ, t)} ≤ ∑m

j=1(1 +
∑θ−2
t=1 U

j
1 (θ, t)) ≤ m + m

∑K
l=1 2(K − l + 2)α

∑l
s=1

(α+1)222α+3

(K−s+2)α+2 ≤ m + m
∑K
l=1 2(K − l + 2)α

∫ l+1

1

(α+1)222α+3

(K−s+2)α+2 ds ≤
m + m(α + 1)22α+4∑K

l=1
(K−l+2)α

(K−l+1)α+1 ≤ m + m(α + 1)23α+4∑K
l=1

1
(K−l+1)

≤ m + m(α + 1)23α+4 logK. Since K ≤
((α + 1)θ)

1
α+1 ,

∑m
j=1

∑θ−1
t=1 min{1,U j1 (θ, t)} ≤ m(1 + 23α+4 log(α + 1) + 23α+4 log θ). As for the summation over

U j2 (θ, t), we have
∑m
j=1

∑θ−1
t=1 min{1,U j2 (θ, t)} ≤m+

∑m
j=1

∑θ−2
t=1 U

j
2 (θ, t)≤m+

∑m
j=1

∑θ−2
t=1

1
θ−t

∑t
s=1U

j
1 (θ, s)≤m+

∑m
j=1

∑θ−2
t=1

1
θ−t

∑θ−2
s=1 U

j
1 (θ, s)≤m(1+ 23α+4 log(α+1) log θ+23α+4 log2 θ).

A.5. Proof of Corollary 3

We assume without loss of generality that T = 1 and suppress the dependence on θ for brevity. We first show that

K ≤ 1 + logβ θ. Note that since {tl} are strictly increasing integers, so K is well defined and by definition of tl we

have tK−1 ≤ θ− 1. By definition, we have tl ≥ [(β− 1)θ+ tl−1]/β, so θ− tl ≤ (θ− tl−1)/β ≤ θ/βl. Therefore, θ− 1≥
tK−1 > θ−θ/βK−1 which implies that K ≤ 1+logβ θ. We now analyze the performance bound. By definition, we have

tl ≤ [(β−1)θ+ tl−1]/β+1, so we have the following useful bound which will be used a couple of times later: for l≤K,

(⋆)
tl−tl−1

θ−tl+1
≤ {[(β−1)θ+tl−1]/β+1}−tl−1

θ−{[(β−1)θ+tl−1]/β+1}+1
=

(β−1)(θ−tl−1+1)+1

θ−tl−1
≤ 2β − 1. We derive an upper bound for the summation
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over U j1 (θ, t) first. Similar to the proof of Corollary 1, it suffices to bound the following:
∑m
j=1

∑θ−1
t=1 min

{

1,U j1 (θ, t)
}

≤
m
∑θ−1
t=1

(

t−tkt
+1

(θ−t)2 +
∑kt
l=1

2β−1
θ−tl+1

)

≤m
∑θ−1
t=1

(

tkt+1−1−tkt
+1

(θ−t)(θ−tkt+1+1)
+
∑kt
l=1

2β−1
θ−tl+1

)

≤ m
∑θ−1
t=1

(

2β−1
(θ−t) +

∑kt
l=1

2β−1
θ−tl+1

)

≤
m(2β − 1)

(

log θ+
∑θ−1
t=1

∑kt
l=1

1
θ−tl+1

)

, where the first and the third inequalities follow from (⋆). Note that
∑θ−1
t=1

∑kt
l=1

1
θ−tl+1

=
∑K−1
j=0

∑tj+1−1
t=tj

∑j
l=1

1
θ−tl+1

=
∑K−1
j=0

∑j
l=1

tj+1−tj
θ−tl+1

=
∑K−1
j=1

θ−tj
θ−tj+1

≤K−1≤ logβ θ. Hence, we

have
∑m
j=1

∑θ−1
t=1 min

{

1,U j1 (θ, t)
}

≤m(2β− 1)
(

log θ+ logβ θ
)

. Now we approximate the summation over U j2 (θ, t) as

follows:
∑m
j=1

∑θ−1
t=1 min

{

1,U j2 (θ, t)
}

≤m
∑θ−1
t=1

1
θ−t

∑θ−1
s=1

∑ks
l=1

2β−1
θ−tl+1

≤m(2β− 1) log θ logβ θ.

A.6. Proof of Theorem 2

We use a slight modification of LPC with synchronous 1-Periodic Schedule as follows: follow the LPC heuristic but

uses p̂t = pD −∇p(λD)H∑t−1
s=1

A∆s

T−s , where H is a projection matrix. Call this heuristic πH . Pick an H that satisfies

||∇p(λD)H||0 ≤ k. Then we have πH ∈Πk. Following a similar argument as Theorem 1, there exist positive constants

Ψ and Ψ̂ such that JDet − E[RπH
(θ)] ≤ Ψ + Ψ̂||∇p(λD)HA||22 log2 θ. By the proof of Lemma 2, if we minimize

||∇p(λD)HA||2 subject to AH = 1 and ||∇p(λD)H||0 ≤ k, the optimal projection matrixH∗ attains ||∇p(λD)H∗A||22 =
||a||22(

∑k
i=1 b

2
(i))

−1. Therefore, minπ∈Πk
{JDet − E[Rπ(θ)]} ≤ JDet − E[RπH∗ (θ)] ≤ Ψ+ Ψ̄(

∑k
i=1 b

2
(i))

−1 log2 θ, where

Ψ̄ = Ψ̂||a||22.

Appendix B: Proofs of Section 4

B.1. Proof of Lemma 3

By the construction of Q(Yt,Gt,St), it is straightforward to verify that A∇λ(pD)QtEB = A∇λ(pD)EB =

A∇λ(pD)EGt∪(B−St)Qt holds. (See Figure 6 for an illustration.) This proves (1). For (2), construct

Ht := ∇λ(pD)Qt∇p(λD)H. Note that Ht is a projection matrix since AHt = A∇λ(pD)Qt∇p(λD)H =

A∇λ(pD)QtEB∇p(λD)H =A∇λ(pD)EB∇p(λD)H =A∇λ(pD)∇p(λD)H = I where the second and the fourth equal-

ity follows by the fact that only the first m rows of ∇p(λD)H are nonzero. Note also that ∇p(λD)Ht =Qt∇p(λD)H.

So, to verify that rows in ∇p(λD)Ht that correspond to products not in Gt∪ (B−St) are zeros, we only need to verify

it for Qt∇p(λD)H. For any j /∈ Gt ∪ (B − St), either (a) j ∈ St and j /∈ Gt, or (b) j /∈ B ∪ Gt. In case (a), the result

holds since the jth row of Qt is a zero vector. In case (b), the only nonzero element in row j of Qt is the j
th element,

but the jth row of ∇p(λD)H is a zero vector. This proves (2). Finally, since the only nonzero elements in QtE
St

are in the submatrix consisting of rows in Gt and columns in St, we conclude that the rows in QtE
St∇p(λD)H that

correspond to products not in Gt are zero vectors. This completes the proof of (3).

B.2. Proof Sketch of Theorem 3

The proof of Theorem 3 follows the same outline of the proof for Theorem 1 (see the Online Supplement) with three

nontrivial twists.

1) Resource Correction Equivalence. We first show that in terms of error correction, equivalent pricing

is “equivalent” to LPC. In particular, let ϵ̃t =
∑m
j=1

∑k
j
t
l=1Qtj

l

Ej∇p(λD)H A∆̃
j
l

T−tj
l
+1

. For simplicity, disregard

the second order term of Taylor expansion of λt, then we have exactly the same capacity error below as

(2) in the proof of Theorem 1: Aλt − AλD = −A∇λ(pD)ϵ̃t = −
∑m
j=1

∑k
j
t
l=1A∇λ(pD)Qtj

l

Ej∇p(λD)H A∆̃
j
l

T−tj
l
+1

=

−∑m
j=1

∑k
j
t

l=1A∇λ(pD)Ej∇p(λD)H
A∆̃

j
l

T−tj
l
+1

= −M−1∑m
j=1

∑k
j
t

l=1

ξ̃
j
l
ej

T−tj
l
+1

, where the third equality follows by

Lemma 3 part (1).

2) A uniform upper bound of ||Qt||22. For any set I ⊆ {1, . . . , n} and any m by n matrix M , let MI denote

the submatrix of M that consists of columns j ∈ I. Then, for any pair of I1 ⊆ {1, . . . , n},I2 ⊆ {1, . . . , n} we write

I1 ≈ I2 if (A∇λ(pD))I1 and (A∇λ(pD))I2 expands the same subspace of R
m and |I1| = |I2|. Note that I1 ≈ I2
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Figure 6 Illustration of Lemma 3 part (1)

implies that there exists a unique |I1| by |I1| invertible matrix Y (I1,I2) such that MI1 =MI2Y (I1,I2). Let Q̄ :=

sup{||Q(Y (I1,I2),I2,I1)||22 : I1 ≈I2}. Note that Q̄ is bounded because there are only finite pairs of I1,I2 that satisfy

I1 ≈ I2. In addition, Q̄ only depends on A∇λ(pD). We now claim that for any B, γB, γ ∈ Γ(γB), t and Q ∈ Qt(γ),

||Q||22 ≤ Q̄. This is because, by definition, for any set of products St ⊆B being adjusted in period t under γB, and any

set of Gt being adjusted in period t under schedule γ ∈ Γ(γB), Gt is equivalent to St and there exists a set G′
t ⊆ Gt

such that G′
t ≈St. Without loss of generality, assume G′

t corresponds to the first |St| elements in Gt. Then construct

a |Gt| by |St| matrix Yt whose submatrix with rows in G′
t and columns in St equal Y (St,G′

t) and remaining elements

equal 0. Then, by optimality, we have that for any Qt ∈Qt(γ), ||Qt||22 ≤ ||Q(Yt,Gt,St)||22 ≤ Q̄.

3) Bounding E[T − τ ]. Note that in the proof of Theorem 1, we have (E2) :ψ > v̄
T−t

∑t
s=1 ϵ

′
tϵt and (E3) :ψ > ϵ′tϵt.

Now, because the price deviation becomes ϵ̃t, we redefine (E2) and (E3) by replacing ϵt by ϵ
′
t. Then the rest of the

argument in the proof of Theorem 1 holds except that the argument and the bound in Lemma EC.3 in the Online

Supplement will be slightly different. In particular, the bounding of τ2, τ3 requires extra care. Let q
t
j
l

(j′, j) denote

the j′-th row j-th column element of the matrix Q
t
j
l

. Then, the bound in STEP 2 of Lemma EC.3 in the Online

Supplement becomes:

Pr(τ2 ≤ t) = Pr

(

max
v≤t

v̄

T − v

v
∑

s=1

ϵ̃′sϵ̃s ≥ψ

)

≤ Pr

(

v̄

T − t

t
∑

s=1

ϵ̃′sϵ̃s ≥ψ

)

= Pr







v̄

T − t

t
∑

s=1







n
∑

j′=1





m
∑

j=1

kjs
∑

l=1

q
t
j
l

(j′, j)ξ̃jl

T − tjl +1





2





≥ψ






≤ min











1,
v̄

ψ(T − t)

t
∑

s=1

E







n
∑

j′=1





m
∑

j=1

kjs
∑

l=1

q
t
j
l

(j′, j)ξ̃jl

T − tjl +1





2
















Note that we have,

E







n
∑

j′=1





m
∑

j=1

kjs
∑

l=1

q
t
j
l

(j′, j)ξ̃jl

T − tjl +1





2





≤E







n
∑

j′=1





m
∑

j=1

∣

∣

∣

∣

∣

∣

kjs
∑

l=1

q
t
j
l

(j′, j)ξ̃jl

T − tjl +1

∣

∣

∣

∣

∣

∣





2





≤E







n
∑

j′=1

m

m
∑

j=1





kjs
∑

l=1

q
t
j
l

(j′, j)ξ̃jl

T − tjl +1





2






= m

m
∑

j=1

kjs
∑

l=1

E







n
∑

j′=1

q2
t
j
l

(j′, j)
(

ξ̃jl

)2

(T − tjl +1)2






=m

m
∑

j=1

kjs
∑

l=1

E





||Q
t
j
l

Ej∇p(λD)HA∆̃j
l ||22

(T − tjl +1)2





≤ m

m
∑

j=1

kjs
∑

l=1

||Q
t
j
l

Ej∇p(λD)HA||22E
[

||∆̃j
l ||22
]

(T − tjl +1)2
≤m

m
∑

j=1

kjs
∑

l=1

Q̄
∣

∣

∣

∣

∣

∣∇p(λD)HA
∣

∣

∣

∣

∣

∣

2

2

tjl − tjl−1

(T − tjl +1)2
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where the first equality follows because ∀l ̸= l′,E[ξ̃jl ξ̃
j
l′ ] = 0 by the martingale property. With the

inequality above, we conclude that:
∑T−1
t=1 Pr(τ2 ≤ t) ≤ ∑m

j=1

∑T
t=1min

{

1, mv̄Q̄
ψ

||∇p(λD)HA||22U j2 (T, t)
}

≤
max{1, mv̄Q̄

ψ
}∑m

j=1

∑T
t=1min{1, ||∇p(λD)HA||22U j2 (T, t)}.

We use a similar argument to modify STEP 3 in Lemma EC.3 in the Online Supplement.

Pr(τ3 ≤ t) = Pr

(

max
v≤t

ϵ̃′v ϵ̃v ≥ψ

)

= Pr






max
v≤t







n
∑

j′=1





m
∑

j=1

kjv
∑

l=1

q
t
j
l

(j′, j)ξ̃jl

T − tjl +1





2





≥ψ







≤ Pr






max
v≤t

m

n
∑

j′=1

m
∑

j=1





kjv
∑

l=1

q
t
j
l

(j′, j)ξ̃jl

T − tjl +1





2

≥ψ






≤ min











1,
m

ψ
E







n
∑

j′=1

m
∑

j=1





k
j
t
∑

l=1

q
t
j
l

(j′, j)ξ̃jl

T − tjl +1





2
















The above inequality implies that:
∑T−1
t=1 Pr(τ3 ≤ t) ≤

∑m
j=1

∑T−1
t=1 min

{

1, m
2Q̄
ψ

||∇p(λD)HA||22U j1 (T, t)
}

≤
max{1, m2Q̄

ψ
}∑m

j=1

∑T−1
t=1 min

{

1, ||∇p(λD)HA||22U j1 (T, t)
}

.

Appendix C: Simulation Parameters and Table 2.

In all the experiments, we have 10 products and 4 resources. We use a multinomial logit demand (i.e., λt,i = exp(ai−
bipt,i)/(1+

∑n
j=1 exp(aj − bjpt,j))) with the following parameters:

a =
[

0.5 0.4 0.3 0.4 0.5 0.3 0.2 0.4 0.6 0.8
]′
,

b =
[

0.015 0.020 0.020 0.015 0.020 0.025 0.015 0.020 0.020 0.020
]′
,

A =







1 0 0 0 1 0 0 1 1 0

0 1 0 0 1 1 0 0 0 1

0 0 1 0 0 1 1 1 0 0

0 0 0 1 0 0 1 0 1 1






and C =







0.1

0.1

0.1

0.1






.

The following table provides revenue loss (with respect to the deterministic upper bound) and revenue improvement

(with respect to the static price control) of the heuristics tested in Experiment 2.

Table 2 Comparison of revenue loss (R.L.) and revenue improvement (R.I.).

% R.L. compared to revenue upper bound % R.I. over static pricing control. % R.I. of LPC-4
θ Static LPC-4 LPC-6 LPC-8 LPC-10 LPC-4 LPC-6 LPC-8 LPC-10 % R.I. of LPC-10

500 5.94% 5.19% 4.59% 4.23% 4.15% 0.79% 1.43% 1.82% 1.90% 41.6%
1000 4.22% 3.00% 2.61% 2.60% 2.28% 1.28% 1.69% 1.69% 2.02% 63.3%
2000 2.99% 1.72% 1.57% 1.43% 1.37% 1.32% 1.46% 1.61% 1.67% 78.6%
3000 2.48% 1.25% 1.09% 1.05% 0.99% 1.27% 1.43% 1.47% 1.53% 82.8%
4000 2.13% 0.98% 0.86% 0.82% 0.77% 1.18% 1.30% 1.34% 1.40% 84.1%
5000 1.94% 0.81% 0.70% 0.69% 0.65% 1.15% 1.26% 1.28% 1.31% 88.0%
6000 1.81% 0.67% 0.61% 0.55% 0.58% 1.16% 1.22% 1.29% 1.25% 92.5%
7000 1.64% 0.59% 0.54% 0.50% 0.47% 1.07% 1.12% 1.16% 1.20% 89.1%
8000 1.58% 0.55% 0.48% 0.43% 0.40% 1.04% 1.12% 1.16% 1.20% 87.2%
9000 1.42% 0.50% 0.42% 0.41% 0.39% 0.94% 1.01% 1.02% 1.05% 89.3%
10000 1.34% 0.45% 0.42% 0.39% 0.35% 0.90% 0.93% 0.96% 1.00% 90.0%
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Proof of Theorem 1.

The key to the proof lies in the definition of a stopping time τ(θ) for each of the θth problem, which can be roughly

interpreted as the time when the first stock-out of any of the resources occurs. We use a martingale argument to derive

an upper bound of the expectation of the remaining length of the selling season after τ(θ), namely E[T (θ)−τ(θ)]. The

main idea of the proof is to consider the revenue loss incurred before and after τ(θ) separately. We show that both of

them are in the order of E[T (θ)− τ(θ)]. Therefore, our primary task is to obtain an upper bound of E[T (θ)− τ(θ)].

The basic outline of the proof is as follows: (1) We show that, under some conditions, the resource consumption

error can be explicitly written as a function of past demand errors, namely ∆s’s; (2) We introduce some technical

conditions and define a stopping time τ(θ). This can be roughly interpreted as the stock-out time of the first depleted

resource. We then compute an upper bound for E[T (θ)− τ(θ)]; (3) We break down our analysis of revenue loss into

two parts, before and after period τ . Not surprisingly, the latter is in the order of E[T (θ) − τ(θ)], thanks to the

bounded revenue assumption in (A2). The rest of the proof shows that the revenue loss before τ(θ) is also in the

order of E[T (θ)− τ(θ)].

Without loss of generality, assume T = 1. Then T (θ) = θ. For notational clarity, we suppress the dependency on θ

whenever there is no confusion. Fix a projection matrix H that selects B. We proceed in several steps.

STEP 0

We present a well-known result in linear algebra without proof. We will use this result several times.

Lemma EC. 1. For any real symmetric n by n matrix S, there exists an n by n orthonormal matrix Q∈R
n×R

n

such that Q−1SQ = Λ, where Λ = diag(θ1, . . . , θn) is a diagonal matrix whose elements are the eigenvalues of the

matrix S. In addition, for any vector v ∈R
n, we have: v′Sv≤max1≤i≤n |θi| · v

′v.

STEP 1

In this step we derive an explicit formula for resource consumption error.

Define δs :=A∆s, δ̃
j
l :=A∆̃j

l , and ϵt :=
∑m

j=1E
j∇p(λD)H

∑k
j
t

l=1 δ̃
j
l /(θ− tjl +1). (We follow the convention that if

the lower limit of a summation is bigger than the higher limit, then the sum is zero.) By Taylor’s expansion,

λt = λD −∇λ(pD)ϵt+
1

2
ϵ′t∇

2λ(ηt)ϵt , ηt ∈ [pD, pD − ϵt], (1)

where, by a slight abuse of the notation, we use

ϵ′t∇
2λ(ηt)ϵt :=







ϵ′t∇
2λ1(ηt)ϵt

...
ϵ′t∇

2λn(ηt)ϵt






,

1
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and ∇2λj is the Hessian matrix of λj(pt). (Formula (1) holds if λt lies in the interior of Ωλ. We will address this in

STEP 2.) Since H is the projection matrix that selects B. By definition, there exists an invertible m by m matrix

M such that ∇p(λD)H = [M ′
0
′ ]

′
and A∇λ(pD) =

[

M−1| . . .
]

, where the latter holds because A∇λ(pD)∇p(λD)H =

AH = I. Define M j to be a square matrix whose jth row is the same as M while the other rows are zeros. By

definition, M j δ̃jl = ξ̃jl ej , where ej is a column vector with a proper size whose jth element is one and the others are

zeros. We can write ϵt as:

ϵt =





∑m

j=1

∑k
j
t

l=1

Mj δ̃
j
l

θ−t
j
l
+1

0



=





∑m

j=1

∑k
j
t

l=1

ξ̃
j
l
ej

θ−t
j
l
+1

0



 .

Because A∇λ(pD) = [M−1|...], we have A∇λ(pD)Ej∇p(λD)H =M−1M j which allows us to write the following

identity as long as λt lies in the interior of Ωλ:

Aλt−AλD = −A∇λ(pD)

m
∑

j=1

Ej∇p(λD)H

k
j
t
∑

l=1

δ̃jl
θ− tjl +1

+
1

2
Aϵ′t∇

2λ(ηt)ϵt (2)

= −M−1
m
∑

j=1

k
j
t
∑

l=1

M j δ̃jl
θ− tjl +1

+
1

2
Aϵ′t∇

2λ(ηt)ϵt = −M−1
m
∑

j=1

k
j
t
∑

l=1

ξ̃jl ej

θ− tjl +1
+

1

2
Aϵ′t∇

2λ(ηt)ϵt.

STEP 2

We define a stopping time τ and give an upper bound for E[θ− τ ]. Recall that in (A4), we assume that the absolute

values of the eigenvalues of the matrices ∇2λj , j = 1, . . . , n are bounded above by v̄. Let λL = λD − ϕLe and ψ =

min
{

ψ′,ψ′2
}

, where ψ′ = min

{

min{φL,φU}

max
{

v̄,2·||∇λ(pD)||
∞

} , min{AλL}

max
{

||Ae||
∞
,2·||M−1||

∞

}

}

. One can directly verify that ψ > 0.

Define a stopping time τ to be the minimum of θ and the first time when any of the following conditions is violated.

(E1) ψ > 1
θ−t

∣

∣

∣

∣

∑t

s=1

(

ξjs −
∑kjs
l=1

ξ̃
j
l

θ−t
j
l
+1

)∣

∣

∣

∣

,∀j = 1, . . . ,m;

(E2) ψ > v̄
θ−t

∑t

s=1

∣

∣

∣

∣

∣

∣

∣

∣

∑m

j=1

∑kjs
l=1

ξ̃
j
l
ej

θ−t
j
l
+1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

;

(E3) ψ >

∣

∣

∣

∣

∣

∣

∣

∣

∑m

j=1

∑k
j
t

l=1

ξ̃
j
l
ej

θ−t
j
l
+1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

.

The three conditions listed above are somewhat technical and not easy to interpret. However, they are just stronger

conditions of the two conditions below which have more obvious meaning.

(E1*) λs ∈ [λD −ϕLe, λ
D −ϕUe]⊆Ωλ, ∀s≤ t;

(E2*) Ct > 0,

where Ct denotes the remaining inventory at the end of period t. The first condition states that all the target demand

rates under LPC up to period t (including t) are feasible, so are the corresponding prices. The second condition

states that no stock-out happens by the end of period t. Per our discussion in STEP 1, (E1*) ensures the validity

of expression (1) and (2). In addition, (E2*) ensures that all the demand requests up to period t are satisfied, so

the dynamics of the resource consumption can be fully expressed by the demand error ∆s’s. Hence, under (E1*) and

(E2*), we can track the inventory levels by explicitly quantifying them using past demand errors. (We emphasize that

the purpose of (E1)-(E3) is simply for analytical tractability.) The following lemma reveals the connection between

(E1)-(E3) and (E1*)-(E2*).

Lemma EC. 2. We have: (E1)-(E3) ⇒ (E1*)-(E2*). In other words, (E1*)-(E2*) hold when t < τ .
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The next lemma provides an upper bound of E[θ− τ ] as a function of updating schedule {γj}
m

j=1.

Lemma EC. 3. Let U j1 (T, t) and U
j
2 (T, t) be as defined in Theorem 1. Then, there exists a constant Ψ̄, independent

of θ and the choice of the projection matrix H such that:

E[θ− τ(θ)] ≤ Ψ̄

m
∑

j=1

θ−1
∑

t=1

(

min

{

1,
∣

∣

∣

∣

∣

∣∇p(λ
D)HA

∣

∣

∣

∣

∣

∣

2

2
U j1 (θ, t)

}

+min

{

1,
∣

∣

∣

∣

∣

∣∇p(λ
D)HA

∣

∣

∣

∣

∣

∣

2

2
U j2 (θ, t)

})

.

Although the two lemmas above are crucial and their proofs are quite subtle, we defer the details for now and

focus on the main thread of the proof.

STEP 3

We analyse the revenue loss incurred by LPC. Let Rt(pt) denote the revenue collected in period t under the posted

price pt. So, RH,γB =
∑θ

t=1Rt(pt). Define ∆̄t := Rt(pt) − E[Rt(pt)|Ft] = Rt(pt) − r(pt). Since pD is the optimal

solution to DPP, JDet = pD
′
λ(pD) = r(pD). This yields

JDet−E [RH,γB ] = JDet−E

[

θ
∑

t=1

Rt(pt)

]

= E

[

τ−1
∑

t=1

(

r(pD)−Rt(pt)
)

]

+E

[

θ
∑

t=τ

(

r(pD)−Rt(pt)
)

]

≤ E

[

τ−1
∑

t=1

(

r(pD)−Rt(pt)
)

]

+E

[

θ
∑

t=τ

r(pD)

]

≤ E

[

τ−1
∑

t=1

(

r(pD)−Rt(pt)
)

]

+ r̄E[θ− τ +1].

For t < τ , by Taylor’s expansion at pD, we have r(pt) = r(pD)−∇r(pD)ϵt+
1
2
ϵ′t∇

2r(ρt)ϵt for some ρt ∈ [pD, pD−ϵt].

So, the first term after the last inequality above can be bounded as follows:

E

[

τ−1
∑

t=1

(

r(pD)−Rt(pt)
)

]

= E

[

τ−1
∑

t=1

(

r(pD)− r(pt)− ∆̄t

)

]

= E

[

τ−1
∑

t=1

(

∇r(pD)ϵt−
1

2
ϵ′t∇

2r(ρt)ϵt− ∆̄t

)

]

= E

[

τ−1
∑

t=1

∇r(λD)∇λ(pD)ϵt

]

−
1

2
E

[

τ−1
∑

t=1

ϵ′t∇
2rt(ρt)ϵt

]

−E

[

τ−1
∑

t=1

∆̄t

]

≤ E

[

τ−1
∑

t=1

∇r(λD)∇λ(pD)ϵt

]

−
1

2
E

[

τ−1
∑

t=1

ϵ′t∇
2rt(ρt)ϵt

]

−E

[

τ
∑

t=1

∆̄t

]

+ r̄,

where the third equality holds by the chain rule ∇r(λD)∇λ(pD) =∇r(pD) and the last inequality follows because

E
[

∆̄τ

]

≤E [Rτ (pτ )] =E [E [Rτ (pτ )|τ ]]≤ r̄. Note that {∆̄t}
θ
t=1 is a martingale with respect to the natural filtration

and τ is bounded, so E
[
∑τ

t=1 ∆̄t

]

= 0 by the optional stopping theorem. Therefore, we only need to derive upper

bounds for the first two terms above, which will be the primary focus of STEP 4 and 5.

STEP 4

We derive an upper bound for E
[
∑τ−1
t=1 ∇r(λD)∇λ(pD)ϵt

]

. Let π and µ denote the duals associated with the inven-

tory constraints and the constraints λt ∈ Ωλ of DPP respectively. Note that neither depends on θ. By assump-

tion (A5), the optimal solution of DPP is interior. As a result of Karush-Kuhn-Tucker (KKT) optimality condi-

tion, we have ∇r(λD) = π′A (note that µ = 0 by complementary slackness). Thus, E
[
∑τ−1
t=1 ∇r(λD)∇λ(pD)ϵt

]

=

E
[
∑τ−1
t=1 π

′A∇λ(pD)ϵt
]

. By definition of ϵt and A∇λ(p
D)Ej∇p(λD)H =M−1M j (see STEP 1), we can write

E

[

τ−1
∑

t=1

∇r(λD)∇λ(pD)ϵt

]

= E





τ−1
∑

t=1

π′M−1
m
∑

j=1

k
j
t
∑

l=1

M j δ̃jl
θ− tjl +1



 = π′M−1
m
∑

j=1

M j
E





τ−1
∑

t=1

k
j
t
∑

l=1

δ̃jl
θ− tjl +1





= π′M−1
m
∑

j=1

M j
E







k
j
τ−1
∑

l=1

(

1−
θ− τ +1

θ− tjl +1

)

δ̃jl






. (3)
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The last term (3) can be further broken down into two parts as follows:

π′M−1
m
∑

j=1

M j
E







k
j
τ−1
∑

l=1

(

1−
θ− τ +1

θ− tjl +1

)

δ̃jl +(1− 1) ·

(

δt
k
j
τ−1

+ · · ·+ δτ−1

)







= π′M−1
m
∑

j=1

M j
E












δt

k
j
τ−1

+ · · ·+ δτ−1 +

k
j
τ−1
∑

l=1

δ̃jl






−






δt

k
j
τ−1

+ · · ·+ δτ−1 +

k
j
τ−1
∑

l=1

θ− τ +1

θ− tjl +1
δ̃jl













≤ π′M−1
m
∑

j=1

M j
E






δt

k
j
τ−1

+ · · ·+ δτ−1 +

k
j
τ−1
∑

l=1

δ̃jl






+π′

E







∣

∣

∣

∣

∣

∣

∣

M−1
m
∑

j=1

M j






δt

k
j
τ−1

+ · · ·+ δτ−1 +

k
j
τ−1
∑

l=1

θ− τ +1

θ− tjl +1
δ̃jl







∣

∣

∣

∣

∣

∣

∣






.

(4)

Since
∑m

j=1M
j =M , by definition of δs and δ̃jl (see STEP 1), we can write

π′M−1
m
∑

j=1

M j
E






δt

k
j
τ−1

+ · · ·+ δτ−1 +

k
j
τ−1
∑

l=1

δ̃jl






= π′M−1

m
∑

j=1

M j
E

[

τ−1
∑

s=1

δs

]

= π′
E

[

τ−1
∑

s=1

δs

]

.

Observing that {
∑t

s=1∆s}
θ
t=1 is a martingale and τ is bounded, E

[
∑τ

s=1∆s

]

= 0 by optional stopping theorem.

Also, the elements in π and A are all nonnegative. This implies that π′AE[∆τ ] = π′AE[E[∆τ |τ ]]≤ π′Aλ̄e. Thus, the

first term in (4) can be bounded by

π′
E

[

τ−1
∑

s=1

δs

]

= π′AE

[

τ−1
∑

s=1

∆s

]

≤ π′AE

[

τ
∑

s=1

∆s

]

+π′Aλ̄e= π′Aeλ̄. (5)

As for the second term in (4), we have the following:

π′
E







∣

∣

∣

∣

∣

∣

∣

M−1
m
∑

j=1

M j






δt

k
j
τ−1

+ · · ·+ δτ−1 +

k
j
τ−1
∑

l=1

θ− τ +1

θ− tjl +1
δ̃jl







∣

∣

∣

∣

∣

∣

∣







= π′
E







∣

∣

∣

∣

∣

∣

∣

M−1
m
∑

j=1






ξjt

k
j
τ−1

+ · · ·+ ξjτ−1 +

k
j
τ−1
∑

l=1

θ− τ +1

θ− tjl +1
ξ̃jl






ej

∣

∣

∣

∣

∣

∣

∣







≤ π′
E







∣

∣

∣

∣M−1
∣

∣

∣

∣

∞
max

j=1,...,m

∣

∣

∣

∣

∣

∣

∣

ξjt
k
j
τ−1

+ · · ·+ ξjτ−1 +

k
j
τ−1
∑

l=1

(θ− τ +1)ξ̃jl
θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

e







= π′
E





∣

∣

∣

∣M−1
∣

∣

∣

∣

∞
max

j=1,...,m

∣

∣

∣

∣

∣

∣

τ−1
∑

s=1



ξjs −

kjs
∑

l=1

ξ̃jl
θ− tjl +1





∣

∣

∣

∣

∣

∣

e





≤ π′
E

[

AλL
2

(θ− τ +1)

]

≤
π′Aeλ̄

2
E [θ− τ +1] , (6)

where the last equality holds because

τ−1
∑

s=1



ξjs −

kjs
∑

l=1

ξ̃jl
θ− tjl +1



 = ξjt
k
j
τ−1

+ · · ·+ ξjτ−1 +

k
j
τ−1
∑

l=1

(θ− τ +1)ξ̃jl
θ− tjl +1

, (7)

and the second to the last inequality results from the definition of ψ, the condition (E1) used to define τ , and the fact

that min{AλL}e≤AλL. Combining (5)− (6), we get: E
[
∑τ−1
t=1 ∇r(λD)∇λ(pD)ϵt

]

≤ π′Aeλ̄+ 1
2
π′Aeλ̄E[θ− τ +1].
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STEP 5

We now derive an upper bound for − 1
2
E
[
∑τ−1
t=1 ϵ

′
t∇

2rt(ρt)ϵt
]

as follows:

−
1

2
E

[

τ−1
∑

t=1

ϵ′t∇
2rt(ρt)ϵt

]

≤ E

[∣

∣

∣

∣

∣

τ−1
∑

t=1

ϵ′t∇
2rt(ρt)ϵt

∣

∣

∣

∣

∣

]

≤ v̄E







τ−1
∑

t=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

k
j
t
∑

l=1

ξ̃jl ej

θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2






≤ψE [θ− τ +1] ,

where the second inequality follows from Lemma EC.1 and assumption (A5), and the last inequality follows from

condition (E2) in the definition of τ .

STEP 6

Putting together results in STEP 1 - 5 proves Theorem 1. We only need to prove Lemma EC.2 and EC.3 which we

do below.

Proof of Lemma EC.2. We need to show that if t < τ , then (E1*) and (E2*) hold. We first show that (E1*) holds:

∣

∣ϵ′t∇
2λ(ηt)ϵt

∣

∣ ≤ v̄ e ϵ′tϵt = v̄ e

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

k
j
t
∑

l=1

ξ̃jl ej

θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

< min{ϕL, ϕU}e.

The last inequality follows from (E3) in the definition of τ . In addition, we also have

∣

∣

∣

∣

∣

∣∇λ(p
D)ϵt

∣

∣

∣

∣

∣

∣

∞
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∇λ(pD)

m
∑

j=1

k
j
t
∑

l=1

ξ̃jl ej

θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

≤
∣

∣

∣

∣

∣

∣∇λ(p
D)
∣

∣

∣

∣

∣

∣

∞
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

k
j
t
∑

l=1

ξ̃jl ej

θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

=
∣

∣

∣

∣

∣

∣∇λ(p
D)
∣

∣

∣

∣

∣

∣

∞
· max
j=1,...,m

∣

∣

∣

∣

∣

∣

k
j
t
∑

l=1

ξ̃jl
θ− tjl +1

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣∇λ(p
D)
∣

∣

∣

∣

∣

∣

∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

k
j
t
∑

l=1

ξ̃jl ej

θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

<ψ′
∣

∣

∣

∣

∣

∣∇λ(p
D)
∣

∣

∣

∣

∣

∣

∞
≤

1

2
min{ϕL, ϕU} .

By combining the two inequalities above with (1), we get

|λt−λD| ≤
∣

∣

∣∇λ(p
D)ϵt

∣

∣

∣+

∣

∣

∣

∣

1

2
Aϵ′t∇

2λ(ηt)ϵt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣∇λ(p
D)ϵt

∣

∣

∣

∣

∣

∣

∞
e+

∣

∣

∣

∣

1

2
Aϵ′t∇

2λ(ηt)ϵt

∣

∣

∣

∣

≤min{ϕL, ϕU}e.

So, (E1*) holds. We next show that (E1)-(E3) imply (E2*). Since (E1)-(E3) imply (E1*), we know formula (1)

holds for all s≤ t. As a result, the resource consumption error formula (2) also holds. Define CDt :=C −
∑t

s=1Aλ
D.

Then, the remaining inventory at the end of period t satisfies

Ct ≥C −

t
∑

s=1

ADs =C −

t
∑

s=1

A(∆s+λs+λD −λD) =CDt −

t
∑

s=1

A(∆s+λs−λD)

=CDt −

t
∑

s=1



δs−M−1
m
∑

j=1

kjs
∑

l=1

M j δ̃jl
θ− tjl +1

+
1

2
Aϵ′s∇

2λ(ηs)ϵs





≥CDt −

∣

∣

∣

∣

∣

∣

M−1
t
∑

s=1

m
∑

j=1



ξjsej −

kjs
∑

l=1

ξ̃jl ej

θ− tjl +1





∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

1

2

t
∑

s=1

Aϵ′s∇
2λ(ηs)ϵs

∣

∣

∣

∣

∣

. (8)

Because {λD} is the optimal solution to DPP, we know that it must satisfy inventory constraint. So, CDt =

C−
∑t

s=1Aλ
D ≥

∑θ

s=t+1Aλ
D. Since we also have λD >λLe, it must hold that CDt ≥

∑θ

s=t+1Aλ
D ≥AλL(θ− t). As

for the second term in (8), by (E1), we have
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∣

∣

∣

∣

∣

∣

M−1
t
∑

s=1

m
∑

j=1



ξjsej −

kjs
∑

l=1

ξ̃jl ej

θ− tjl +1





∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣M−1
∣

∣

∣

∣

∞
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

t
∑

s=1



ξjsej −

kjs
∑

l=1

ξ̃jl ej

θ− tjl +1





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

· e

≤
∣

∣

∣

∣M−1
∣

∣

∣

∣

∞
· max
j=1,...,m

∣

∣

∣

∣

∣

∣

t
∑

s=1



ξjs −

kjs
∑

l=1

ξ̃jl
θ− tjl +1





∣

∣

∣

∣

∣

∣

e <
∣

∣

∣

∣M−1
∣

∣

∣

∣

∞
ψ(θ− t)e <

AλL
2

(θ− t) ≤
1

2
CDt .

For the third term in (8),the following holds by Lemma EC.1.

∣

∣

∣

∣

∣

1

2

t
∑

s=1

Aϵ′s∇
2λ(ηs)ϵs

∣

∣

∣

∣

∣

≤
1

2
A

t
∑

s=1

∣

∣ϵ′s∇
2λ(ηs)ϵs

∣

∣≤
1

2
Av̄e

t
∑

s=1

ϵ′sϵs =
1

2
Av̄e

t
∑

s=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

kjs
∑

l=1

ξ̃jl ej

θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

<
1

2
Ae(θ− t)ψ ≤

1

2
||Ae||∞ e(θ− t)ψ≤

AλL
2

(θ− t) ≤
1

2
CDt .

Combining the two bounds above with (8), we get Ct > 0. So, (E2*) holds. �

Proof of Lemma EC.3. Let τ j1 denote the minimum of θ and the first time t such that condition (E1) is violated

for jth resource. Also, let denote τi, i= 2,3, denote the minimum of θ and the first time t such that condition (Ei) is

violated. Note that, by definition, τ =min{(minj τ
j
1 ), τ2, τ3}. Since τ is nonnegative, E[τ ] =

∑θ−1
t=0 Pr(τ > t). So, we can

write E[θ−τ ] = θ−E[τ ] =
∑θ−1
t=1 Pr(τ ≤ t). Since τ ≤ t can only happen if either τ j1 (for some j) or τ2 or τ3 gets hit by

time t, by sub-additivity property of probability, we can bound: Pr(τ ≤ t) ≤
∑m

j=1Pr(τ
j
1 ≤ t)+Pr(τ2 ≤ t)+Pr(τ3 ≤ t).

So, it suffices to derive a bound for each component after the inequality. We do this in turn.

STEP 1

We derive an upper bound for Pr(τ j1 ≤ t), j = 1, . . . ,m. Fix t. For each j = 1, . . . ,m, we define a hitting time τ̃ j1 to be

the minimum of t and the first time v≤ t such that ψ ≤ |Sjv|, where

Sjv =



































ξ
j

t
j

k
j
v

+···+ξjv

θ−t
j

k
j
v+1

+1
+
∑kjv
l=1

ξ̃
j
l

θ−t
j
l
+1
, 1≤ v≤ tj

k
j
t

− 1

ξ
j

t
j

k
j
v

+···+ξjv

θ−v
+
∑kjv
l=1

ξ̃
j
l

θ−t
j
l
+1
, tj

k
j
t

≤ v≤ t

.

We now state a lemma which reveals the connection between τ j1 and τ̃ j1 , see STEP 4 for proof.

Lemma EC. 4. We have: Pr(τ j1 ≤ t) ≤ Pr(τ̃ j1 ≤ t).

Observe that for any given t, {Sv}
t
v=1 is a martingale with respect to the natural filtration {Fv}

t

v=1. Hence,

{|Sv|}
t

v=1 is a submartingale. By Doob’s submartingale inequality and identity in (7), we have

Pr(τ j1 ≤ t) ≤ Pr(τ̃ j1 ≤ t) = Pr






max
v≤t

∣

∣

∣

∣

∣

∣

∣

ξj
t
j

k
j
v

+ · · ·+ ξjv

θ− v
+

kjv
∑

l=1

ξ̃jl
θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

≥ψ







≤ min















1,
1

ψ2
E









∣

∣

∣

∣

∣

∣

∣

∣

ξj
t
j

k
j
t

+ · · ·+ ξjt

θ− t
+

k
j
t
∑

l=1

ξ̃jl
θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

2





















=min















1,
1

ψ2















t
∑

s=t
j

k
j
t

E

[

(

ξjs
)2
]

(θ− t)2
+

k
j
t
∑

l=1

E

[

(

ξ̃jl

)2
]

(

θ− tjl +1
)2





























,

where the last equality holds because E[ξjsξ
j
v] = 0 for s ̸= v, E[ξ̃jl ξ̃

j
w] = 0 for l ̸= w, and E[ξjs ξ̃

j
l ] =

0 for s ≥ tj
k
j
t

and l ≤ kjt . Now we want to estimate the expectations in the upper bound above.
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We start with the term (ξjs)
2. By matrix norm inequality,

(

ξjs
)2

≤
∑m

i=1

(

ξis
)2

= (MA∆s)
′ (MA∆s) ≤

||MA||22∆
′
s∆s =

∣

∣

∣

∣∇p(λD)HA
∣

∣

∣

∣

2

2
∆′
s∆s ≤

∣

∣

∣

∣∇p(λD)
∣

∣

∣

∣

2

2
||H||22 ||A||22 ∆′

s∆s. Taking expectation on both sides and

using E[∆′
t∆t] = Var(∆t) ≤ 1 (due to the assumption that at most one customer arrives in each period) yields

E[(ξjs)
2] ≤

∣

∣

∣

∣∇p(λD)
∣

∣

∣

∣

2

2
||H||22 ||A||22. By definition, ξ̃jl =

∑t
j
l
−1

s=t
j
l−1

ξjs . So we have E

[

(

ξ̃jl

)2
]

=
∑t

j
l
−1

s=t
j
l−1

E

[

(

ξjs
)2
]

≤

∣

∣

∣

∣∇p(λD)HA
∣

∣

∣

∣

2

2

∑t
j
l
−1

s=t
j
l−1

E [∆′
s∆s] ≤

∣

∣

∣

∣∇p(λD)HA
∣

∣

∣

∣

2

2

(

til − til−1

)

. Putting the inequalities together, we obtain that

∑m

j=1

∑θ−1
t=1 Pr(τ j1 ≤ t)≤

∑m

j=1

∑θ−1
t=1 min

{

1,
||∇p(λD)HA||2

2

ψ2 U j1 (θ, t)

}

STEP 2

We derive an upper bound for Pr(τ2 ≤ t). Since

∣

∣

∣

∣

∣

∣

∣

∣

∑m

j=1

∑kjs
l=1

ξ̃
j
l
ej

θ−t
j
l
+1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≥ 0 and v̄ ≥ 0, we conclude that for all

v ≤ t, v̄
θ−t

∑t

s=1

∣

∣

∣

∣

∣

∣

∣

∣

∑m

j=1

∑kjs
l=1

ξ̃
j
l
ej

θ−t
j
l
+1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≥ v̄
θ−v

∑v

s=1

∣

∣

∣

∣

∣

∣

∣

∣

∑m

j=1

∑kjs
l=1

ξ̃
j
l
ej

θ−t
j
l
+1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

. Therefore, by Markov’s inequality, the

following holds:

Pr(τ2 ≤ t) = Pr






max
v≤t

v̄

θ− v

v
∑

s=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

kjs
∑

l=1

ξ̃jl ej

θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≥ψ







≤ Pr







v̄

θ− t

t
∑

s=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

kjs
∑

l=1

ξ̃jl ej

θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≥ψ






≤ min











1,
v̄

ψ(θ− t)

t
∑

s=1

E







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

kjs
∑

l=1

ξ̃jl ej

θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

















.

By similar arguments as in STEP 1, we can bound

E







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

kjs
∑

l=1

ξ̃jl ej

θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2






≤ E





m
∑

j=1

kjs
∑

l=1

(

ξ̃jl
θ− tjl +1

)2


≤

m
∑

j=1

kjs
∑

l=1

E

[

(

ξ̃jl

)2
]

(θ− tjl +1)2
≤
∣

∣

∣

∣

∣

∣∇p(λ
D)HA

∣

∣

∣

∣

∣

∣

2

2

m
∑

j=1

kjs
∑

l=1

tjl − tjl−1

(θ− tjl +1)2
.

As a result, we obtain

θ−1
∑

t=1

Pr(τ2 ≤ t) ≤
m
∑

j=1

θ
∑

t=1

min







1,
v̄
∣

∣

∣

∣∇p(λD)HA
∣

∣

∣

∣

2

2

ψ(θ− t)

t
∑

s=1

kjs
∑

l=1

tjl − tjl−1

(θ− tjl +1)2







=
m
∑

j=1

θ
∑

t=1

min

{

1,
v̄
∣

∣

∣

∣∇p(λD)HA
∣

∣

∣

∣

2

2

ψ
U j2 (θ, t)

}

.

STEP 3

We derive an upper bound for Pr(τ3 ≤ t). Observe that for all j,

{

∑k
j
t

l=1

ξ̃
j
l

θ−t
j
l
+1

}θ

t=1

is a martingale. Since

∣

∣

∣

∣

∣

∣

∣

∣

∑m

j=1

∑k
j
t

l=1

ξ̃
j
l
ej

θ−t
j
l
+1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=
∑m

j=1

(

∑k
j
t

l=1

ξ̃
j
l

θ−t
j
l
+1

)2

, we conclude that

{

∣

∣

∣

∣

∣

∣

∣

∣

∑m

j=1

∑k
j
t

l=1

ξ̃
j
l
ej

θ−t
j
l
+1

∣

∣

∣

∣

∣

∣

∣

∣

2

2

}θ

t=1

is also a submartin-

gale. So, by Doob’s submartingale inequality and arguments in STEP 1, we have

Pr(τ3 ≤ t) = Pr






max
v≤t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

kjv
∑

l=1

ξ̃jl ej

θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≥ψ






≤

1

ψ
E







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=1

k
j
t
∑

l=1

ξ̃jl ej

θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2







≤ min







1,

∣

∣

∣

∣∇p(λD)HA
∣

∣

∣

∣

2

2

ψ

m
∑

j=1

k
j
t
∑

l=1

tjl − tjl−1

(θ− tjl +1)2







.

As a result, the following inequality holds:

θ−1
∑

t=1

Pr(τ3 ≤ t) ≤
m
∑

j=1

θ−1
∑

t=1

min







1,

∣

∣

∣

∣∇p(λD)HA
∣

∣

∣

∣

2

2

ψ

k
j
t
∑

l=1

tjl − tjl−1

(θ− tjl +1)2







=
m
∑

j=1

θ−1
∑

t=1

min

{

1,

∣

∣

∣

∣∇p(λD)HA
∣

∣

∣

∣

2

2

ψ
U j1 (θ, t)

}

.
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STEP 4

Putting together all the results in STEP 1-3 completes the proof of Lemma EC.3. The last thing to do is to prove

Lemma EC.4 from STEP 1. We do this now.

Proof of Lemma EC.4. It suffices to show that for all v ≤ t, if τ j1 = v occurs, then τ̃ j1 ≤ v occurs as well. By

definition of Sv, this is immediately true if tj
k
j
t

≤ v ≤ t. So, we only need to check the case 1≤ v ≤ tj
k
j
t

− 1. Assuming

1≤ v≤ tj
k
j
t

− 1, by definition of (E1) in STEP 1, τ j1 = v means

ψ≤

∣

∣

∣

∣

∣

∣

∣

ξj
t
j

k
j
v

+ · · ·+ ξjv

θ− v
+

kjv
∑

l=1

ξ̃jl
θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

and ψ >

∣

∣

∣

∣

∣

∣

kjv
∑

l=1

ξ̃jl
θ− tjl +1

∣

∣

∣

∣

∣

∣

which imply that ψ≤

∣

∣

∣

∣

∣

∣

∣

ξj
t
j

k
j
v

+ · · ·+ ξjv

θ− tj
k
j
v+1

+1
+

kjv
∑

l=1

ξ̃jl
θ− tjl +1

∣

∣

∣

∣

∣

∣

∣

= |Sjv|.

So, τ̃ j1 ≤ v and hence Pr(τ j1 ≤ t)≤Pr(τ̃ j1 ≤ t). �


