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We propose to use real-time EEG signal to classify happy and unhappy emotions elicited by pictures and classical music. We use
PSD as a feature and SVM as a classi�er. �e average accuracies of subject-dependent model and subject-independent model are
approximately 75.62% and 65.12%, respectively. Considering each pair of channels, temporal pair of channels (T7 and T8) gives a
better result than the other area. Considering di�erent frequency bands, high-frequency bands (Beta and Gamma) give a better
result than low-frequency bands. Considering di�erent time durations for emotion elicitation, that result from 30 seconds does not
have signi�cant di�erence compared with the result from 60 seconds. From all of these results, we implement real-time EEG-based
happiness detection system using only one pair of channels. Furthermore, we develop games based on the happiness detection
system to help user recognize and control the happiness.

1. Introduction

�e aim of human computer interaction (HCI) is to improve
the interactions between human and computers. Because
most computers lack of understanding of user’s emotions,
sometimes they are unable to respond to the user’s needs
automatically and correctly [1]. One of the most interesting
emotions is happiness. world happiness report re�ects a new
worldwide demand for more attention to happiness and
absence of misery as criteria for government policy [2]. Being
happy is related tomany positive e�ects including con�dence,
optimism, self-e�cacy, likability, activity, energy, physical
well-being, �exibility, creativity, and the ability to cope with
stress [3]. All of these bene�ts are the reasons why we should
be happy.

In the past decades, most of emotion recognition
researches have only focused on using facial expressions
and speech. However, it is easy to fake facial expressions or
change tone of speech and these signals are not continuously
available, and they di�er from using physiological signals,
which occur continuously and are hard to conceal, such as
Galvanic Skin Response (GSR), Electrocardiogram (ECG),

Skin Temperature (ST), and, especially, Electroencephalo-
gram (EEG). EEG is the signal from voltage �uctuations in
the brain, that is, the center of emotions [1, 4]. Emotions
are thought to be related with activity in brain areas that
direct our attention, motivate our behavior, and determine
the signi�cance of what is going on around us. Emotion is
related with a group of structures in the center of the brain
called limbic system, which includes amygdala, thalamus,
hypothalamus, and hippocampus [5, 6].

Electroencephalogram (EEG) is the recording of electri-
cal activity on the scalp. EEGmeasures voltage changes result-
ing from ionic current �ows within the neurons of the brain.
�ere are �vemajor brain waves distinguished by their di�er-
ent frequency bands (number of waves per second) as shown
in Figure 1.�ese frequency bands from low to high frequen-
cies, respectively, are called Delta (1–3Hz), �eta (4–7Hz),
Alpha (8–13Hz), Beta (14–30Hz), and Gamma (31–50Hz).
Figure 2 shows the 10–20 system of electrode placement,
that is, an internationally recognized method to describe and
apply the location of scalp electrodes. Each site has a letter
to identify the lobe and a number to identify the hemisphere
location [7, 8].
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Figure 1: Brainwave: (a) Delta, (b) �eta, (c) Alpha, (d) Beta, and (e) Gamma [9].
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Figure 2: International 10–20 system of electrode placement [7].

2. The Literature Review

Nowadays, the EEG-based emotion recognition researches
are highly active.�e goal of these is to �nd suitable technique
giving a good result that eventually can be implemented in
real-time emotion recognition. �e list of the EEG-based
emotion recognition researches is shown in Table 1. It is dif-
�cult to compare results among them because there are a lot
of factors thatmake di�erent results from di�erent researches
including participant, model of emotion, stimulus, feature,
temporal window, and classi�er. �e main six factors are
described next to clarify the understanding.

2.1. Participant. �e larger number of participants makes
more reliable result. Moreover, we can divide the method for
building emotion classi�cation into subject-dependent and
subject-independent models. �e second model is harder
than the �rst model due to interparticipants variability [10,
11].�e subject-dependentmodel avoids the problems related
to interparticipant but a new classi�cation model must be
built for every new user. In this research, we build both
subject-dependent and subject-independent models to com-
pare the results.

2.2.Model of Emotion. �e larger number of emotionsmakes
emotion recognition harder, and some emotionsmay overlap.
A good model of emotion should clearly separate these
emotions. Several models have been proposed such as basic
emotion and dimensional model.�emost widely used basic
emotions are the 6 basic emotions (i.e., anger, disgust, fear,
joy, sadness, and surprise) that have beenmostly used in facial
expression recognition [12].�e commondimensionalmodel
is characterized by two main dimensions (i.e., valence and
arousal). �e valence emotion ranges from negative to posi-
tive, whereas the arousal emotion ranges from calm to excited
[13].�is model is used in most researches because it is easier
to express an emotion in terms of valence and arousal rather
than basic emotions that can be confused by emotion names
[14]. As shown in Figure 3, the emotions in any coordinates of
the dimensional model are shown by facial expression. In this
research, we use the dimensional models. �e emotions used
are happy and unhappy (sad).�ehappy emotion has positive
valence and low arousal whereas the unhappy emotion has
negative valence and low arousal.

2.3. Stimulus. �ere are various methods for emotion elici-
tation, which are self-eliciting, recalling, and using external
stimulus such as picture, sound, and odor. �e widely used
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Table 1: EEG-based emotion recognition researches.

References Year Participant Emotion Stimulus Feature
Temporal
window

Classi�er Result Real time

[10] 2006
4

subject-
dependent

3 arousal classes Picture PSD — NB 58% No

[11] 2008
26

subject-
independent

4 classes (joy,
anger, sadness, and

pleasure)
Music ASM 1 s SVM 92.73% No

[20] 2009
10

subject-
dependent

2 valence classes Picture CSP 3 s SVM 93.5% No

[21] 2009
10
—

3 arousal classes Recall PSD 0.5 s SVM 63% No

[22] 2009
1

subject-
dependent

3 classes (positively
excited, negatively
excited, and calm)

Picture
statistical
features

— QDA 66.66% No

[23] 2009
3

subject-
dependent

10 classes
Self-

elicited
PSD 1 s KNN 39.97–66.74% No

[24] 2010
26

subject-
independent

4 classes (joy,
anger, sadness, and

pleasure)
Music ASM 1 s SVM 82.29% No

[25] 2010
6

subject-
dependent

2 valence classes
2 arousal classes

Music
video

PSD — SVM

58.8%
(valence)
55.7%

(arousal)

No

[26] 2010
26

subject-
dependent

4 classes (calm,
happy, sad, and

fear)

Picture
and music

SOM 2 s KNN 84.5% No

[28] 2010
15
—

2 classes
(calm-neutral and
negatively excited)

Picture HOS 2 s SVM 82% No

[29] 2010
12

subject-
dependent

2 valence classes
2 arousal classes

Sound FD — threshold — Yes

[27] 2011
20
—

5 classes (happy,
disgust, surprise,
fear, and neutral)

video clip Entropy — KNN 83.04% No

[31] 2011
6

subject-
dependent

2 valence classes Movie clip PSD 1 s SVM 87.53% No

[32] 2011
20

subject-
independent

3 classes (boredom,
engagement, and

anxiety)
Game PSD — LDA 56% No

[33] 2011
5

subject-
dependent

4 classes (joy, relax,
sad, and fear)

Movie PSD 1 s SVM 66.51% No

[34] 2011
11
—

3 valence classes Picture ASM 4 s KNN 82% No

[30] 2012
27

subject-
independent

3 valence classes
3 arousal classes

Video
PSD and
ASM

— SVM

57.0%
(valence)
52.4%

(arousal)

No

[35] 2012
32
—

2 valence classes
2 arousal classes

Music
video

PSD and
ASM

— NB

57.6%
(valence)
62.0%

(arousal)

No
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Table 1: Continued.

References Year Participant Emotion Stimulus Feature
Temporal
window

Classi�er Result Real time

[36] 2012
20

subject-
dependent

5 classes (happy,
angry, sad, relaxed,

and neutral)
Picture FD — SVM 70.5% Yes

[37] 2012
5

subject-
dependent

3 classes (positively
excited, negatively
excited, and calm)

Picture HOC — KNN 90.77% No

[38] 2012
4
—

2 valence classes
2 arousal classes

Video clip ASP — —

66.05%
(valence)
82.46%
(arousal)

No

[39] 2012
32
—

2 classes (stress and
calm)

Music
video

PSD — KNN 70.1% No

[40] 2012
36
—

3 classes
Music
video

PSD — ANN — Yes

[41] 2013
11

subject-
independent

2 valence classes Picture PSD 4 s SVM 85.41% No

∗�e feature, temporal window, and classi�er shown in this table are the sets giving the best accuracy of each research.
Feature: Power Spectral Density (PSD), Spectral Power Asymmetry (ASM), Common Spatial Pattern (CSP), Higher Order Crossings (HOC), Self-Organizing
Map (SOM), Higher Order Spectra (HOS), Fractal Dimension (FD), and Asymmetric Spatial Pattern (ASP).
Classi�er: Support Vector Machine (SVM), Näıve Bayes (NB), Quadratic Discriminant Analysis (QDA), K-Nearest Neighbors (KNN), Linear Discriminant
Analysis (LDA), Multilayer Perceptron (MLP), and Arti�cial Neural Network (ANN).
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l

Figure 3: Dimensional model of emotion [14].

databases for emotion elicitation are International A�ective
Picture System (IAPS) [15] and International Digitized Sound
System (IADS) [16]. �ese databases are generally accom-
panied by emotional evaluations from average judgments of
several people. In this research, we choose pictures from
Geneva A�ective Picture Database (GAPED) [17] and sounds
from classical emotion elicitation, because using visual-audio
stimulus gives a better result than using either visual stimulus
or audio stimulus [18].

2.4. Feature. Several signal characteristics of EEG have been
used to be the features. �e widely used feature is Power
Spectral Density (PSD), the power of the EEG signal in

focused frequency bands. In addition, others such as Spec-
tral Power Asymmetry (ASM), Common Spatial Pattern
(CSP), Higher Order Crossings (HOC), Self-OrganizingMap
(SOM), Higher Order Spectra (HOS), Fractal Dimension
(FD), Asymmetric Spatial Pattern (ASP), and Entropy have
been used as features and some give a good result. In this
research, the feature we use is PSD since it gives a good
performance in several researches as shown in Table 1, and it
uses relatively little computation, which is suitable to imple-
ment in real-time emotion recognition.

2.5. Temporal Window. �e appropriate length of temporal
window depends on a type of emotion and physiological
signal. Overall duration of emotions approximately falls
between 0.5 and 4 seconds [42]. By using unsuitable window,
the emotion may be misclassi�ed because di�erent emotions
may be covered when too long or too short periods are mea-
sured. �e existing literature does not provide suitable win-
dow size to be used to achieve optimal EEG-based emotion
recognition [4]. In this research, we use temporal window 1
second.

2.6. Classi
er. Several machine learning algorithms have
been used as emotion classi�ers such as Support Vector
Machine (SVM), Näıve Bayes (NB), Quadratic Discriminant
Analysis (QDA), K-Nearest Neighbors (KNN), Linear Dis-
criminantAnalysis (LDA), andMultilayer Perceptron (MLP).
As shown in Table 1, SVM is implemented on many emotion
classi�cation researches because of many advantages. SVM
is known to have good generalization properties and to be
insensitive to overtraining and curse of dimensionality. �e
basic training principle of SVM is �nding the optimal
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hyperplane where the expected classi�cation error of test
samples is minimized.�e optimal hyperplane is the one that
maximizes themargins. Maximizing themargins is known to
increase the generalization capability. SVM uses regulariza-
tion parameter (C) that enables accommodation to outliers
and allows errors on the training set [43]. In this research, we
use Gaussian SVM to be a classi�er.

Beside the aforementioned factors, there is a factor that
a�ects classi�cation results from di�erent researches. We
found that some researches did not separate training set and
test set completely although they did cross-validation (CV).
Because simple cross-validation method randomly selects
some data to be test set and the rest of data to be training
set, some training data and test data may be in the same trial.
Although the o�ine result is good, it does not guarantee the
online result. In online emotion recognition, the training set
is used to build the classi�cation model, and the test set is a
data from real-time EEG, so the training data and the test
data are absolutely separated. For reliable result that can be
guaranteed when using online emotion recognition, we
should separate training set and test set completely. In this
research, we use leave-one-trial-out cross-validation (LOTO-
CV) and leave-one-subject-out cross-validation (LOSO-CV)
for evaluating subject-dependent and subject-independent
models, respectively.

As shown in Table 1, most of EEG-based emotion recog-
nition researches are not for real-time implementation.�ere
are a few researches that implement real-time emotion recog-
nition such as [29, 40]. Wijeratne and Perera [40] proposed
real-time emotion detection system using EEG and facial
expression. However, the EEG signal acquisition part was
still o�ine due to their time constraints, so they used pre-
recorded EEG data instead of real-time EEG data. Liu et al.
[29] proposed real-time emotion detection system using
EEG.�e user emotions are recognized and visualized in real
time on his/her avatar. However, there is an issue in their
approach that needs to bementioned. In order to recognize an
emotion, they did not use classi�er and they only compared
the FractalDimension (FD) valueswith prede�ned threshold,
but they did not show how to de�ne that threshold.

To ful�ll these, we intend to implement EEG-based emo-
tion detection system that can be truly implemented in real-
time. Due to real-time processing, minimum computation
time is required. We compare results among each pair of
channels and di�erent frequency bands in order to reduce
insigni�cant channels and frequency bands. Furthermore, we
develop games based on the happiness detection system to
recognize and control happiness.

3. Methodology

�e process of emotion classi�cation consists of several steps
as shown in Figure 4. First of all a stimulus such as picture,
audio, and movie is needed. During experiment, the partic-
ipant is exposed to the stimuli to elicit emotion, and EEG
signal is recorded accordingly. �en artifacts that contami-
nate EEG signal are removed. �ese EEG data are analyzed
and relevant features are extracted. Some parts of data are

12
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6

Feature
extraction

Preprocessing

EEG recording

Stimulus

Feedback

Classi�cation

Figure 4: �e process of emotion classi�cation [19].

Happy
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Unhappy

60 s 60 s

Figure 5: Procedure of experiment.

trained to build classi�cation model and the rest of data,
which are test data, are classi�ed using this model.

3.1. Stimulus. Both pictures and classical music were used to
be the stimulus to elicit emotion. For pictures from GAPED
[17], we selected the 50 highest valence scored pictures to be
happy stimulus (i.e., pictures of human and animal babies as
well as nature sceneries) and the 50 lowest valence scored
pictures to be unhappy stimulus (i.e., pictures of human
concerns and animal mistreatments). For classical music, we
selected the highest and lowest valence scored pieces accord-
ing to Vempala and Russo [44] to be happy and unhappy
stimuli, respectively. �e happy and unhappy pieces were
Tritsch Tratsch Polka by Johann Strauss and Asas’ Death by
Edvard Grieg, respectively.

3.2. EEG Recording. We used 14-channels wireless EMOTIV
[45] (i.e., AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8,
O1, and O2). �e sampling rate is 128Hz.�e resolution is 16
bits (14 bits e�ective). Before recordingEEG,we put EMOTIV
on the participant’s head for a while to prevent undesired
emotions that can arise from unfamiliar or uncomfortable
feelings. �en we described the process of recording and
advised the participant to stay as still as possible to prevent
artifact that can occur frommoving the body. When the par-
ticipant was ready, we then recorded EEG and the experiment
was started. As shown in Figure 5, there were 5 trials, where
each trial consisted of one happy and one unhappy stimulus.
Each stimulus was composed of 10 pictures and 1 piece of
classical music that played along for 60 seconds. A�er that, a
blank screen was shown for 12 seconds to adjust participant’s
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ent models.

emotion to normal state and then the next stimulus was
shown.When the 5 trials were completely shown, the process
of recording ended. All these steps took approximately 15
minutes.�erewere 10 participants (i.e., 1 male and 9 females;
average age is 34.60) taking part in this experiment.

3.3. Preprocessing. �e EEG signal was �ltered using a 5th-
order sinc �lter to notch out power line noise at 50Hz and
60Hz [45]. We removed baseline of the EEG signal for each
channel so the values of the signal are distributed around 0.

3.4. Feature Extraction. �e EEG signal with window 1
second was decomposed to 5 frequency bands that are Delta
(0–4Hz), �eta (4–8Hz), Alpha (8–16Hz), Beta (16–32Hz),
and Gamma (32–64Hz) by Wavelet Transform as shown in
Table 2.�en the PSD fromeach bandwas computed to be the
feature. Since EMOTIV have 14 channels, the total features
are 70. �e features were normalized for each participant
by scaling between 0 and 1 as shown in (1) to reduce inter-
participant variability [11]:

normalize (��) =
�� − �min

�max − �min

. (1)

Since EEG signal fromeach trial has 120 seconds, there are
120 samples per trial. Due to 5 trials, there are 600 samples
per participant. With 10 participants, the total samples are
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Table 2: EEG signal decomposition.

Frequency
band

Frequency
range (Hz)

Frequency
bandwidth

(Hz)

Decomposition
level

Delta 0–4 4 A4

�eta 4–8 4 D4

Alpha 8–16 8 D3

Beta 16–32 16 D2

Gamma 32–64 32 D1

6000. All samples were labeled whether happy or unhappy
depending on the type of stimulus.

3.5. Classi
cation. Gaussian SVM with leave-one-trail-out
cross-validation (LOTO-CV) and leave-one-subject-out
cross-validation (LOSO-CV) were used to compute accuracy
for subject-dependent and subject-independent models,
respectively. In the LOTO-CV method with 5 trials, one trial
is set to be a test set and the rest to be a training set. �en the
training set is built to be a classi�cationmodel and the test set
is classi�ed using this model to evaluate accuracy. A�er that,
we repeated the process using di�erent trials as test sets, until
all of the 5 trials had been test sets. �e accuracy reported
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is the average accuracy of all 5 trials. �e appropriate para-
meters are the set giving the best average of the 5 accuracies.
In the LOSO-CV method with 10 subjects, one subject is
set to be a test set and the rest to be a training set. �en the
training set is built to be a classi�cationmodel and the test set
is classi�ed using this model to evaluate accuracy. A�er that,
we repeated the process using di�erent subjects as test sets,
until all of the 10 subjects had been test sets. �e appropriate
parameters are the set giving the best average of the 10
accuracies.�e appropriate parameters C and � of SVMwere
selected by grid search method. SVM implementation was
done using LIBSVM [46].

4. Results and Discussion

4.1. Subject-Dependent and Subject-Independent Models. We
compare subject-dependent and subject-independent accu-
racies using all features. As shown in Figure 6, we found
that most of subject-independent accuracies are lower than
subject-dependent accuracies. �e average accuracies of
subject-dependent model and subject-independent model
are 70.55% and 63.67%, respectively. We can conclude that
there are a lot of interparticipants. Di�erent subjects may
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Figure 9: Accuracy from di�erent time durations.

have di�erent patterns of EEG when emotions are elicited.
�is conclusion is consistent with [24, 36]. As a result, we
use only subject-dependentmodel to implement on real-time
happiness detection system. Furthermore, we found that all of
the older subjects (i.e., subject 2, 4, and 10; average age is 57.50)
are giving low accuracies (accuracy of subject-dependent
model lower than 65%). All of them con�rm that they were
elicited well by stimulus. We suppose as Levenson et al. [47]
found that the magnitude of change in physiological signal
was smaller in older than in younger subjects during emotion
elicitation. So the accuracies of older subjects are low. When
we exclude these older subjects, the average accuracies of
subject-dependent model and subject-independent model
are up to 75.62% and 65.12%, respectively.

4.2. Varying Pairs of Channels. We compare subject-depend-
ent accuracy among each pair of channels (i.e., AF3-AF4,
F3-F4, F7-F8, FC5-FC6, P7-P8, T7-T8, and O1-O2) using all
frequency bands. As shown in Figure 7, we found that the
highest average accuracy at 69.20% given by the pair of T7-
T8 is very close to the average accuracy given by all chan-
nels. When we exclude older subjects, the average accuracy
of T7-T8 is still highest at 72.90%. With PSD feature, we can
conclude that temporal lobe is more e�ective for classifying
happy and unhappy emotions than the others. �is conclu-
sion is consistent with [35, 48]. As a result, we can use this
pair of channels instead of fourteen channels to reduce the
number of channels and save computation time.
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4.3. Varying Frequency Bands. We compare subject-depend-
ent accuracy among di�erent frequency bands (i.e., Delta,
�eta,Alpha, Beta, andGamma) using all channels. As shown
in Figure 8, we found that the average accuracies of Beta
and Gamma are 69.83% and 71.28%, respectively, which are
clearly higher than these of the other bands.Whenwe exclude
older subjects, the average accuracies of Beta and Gamma are
still clearly higher than these of the other bands at 74.55%
and 75.90%, respectively. With PSD feature, we can conclude
that high frequency bands are more e�ective for classifying

happy and unhappy emotions than low frequency bands.�is
conclusion is consistent with [20, 31, 48]. As a result, we can
omit low-frequency bands such as Delta and �eta in order
to save computation time.

4.4. Varying Time Durations. We compare subject-depend-
ent accuracy from di�erent time durations for emotion
elicitation using all features. We consider accuracy from the
�rst 30 seconds and the last 30 seconds of each stimulus.
As shown in Figure 9, we found that the average accuracies
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Figure 12: Screenshot of AVATAR game: (a) happy and (b) unhappy.

of the �rst 30 seconds and the last 30 seconds are 69.17%
and 73.43%, respectively.Whenwe exclude older subjects, the
average accuracies of the �rst 30 seconds and the last 30
seconds are up to 74.67% and 75.48%, respectively. Some
subjects have higher accuracy in the �rst 30 seconds than the
last 30 seconds and some subjects have higher accuracy in the
last 30 seconds than the �rst 30 seconds. It shows that the
time duration to elicit emotion is di�erent depending on
subjects. Considering statistical signi�cance, we found that
result from the �rst 30 seconds does not have signi�cant
di�erence from the result from the last 30 seconds (� value >
0.05). Furthermore, result from the �rst 30 seconds does not

have signi�cant di�erence from the result from 60 seconds
(�-value > 0.05). As a result, we may reduce time to elicit
emotion from 60 to 30 seconds to save time duration for
emotion elicitation.

5. Real-Time Happiness Detection System

From the results of the tests in Section 4, we implement real-
time EEG-based happiness detection system using only one
pair of channels. Figure 10 shows the �owchart of the happi-
ness detection system that can be described as follows. �e
EEG signals with window 1 second are decomposed into
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Figure 13: Screenshot of RUNNING game.

Table 3: Level of happiness.

Happy Unhappy Emotion

0 5 Unhappy level 3

1 4 Unhappy level 2

2 3 Unhappy level 1

3 2 Happy level 1

4 1 Happy level 2

5 0 Happy level 3

5 frequency bands (i.e., Delta, �eta, Alpha, Beta, and
Gamma) by Wavelet Transform. �en we compute PSD
of each band as features. With 2 channels, there are 10
features. A�er that, each feature is normalized by scaling
between 0 and 1. �en the normalized features are inserted
to classi�cation model, built from previous experiment, to
classify emotion. �e selected appropriate parameters are
derived from LOTO-CV method from previous experi-
ment. �e system detects the happy emotion every 5 sec-
onds. Since emotion is classi�ed every second, there are 5
classi�cations. Majority vote among classi�cations is used for
system detection output. If the number of classi�cations dur-
ing consecutive 5 seconds is happy more than unhappy, the
detected emotion is happy. Otherwise, the detected emotion
is unhappy. We divide the level of emotion from happy to
unhappy depending on the number of happy classi�cations
as shown in Table 3.�e real-time happiness detection system
is implemented using BCI2000 [49] and Matlab as shown in
Figure 11. It is run on ASUS K45A with Intel Core i3-3110M
(2.4GHz, 3MB L3 Cache).

Furthermore, we develop games for recognizing and con-
trolling happiness that consist of AVATAR and RUNNING.
Both games are implemented using UINITY3D based on the
real-time happiness detection system that was presented.

AVATAR. We develop AVATAR game to demonstrate real-
time facial expression depending on user’s emotion. When
the user is happy, the program shows happy face with happy
music. Conversely, when the user is unhappy, the program
shows unhappy face with unhappy music as shown in Fig-
ure 12.�is is the game that can help user recognize the happi-
ness.

RUNNING. We develop RUNNING game. �e aim of this
game is to control the character to run as far as possiblewithin
time constraint as shown in Figure 13. �e speed of character
depends on howhappy the user is at themoment.�e happier

the user is, the more speed the character has. �e speed is
divided into 6 levels depending on the level of happiness. If
the user can sustain their happiness, the character can cover
long distance. �is is the game that can help user control the
happiness.

6. Conclusions and Future Work

In this research we propose to use real-time EEG signal to
classify happy and unhappy emotions elicited by pictures and
classical music. Considering each pair of channels and di�er-
ent frequency bands, temporal pair of channels gives a better
result than the other area does, and high frequency bands
give a better result than low frequency bands do. All of these
are bene�cial to the development of emotion classi�cation
system using minimal EEG channels in real time. From these
results, we implement real-time happiness detection system
using only one pair of channels. Furthermore, we develop
games to help users recognize and control the happy emotion
to be what they want. In the future, we will use other
physiological signals such as Galvanic Skin Response (GSR),
Electrocardiogram (ECG), and Skin Temperature (ST) com-
bined with EEG to enhance the performance of emotion
recognition in the aspect of accuracy and number of emo-
tions.
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