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Real-time earthquake monitoring using a search
engine method
Jie Zhang1, Haijiang Zhang1, Enhong Chen2, Yi Zheng2, Wenhuan Kuang1 & Xiong Zhang1

When an earthquake occurs, seismologists want to use recorded seismograms to infer its

location, magnitude and source-focal mechanism as quickly as possible. If such information

could be determined immediately, timely evacuations and emergency actions could be

undertaken to mitigate earthquake damage. Current advanced methods can report the initial

location and magnitude of an earthquake within a few seconds, but estimating the source-

focal mechanism may require minutes to hours. Here we present an earthquake search

engine, similar to a web search engine, that we developed by applying a computer fast search

method to a large seismogram database to find waveforms that best fit the input data. Our

method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on

8 March 2012 in Xinjiang, China, the search engine can infer the earthquake’s parameters in

o1 s after receiving the long-period surface wave data.
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R
eporting earthquakes in real time has long been a
significant research effort in the seismological commu-
nity1–3. In recent years, such efforts have been further

refined towards developing earthquake early warning systems
that can issue warnings to the public within a few seconds to
slightly 41 min after the event occurs4. Several earthquake early
warning systems have been implemented around the world,
including REIS in Japan5, SAS in Mexico6, VSN in Taiwan7 and
IERREWS in Turkey8. In the United States, significant research
efforts have been put into the development of the ElarmS early
warning system in California, which has been shown to be
effective in offline tests but has not been fully implemented yet4.
Seismologists have developed robust algorithms to estimate the
source information from earthquakes automatically9,10. For
example, in Japan, the REIS system allows the estimation of the
earthquake’s location and magnitude within 5 s after the P-wave
arrival by using data from a dense monitoring network5.
However, it still takes several minutes or more to derive the
source-focal mechanism, even with the recently published new
methods that invert moment tensors with Green’s functions
calculated in advance for potential earthquake locations over a
grid11–13. Similar efforts using GPS data can also determine the
centroid moment tensors of large earthquakes in minutes14,15.

In addition to the location and magnitude, it is important to
derive the source-focal mechanism for earthquakes in real time.
For example, tsunami prediction requires complete source
parameters, including source depth, magnitude, slip and orienta-
tion of the fault16. A shallow earthquake with a seismic moment
magnitude ofMw 7.7 occurred off the west coast of Sumatra on 25
October 2010, generating a local tsunami that reached a height of
3m and hit the islands in minutes. More than 400 fatalities were
reported17. A focal mechanism study revealed that this
earthquake had a thrust-faulting mechanism, causing significant
seawater movement. By contrast, a large Indian Ocean
earthquake on 11 April 2012, with a magnitude of Mw 8.6 and
followed B2 h later by a large (Mw 8.2) aftershock, did not cause
a tsunami, although warnings were issued across the Indian
Ocean. The focal mechanism solutions suggest that both
earthquakes were caused by strike-slip motion18; thus, the
movement displaced relatively little seawater and was less likely
to cause a tsunami. The real-time estimation of source-focal
mechanism is also important for monitoring fault activities. For
example, Bouchon et al.19 analysed the extended nucleation of the
1999 Mw 7.6 Izmit earthquake and found a sequence of
foreshocks whose source-focal mechanisms indicate similar
fault slips before accelerating to dynamic rupture. Obtaining the
focal mechanisms of earthquake swarms in real time may help
characterise fault activities. Such information could immediately
attract our attention to the seismically active area and delineate
the fault movement in real time.

The challenge lies in the automatic and rapid estimation of the
earthquake source mechanism in a few seconds after receiving the
seismic data from a few stations. We develop an image-based
earthquake search engine, similar to web search engines, to
estimate earthquake parameters within 1 s by searching for
similar seismograms from a large database on a single AMD
Opteron processor 6136. Significant advances in computer search
technology have helped the search industry to retrieve words,
images, videos and voices from Internet-sized data sets20–32.
Similar to voice recording or a one-dimensional (1D) image, a
seismogram is a graph record of the ground motion at a recording
station as a function of time. It contains information about both
the earthquake source and the earth medium through which the
waves propagated. By assuming that the earth velocity model is
known, we apply a forward modelling approach to build a
database of waveforms for scenario earthquakes over possible

source mechanisms and locations on a discretised grid. Our
objective is to find the best matches to any new earthquake record
from the database. This approach is fully automatic and requires
no parameter input or human interference. Therefore, it could be
applied for routinely reporting earthquake parameters.

We test our earthquake search engine using three real
earthquakes in a test site in Xinjiang, China. An area 5� by 5�
in latitude and longitude is selected to create a fast-search
database. The search results can be obtained by the search engine
in o1 s in all three cases after receiving the long-period surface
wave data. For an event within the database coverage area, the
determined earthquake source parameters are sufficiently accu-
rate. If an event is outside the database coverage area, or multiple
events are closely spaced in time, the search engine can
automatically invalidate the results using a predefined cross-
correlation threshold.

Results
Search engine database for the Xinjiang test site. Figure 1 shows
a test area of 5� by 5� in Southern Xinjiang, China, where three
permanent seismic stations (dark red triangles) can record
earthquakes from the area within a range of B5� to 15�.
These stations include MAKZ (46.8�N, 82.0�E in Makanchi,
Kazakhstan), KBL (34.5�N, 69.0�E in Kabul, Afghanistan) and
LSA (29.7�N, 91.1�E in Lhasa, China). From 1 January 2000 to
present, 51 earthquakes with magnitudes 4Mw 4.0 occurred in
the test site according to the United States Geological Survey—
National Earthquake Information Centre (NEIC). In this study,
we focus on the real-time analysis of small-to-moderate earth-
quakes to determine their hypocentres and double-couple focal
mechanisms in this area. Our approach includes the following
steps: (1) the construction of a synthetic database with Green’s
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Figure 1 | The locations of the seismic stations and the virtual test site.

A large synthetic data set from virtual sources in the area of three seismic

stations denoted by dark red triangles (MAKZ—46.8�N, 82.0�E in

Makanchi, Kazakhstan; KBL—34.5�N, 69.0�E in Kabul, Afghanistan;

LSA—29.7�N, 91.1�E in Lhasa, China) is generated to create a fast search

database and three earthquakes denoted by stars (locations from the

United States Geological Survey (USGS)—NEIC) are used to test different

situations. The purple star denotes an earthquake of a magnitude of Mw

5.9 that occurred on 8 March 2012; the blue star denotes an earthquake

of a magnitude of Mw 5.3 on 15 September 2011; and the green star

denotes an earthquake of a magnitude of Mw 5.3 on 30 April 2014.
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functions calculated using a laterally homogeneous medium for
‘virtual sources’ on discretised grid nodes in the study region and
convolved with all possible double-couple source solutions;
(2) reduction of the number of time samples in the database
by principal components analysis; (3) use of the fast search
algorithm developed in the internet industry to quickly find the
best-matching ‘virtual sources;’ and (4) validation of the solutions
and quantification of the resolution of the search results.

To design an earthquake search engine specifically for the
monitoring of this test site, we create a database consisting of a
large number of synthetic seismograms corresponding to
every virtual source point in the 3D grid within the test site.
Our three-component seismogram calculation applies the elastic
wave modelling of a point earthquake source in a multilayered
half-space using the Thompson–Haskell propagator matrix
technique33. In this study, we primarily focus on the shallow
earthquakes within the test site recorded at distances of 5� to 15�.
We tested the PREM earth model34 by modelling a few historic
events for the area of interest. It is reasonable to use this model
to simulate the long-period seismic wavefield (0.01–0.05Hz)
propagating in the area. We also tested the search engine with real
earthquakes inside and outside the test site, as well as with a
‘hypothesised’ double-event earthquake constructed from two
real earthquakes.

As shown in Fig. 1, the test area is gridded in 0.2� intervals in
latitude from 36�N to 41�N and in longitude from 79�E to 84�E.
The depth grid is from 5 to 60 km, with an interval of 5 km. Thus,
there are 8,112 virtual source points in the 3D grid. The source-
focal mechanism at each grid point is discretised as follows: strike
ranging from 10� to 350� with an interval of 20�, dip ranging
from 5� to 80� with an interval of 15� and rake ranging from
� 170� to 170� with an interval of 20�. This leads to a total of
1,944 different events at each virtual source point. Therefore, we
should generate three-component seismograms for 15,789,168
(8,122� 1,944) earthquakes in the 3D grid for every seismic
station, that is, a total of 47,367,504 three-component seismo-
grams for the three seismic stations. To create the search
database, we merge the three-component seismograms from all
the three seismic stations and produce a long super-trace for
each virtual earthquake. Hence, there are a total of 15,789,168
super-traces in the search database.

For any virtual source position, the greatest computational
effort is the calculation of the Green’s function between source
and receiver before convolving it with a focal solution. For a 1D
Earth model, there should be nine sets of Green’s functions and
eight of them contribute to the calculation of the three-
component seismogram for a double-couple source13,33.
Fortunately, the Green’s function is independent of the source-
focal mechanism; thus, we only need to calculate one set of
Green’s function for each grid point.

In addition, we present an interval approach to calculate
seismograms efficiently given a distance range from a single
station. This approximation method can significantly reduce the
computational effort for preparing a search database with
acceptable accuracy. Figure 2 explains the interval method with
a schematic plot. Solid circles with a constant interval are drawn
with a seismic station as the centre and any two adjacent dashed
lines to the central solid circle mark the zone of an interval.
Within every interval after the earth flattening transformation, we
calculated the Green’s function for only one virtual source point
at the epicentral distance corresponding to the solid circle. For
any virtual source at the same depth in the 3D grid, if it falls into
the same interval, then it will be assigned the same Green’s
function for that interval as an approximation. In this study, our
epicentral distance range is from 5� to 15�. If we choose 0.2� as an
interval, this means we must calculate seismograms for only 600

(50 intervals� 12 depths) virtual source points, regardless of the
number of stations, as opposed to 24,366 (8,122� 3 stations)
virtual sources, reducing the computational effort by a factor of
B40. The calculation of the seismograms to create a database for
the Xinjiang test site takes B13 h on a single workstation.
Generating 15,789,168 super-traces and setting up a tree structure
for the rapid search takes an additional 30min. Therefore,
creating a search database with synthetics is a very efficient
process in practice if high-performance computing resources are
available.

Fast search results. Within the Xinjiang test site, an earthquake
with a magnitude of Mw 5.9 occurred on 8 March 2012 (purple
star in Fig. 1). According to the Global Centroid Moment Tensor
(CMT) solution on the website35, this event was located at
39.49�N, 81.47�E and at a depth of 44.4 km. We use this event as
an input and apply our developed earthquake search engine to
determine its epicentre and focal mechanism. In addition, we
select two other earthquakes to test the system for special
situations. These include an earthquake with a magnitude of Mw

5.3 on 30 April 2014 at 43.02�N, 94.26�E and at a depth of
10.0 km (green star in Fig. 1; outside the test site, according to the
NEIC catalogue36), and an earthquake with a magnitude of Mw

5.3 on 15 September 2011 at 36.32�N, 82.50�E and at a depth of
11.6 km (blue star in Fig. 1; inside the test site, according to the
NEIC catalogue36). For the second additional earthquake on
15 September 2011, we shifted the arrival time of the entire event
to simulate it occurring only 40 s after the event on 8 March 2012.
Stacking two events at all three stations creates an artificial record
with double events. Double events or multiple events are not
accounted for in our search database. Therefore, the hypothetic
double-event records can be used to test how the search engine
would handle the situation.

Figure 3 shows a super-trace of the input entry data for the
8 March 2012 earthquake (in red at the top) and every 100th best
match from the database, up to the 1,000th match. Because each
super-trace is formed by concatenating three-component data
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Figure 2 | An interval approach for preparing the search database.

From a seismic station, solid circles with a constant interval are defined.

A synthetic Green’s function is calculated only at virtual sources on the

solid circles using a 1D Earth model. For grid points falling in the same

interval between two adjacent dashed lines, they share the same Green’s

function as that for the central solid line as an approximation, thus saving

computation time.
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from all three seismic stations, our search is based on fitting all
nine full waveforms available from the same event. In Fig. 3, the
best search result suggests a source-focal mechanism that is
similar to the Global CMT solution, and a source location that is

offset from the Global CMT solution by 15 km in horizontal plane
and 0.6 km in depth. The top 200 solutions feature their source
locations within 25 km and source depths within 5 km of the
Global CMT solution. Figure 4 displays the top 10 best matches
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Figure 3 | The input data and top 1,000 search results. A comparison is made between the input data from three seismic stations with the Global

CMT solution (red) and every 100th result of the top 1,000 search returns (black). The solution sequence index and maximum cross-correlation values

are shown on the left. The source depth, latitude, longitude and focal mechanism are shown on the right.
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Figure 4 | The input data and top 10 search results. A comparison is made between the input data from the three seismic stations with the

Global CMT solution (red) and the top 10 search results (black). The solution sequence index and maximum cross-correlation values are on the left.

The source depth, latitude, longitude and focal mechanism are on the right.
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among the 1,000 solutions. The source-focal mechanisms in all
10 search results are clearly close to the Global CMT solution.
Within the best 10 solutions, the maximum cross-correlation
value decreases from 0.8695 to 0.8626; thus, their variations are
small. This suggests a certain non-uniqueness of the results,
which may be due to the limited data and observation geometry.
It is important to understand this issue for any solution, because
it defines the confidence level for that solution. Regardless, the
results indicate that source location, depth and focal mechanism

are reasonably well constrained in this case. The source-depth
and -focal mechanism estimates seem more reliable than the
location estimate in this particular case.

Figure 5 displays the best-match solutions on the test grid at a
depth of 45 km along with the Global CMT location of the entry
event (purple star). At each grid point, the figure shows focal
solution beach balls of the best matches to the entry, along with
the maximum cross-correlation coefficients (coloured). Our best
search location is Bhalf a grid interval (0.1�) from the Global
CMT location in both latitude and longitude. Plots such as Fig. 5
at multiple depths can help us to understand the solution
uncertainty in three dimensions. Figure 6 shows beach balls and
maximum cross-correlation coefficients versus depth at the best-
match surface location. The dashed line shows that our best
estimate for the source depth is 45.0 km, whereas the Global CMT
solution reports a depth of 44.4 km. The two solutions are fairly
close, which suggests that our result is consistent with the Global
CMT solution.

The curve of the maximum cross-correlation coefficient for the
best 1,000 search results is shown in brown in Fig. 7. This curve
offers a direct indication of the non-uniqueness of the search
solutions. If the curve decreases rapidly with the solutions, it
suggests that the best solution is well constrained. Otherwise, it
indicates that there are too many non-unique or approximate
solutions. In this study, the brown curve decreases reasonably
rapidly; therefore, the solution confidence is high.

We also used the event on 30 April 2014 outside the test region
to test the search engine. The cyan curve in Fig. 7 presents the
maximum cross-correlation coefficients for the best 1,000 search
results for this event. All of the maximum cross-correlation
coefficients are all below 0.40, a significantly small value. This is
simply because the events in the search data set cannot match
earthquakes outside the area sufficiently well at all three seismic
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stations. For the same reason, the search of the double-event
earthquake entry (described above) also returns low maximum
cross-correlation coefficients, as shown by the orange curve in
Fig. 7. Through more experiments with synthetic and real data,
we found that a cross-correlation coefficient of 0.70 is an effective
threshold value for this system to differentiate invalid results in
this particular area. These include situations for events outside
the data set coverage area, overlapping multiple events and large
earthquakes with complex rupture process. This suggests that the
earthquake search engine could validate the results automatically
and avoid false reporting. When the maximum cross-correlation
coefficient between an entry and its search results is below 0.70 in
these test cases, the search results are invalid. These results
suggest that either the current search database should be updated
or alternative methods are needed to process the data. For
different areas and monitoring networks, such threshold values
must be estimated and set before applying the system. If the
search database could include special events, the search engine
approach should be able to handle the situations. We shall discuss
several possibilities to improve the database.

Discussion
We have demonstrated through the Xinjiang test site that by
applying the earthquake search engine, we are able to report an
earthquake’s location, depth and source-focal mechanism in o1 s
after receiving the long-period surface wave data. Instead of one
solution, the search engine actually returns a subspace of
approximate solutions that can help us to assess the solution
confidence within a second as well. This significant improvement
in the reporting time of source-focal mechanisms could help to
issue tsunami warnings and monitor major fault activities
more effectively. In the search process, we did not discuss the
source parameter of the earthquake magnitude. This is because

event magnitude can be estimated instantly using amplitude
information37.

This new approach requires creating a search database for the
area of interest at a local or regional monitoring distance. Our
forward modelling programme is limited to a point source;
therefore, this study targets earthquakes with magnitude Mw

o7.5. However, our search engine is not inherently limited to
specific source sizes or wave types. If we can create a database that
includes simulated large earthquakes, then the search engine
would be able to find best waveform matches and help obtain
earthquake parameters. The challenge for creating such a search
database is the complexity in the dynamic rupture process of a
large earthquake. Possible solutions could include properly
weighting intermediate- and low-frequency data considering the
source size2, calculating synthetics with quasi-finite source
Green’s functions12 and defining a centroid location from the
search results with the largest variance reduction15. Some
earthquakes do repeat in history. It will also be interesting to
establish a search database using historic events with known
source information for seismically active areas.

Our case study presents input data dominated by low-
frequency surface waves. For a local or regional area with
relatively accurate three-dimensional velocity models available,
such as southern California, the earthquake search engine
presented in this study could use high-frequency body waves.
In this case, because the Green’s functions for the body waves can
be reasonably estimated, the earthquake search engine could be
used to rapidly report source-focal mechanisms (in addition to
the location and magnitude) using the first arrival P waves within
a second after receiving the data. For broad-band or high-
frequency data, aligning the P-wave arrival of the input data with
synthetics in the database is a concern. Fortunately, it is easy to
align noise-free synthetic seismograms in the database. For the
input data, we simply apply a series of small positive and negative
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shifts to the P-wave arrival and simultaneously conduct a fast
search with all the shifted entries, along with the original entry.
We pick the results associated with the smallest misfit for the final
solutions. This method helps remove the effect of an incorrect
P-wave arrival.

In this study, we select an area with a size of 5� by 5� and a
source depth from 5 to 60 km in Xinjiang, China and test our
earthquake search engine on a single CPU computer. If we
increase the size of the interest zone in any dimension or decrease
the gridding intervals for virtual source locations and focal
solutions, the search database will increase as well. Our interval
approach for calculating Green’s functions suggests that the
computation time for the synthetic data set is only associated with
distance between the hypocentre and a seismic station; thus,
having more seismic stations or networks involved does not
significantly increase the computation time. Considering the
profound and unique data information associated with body
waves and surface waves at different frequencies, we could design
multiple parallel search processes with different data information

from the same earthquake to ensure reliable results. We may also
be able to apply the search engine approach to streaming
waveform data in real time and keep updating the results as we
receive more data from the same earthquake. These ideas warrant
further study.

Methods
Computer fast search technology. The earthquake search engine presented in
this study uses fast search methods that are similar to those that have been applied
in web search engines, which are designed primarily to find text-based information
on the web, and the bulk of the search effort is in indexing and ranking a large
database20. An image search engine is similar but is based on image content, in
which the content similarity assessment, along with other supplementary
information, is used to retrieve the best matches to an entry image21–23. Internet
technologies have also inspired research in other areas. For example, Aguiar and
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with amplitudes at this sample less than the mean (0.176) are placed on the

left, those larger than the mean are placed on the right. The process is

recursively applied at each level until only one seismogram remains on

each side.
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Figure 9 | Estimating the optimal parameters for fast search. Accuracy is

defined as the percentage of the number of identical solutions between

MRKD tree and an exact search over 1,000 search results. The dashed line

marks the parameter selected. (a) For 1,000 search results, the search

accuracy versus the number of trees is presented. In total, 128 trees are

selected to produce accuracy of B76%. (b) With 128 trees, the search

accuracy for the top 1,000 solutions versus the total number of output

solutions for five random synthetic entries is shown. A total of 1,000 output

solutions are sufficient to produce an accuracy of B76%. (c) To apply PCA

dimension reduction, the plot of eigenvalues of the data covariance matrix

versus dimensions is presented. Those eigenvalues close to zero at

dimension above 100 can be removed and the resulting new data set has

only 100 dimensions without losing much information.
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Beroza38 applied an Internet ranking method to analyse earthquake waveform
similarity.

In the computer search field, the number of sampling points in data is regarded
as its ‘dimension.’ A seismogram similarity search is a high-dimensional problem
that requires a substantial effort to search for a true solution from a large data set.
Dimension-reduction methods can reduce the problem size by decreasing the
number of time samples necessary to represent the data while maintaining the
essential data characteristics39. In addition to dimension reduction, an important
approach is the development of approximate nearest-neighbour search methods
that can be orders of magnitude faster than the exact search, while still providing
near-optimal accuracy24.

Existing fast search methods are either hash- or tree-based, such as Locality-
Sensitive Hashing25 and the multiple randomized K-dimensional (MRKD) tree
method26,27. After comparing the two approaches for dealing with seismograms,
we found that the MRKD-tree method is consistently faster for various sizes of
high-dimensional seismogram data sets. Both Silpa-Anan and Hartley26 and Muja
and Lowe24 reported that the MRKD-tree method provides the best performance in
computer vision problems for processing high-dimensional data as well. Therefore,
we shall focus our effort on the MRKD-tree method in this study. This method
involves creating multiple tree structures from data sets by splitting the waveform
data in half at each level of the tree for the time sample in which the data exhibit
the greatest variance in amplitude. The database captures the most prominent
characteristics in the earthquake data with limited samples. We then search the best
matches following the tree structure when an entry arrives. The method requires
log2N comparisons to find the first candidate for the best match from one tree,
where N is the number of seismograms in the database28. Additional backtracking
effort is needed if more search returns are required.

Indexing and ranking seismograms by MRKD trees. Figure 8 illustrates how a
K-dimensional tree is created with an example of four seismograms assumed in the
database. The first arrivals of the four seismograms are picked and aligned. At each
time sample (dimension), the amplitude mean across four seismograms is
calculated. The bottom curve in Fig. 8a shows the amplitude variance relative to the
mean at each time sample. The largest amplitude variance (0.143) relative to the
mean (0.176) is found at time sample 864, which is selected to start a tree. At the
same selected time sample, seismograms with amplitudes lower than the mean
(ID¼ 1, 4) are placed on the left of a dimension node, while those with amplitudes
greater than the mean (ID¼ 2, 3) are placed on the right. The above process is
recursively applied to seismograms on the left and right separately, until only one
seismogram (leaf node) remains below any dimension node.

Figure 8b shows a two-level tree established following the above process. In
reality, multiple randomised K-D trees should be created from the same data set for
the search. To create multiple trees, we follow the approach by Muja and Lowe24

and choose another split dimension randomly from the first m dimensions in
which the data have the greatest variance. In our applications, we used the fixed
value m¼ 5 and created 128 trees from a large earthquake data set. When a query
seismogram comes in, its amplitude variance relative to the mean of the data set at
the same dimension (time sampling point) will be compared with the partitioning
value to determine to which half of the data the query data belong. This searching

process is performed among all the trees separately. At each dimension node, an
accumulated L2 distance between the input amplitude value and the mean of the
data set is calculated, and a single priority queue across all the randomised trees is
maintained by increasing the L2 distance. At each leaf node where a seismogram ID
is available on the tree, the L2 norm distance between the entry and the synthetic
seismogram is also calculated and placed in a candidate queue with increasing
distance. It requires an iterative search to find multiple approximate solutions. The
priority queue determines the seismogram to be picked for comparison in the next
iteration, and the candidate queue returns a number of results in the order of
decreasing similarity to the entry seismogram26. The idea behind this search
approach is to settle for an approximate nearest neighbour to an entry with the
highest probability, and it may not always return the exact nearest neighbours.
That principle is acceptable in seismogram matching because an exact match
to a real seismogram essentially does not exist due to our incomplete knowledge
of the 3D Earth’s structure and limited ability to accurately reproduce real
wave-propagation effects.

Optimising fast search performance. Dimension reduction is another important
effort to further speed up the search process. Its goal is to identify patterns in the
data and express the data in a compact form to highlight their similarities and
differences. Among dimension-reduction methods, principal components analysis
(PCA) has proved to be reliable for embedding the data into a linear subspace of
lower dimensionality39. To apply PCA, we first calculate the covariance matrix for
the data set and then solve its eigenvectors and eigenvalues. For a data set with
n dimensions, there should be n eigenvectors and eigenvalues. If we choose only the
first p eigenvectors associated with the top p large eigenvalues, then the final data
set has only p dimensions, without losing much information. In practice, we need
to examine the eigenvalue distribution and determine an optimal value for p.

It is important to select optimal parameters for applying a fast search method.
Figure 9 illustrates how we select the number of trees, the number of search results
and the PCA output dimensions for dealing with over 15 million synthetic
seismograms in a data set. Figure 9a shows a plot of the search accuracy versus the
number of trees applied in the MRKD-tree method for returning 1,000 results. The
search accuracy is defined as the ratio of identical solutions between the MRKD
tree and exact search over the total 1,000 search results. For 128 trees, its accuracy
is B76%, which means that out of the given 1,000 results, 760 fast search solutions
are identical to those from the exact search. This accuracy should be sufficient to
select the best waveform matches. Figure 9b presents a plot of the search accuracy
for the top 1,000 solutions versus the number of search solution candidates based
on the testing of five different synthetic earthquake entries. More search returns
yield more accurate results among the top 1,000 solutions, but it requires more
computation. Selecting 1,000 solutions and 128 trees seem to reach a good balance
between accuracy and computational effort. For the above testing data, an original
trace consists of 3,072 time samples (dimensions). Figure 9c displays a plot of the
eigenvalues versus the dimensions derived from the data covariance matrix. This
plot is needed to determine the optimal p for applying the PCA dimension
reduction discussed above. The plot suggests that the eigenvalues at dimensions
above 100 are close to zero. Thus, those eigenvectors associated with small
eigenvalues can be removed without losing much information. An optimal p of 100
is selected and the dimensions of the new data set are reduced to 100.

The performance of computer search algorithms varies widely based on
properties of the data sets24. For the three-component seismic stations, we first
normalise the waveforms and then merge the three-component data to create a
super-trace from each event. Figure 10 shows that the MRKD-tree method can find
1,000 best matches to the entry among 33 million super-traces in B0.2 s without
PCA and in B0.06 s with PCA. An exact search to calculate the L2 norm of the
misfit takes over 17min to accomplish the same job. Applying cross-correlation to
find best matches takes over 27 h. These tests are performed on a single AMD
Opteron processor 6136. As mentioned above, the MRKD-tree method requires
log2N comparisons to find the first candidate for the best match on a single tree,
where N is the number of seismograms in the database28. However, in Fig. 10 the
curves of MRKD-tree search time versus the number of earthquakes are nearly
linear in the log–log plot; this is because in practice we split the data set into
multiple smaller data sets for separate sequential searches and then merge the
results. The data sets are structured for parallel implementation in the future.
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