
I.J. Information Technology and Computer Science, 2016, 4, 1-10
Published Online April 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.04.01

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 1-10

Real Time Efficient Scheduling Algorithm for

Load Balancing in Fog Computing Environment

Manisha Verma
Department of Computer Science and Technology, UPTU University, Lucknow, U.P., India

E-mail: soni2185@gmail.com

Neelam Bhardwaj
Department of Computer Science and Technology, Hindustan Institute of Tech. & Mgmt., Agra, U.P., India

E-mail: 8.bhardwaj@gmail.com

Arun Kumar Yadav
Department of Computer Science and Technology, ITM University Gwalior, M.P., India

E-mail: arun26977@gmail.com

Abstract—Cloud computing is the new era technology,

which is entirely dependent on the internet to maintain

large applications, where data is shared over one platform

to provide better services to clients belonging to a

different organization. It ensures maximum utilization of

computational resources by making availability of data,

software and infrastructure with lower cost in a secure,

reliable and flexible manner. Though cloud computing

offers many advantages, but it suffers from certain

limitation too, that during load balancing of data in cloud

data centers the internet faces problems of network

congestion, less bandwidth utilization, fault tolerance and

security etc. To get rid out of this issue new computing

model called Fog Computing is introduced which easily

transfer sensitive data without delaying to distributed

devices. Fog is similar to the cloud only difference lies in

the fact that it is located more close to end users to

process and give response to the client in less time.

Secondly, it is beneficial to the real time streaming

applications, sensor networks, Internet of things which

need high speed and reliable internet connectivity. Our

proposed architecture introduced a new scheduling policy

for load balancing in Fog Computing environment, which

complete real tasks within deadline, increase throughput

and network utilization, maintaining data consistency

with less complexity to meet the present day demand of

end users.

Index Terms—Cloud Computing, Fog Computing, Load

balancing, Reliability, Throughput.

I. INTRODUCTION

In today’s world Cloud computing [1, 2] has made the

utilization of resources, commercial applications and

sharing of database through internet faster in academia

and industry. Cloud Computing is a web of millions of

computers which are clustered together in a distributed

and complex manner to a central remote server so as to

maintain data and applications. It is economical to end

users as they have to pay according to the service or

resource usage in utility computing basis. It is a blend of

technologies, implementing the concept of virtualization,

resource allocation, bandwidth utilization, distributed

computing, web computing, load balancing, networking

and software to provide dynamic scalability for different

categories of data and applications. It provides elasticity,

fault tolerance, high availability, reduced overhead in

multiple technologies. Cloud computing remains

independent of the software, operating system and web

browser which clients are using on their end, the only

requirement is the terminal connected to the internet. It is

gaining boom and popularity as a small organization and

IT industry, without investing huge amount of money in

hardware or software can acquire all the facilities to

survive in this competitive business world. All the

maintenance cost, storage capacity, computing power,

updating of software and other web services are managed

by cloud service provider. In Cloud Computing, all the

processes executes in parallel manner on Virtual

machines thereby making execution faster on available

resources. It delivers resources as a service, according to

different service models depending on user needs, like

Infrastructure as a service known as IAAS , Platform as a

service known as PAAS, Software as a service known as

SAAS. They all are stacked on each other and in a

combine way it is known as “XAAS” anything as a
service. It is basically an SOA (service oriented

architecture) consisting of four deployment models

1).Public Cloud 2).Private Cloud 3).Hybrid Cloud

4).Community Cloud. Public cloud has made resources

available for general public use and it is hosted on service

provider site, while on the other hand private cloud

supports specific customer that requires high security and

it is hosted mainly on Enterprise site. Hybrid Cloud is a

combination of public, private and community cloud that

are bound together, offering benefits of internal and

external hosting. Community Cloud is shared by

organizations for similar type of motives.

2 Real Time Efficient Scheduling Algorithm for Load Balancing in Fog Computing Environment

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 1-10

No doubt cloud computing offers many benefits for

enormous applications, though it has certain limitation

too. Today, high bandwidth has become essential because

of the increase in end users as a result, it led to high

latency inhibiting other end users from accessing data

faster thus affecting the cost of usage. Cloud Computing

is also facing security issues as data has to travel much

farther from cloud to end users, which increases the

probability of data loss. To overcome the limitations of

the cloud computing, a new technology has been

introduced known as Fog computing. Here below figure 1

shows the architecture of the cloud and its applications.

Fig.1. Cloud Computing Features.

Fog Computing [3] is a term proposed by CISCO

offering enormous facilities for storage, computation and

networking between sensors or end users, along with

extending cloud computing data centers to the edge of an

enterprise network. Fog computing comes into picture as

number of users and connected devices are tremendously

increasing at a very rapid rate including Internet of things

[4]. IOTs are basically a network of wireless things like

Smartphone’s, Sensors, Computers, Wearable device,

Smart cities, Smart hospitals including everyday devices

from medical devices to home appliances. Today, users

demand for an easier life and need to access heavy data

like facial and voice recognition has lead to improve

customer service for better performance.

Fog Computing will inculpates tremendous benefits in

areas of agriculture, business process optimization, deep

sea exploration, health industry, product prices, real time

intelligence, smart dust swarms, smart tattoos,

transforming the renewable energy industry, weather

forecasting and many more. Fog computing will make it

possible as it as it is a highly virtualized technology [5]

based on a real time basis and act as a intermediate layer

placed between end users and the cloud data centers

hosted within the internet. Its main features are low

latency, location awareness, distributed geographical

distribution and support for mobility and real time

interaction. To make fog computing more effective for

optimal utilization of bandwidth, and to reduce costs, we

have to equally transfer load from clients to all servers,

such that no process has to wait for a long time, so here

comes load balancing. Although many load balancing

algorithms exist with some pros and cons it has become a

major challenge in fog computing, as load has to be

balanced first between users and fog layer i.e.

intermediate layer and then between fog and cloud layer.

It attempts to speed up the execution of applications on

available resources with proper use of storage to give

quick response time to submit user request. In load

balancing, we should assure that processing unit, i.e.

virtual machines, while running the tasks should not be

overloaded or sit in idle condition as system maximum

throughput is must.

Load Balancing

Load Balancing [6] is a technique which divides the

workload across multiple computing resources such as

computers, hard drives and network. In this fair allocation

of resources of client request tried to achieve in the best

way to ensure proper utilization of resource consumption.

It also tries to fix the problem that all the processor in the

systems and every node in the network must share equal

amount of workload which is assigned to them. It can

make feasible through proper hardware or software which

can be a multilayer or a domain name system process.

The key factors which make efficient load balancing are

backup plan in case the system fails a bit, ensuring

system stability, throughput, response time, minimum

latency, minimum network delay, execution time, low

overhead , low delay and scalability.

In a Cloud computing environment different load

balancing scheduling exists among which first, is the

Batch mode heuristic scheduling algorithm where jobs

are queued in a set and collected as batches as they arrive

in the system after which they get started after a fixed

time period. Its examples are First Come First Serve

(FCFS), Min-Max algorithm, Min-Min algorithm and

Round Robin (RR) algorithm [7, 8, 9]. Second, one is

On-line mode heuristic scheduling here jobs are

scheduled individually as they arrive in the system. These

algorithms are more feasible in a cloud environment as

the systems may have different platforms and execution

speed its example is Most fit task scheduling algorithm.

Load balancing algorithm is implemented by first

estimating the total load on C.P.U, Memory and Network

together. Second, by analyzing how the nodes are

interacting with each other, their suitability as the system

by estimating load and comparing nature. Third, Load

balancer should not be a single point of failure.

It has become a necessity as the popularity of the

Internet is increasing because of more use of social

networking websites, large databases and E-Commerce as

it is leading many businesses to carry out on a daily basis

so it demands high bandwidth. It provides single Internet

service from multiple servers known as a server farm.

Our proposed algorithm will solve the issues related to

latency, bandwidth, deadline and availability of resources

in Fog environment. Here in figure 2 we are proposing an

 Real Time Efficient Scheduling Algorithm for Load Balancing in Fog Computing Environment 3

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 1-10

efficient architecture and algorithm for load balancing in

Cloud computing environment.

Fig.2. Load balancing in Cloud Computing Environment.

In section II we discuss related work concerned about

on our topic. In section III a design model for our Load

Balancing algorithm has been presented. We propose our

algorithm in section IV followed by experimental result

and the comparison in section V. Finally, we give the

conclusion in section VI respectively.

II. RELATED WORK

In this section study and review of various Load

Balancing algorithms of various authors has been done on

the basis of various parameters like bandwidth, cost,

deadline, execution time, make span, priority, reliability,

scalability, time, task length, trust, throughput. Many

efficient load balancing algorithms have been proposed in

a cloud environment, but in our proposed work we are

implementing algorithm in fog computing environment.

The fog computing environment is nothing but an

intermediate layer between cloud layer and client layer, to

make the work more feasible and efficient with limited

resources. It provides access to resources easily with less

bandwidth, time and cost as it is closer to end users. Fog

has been similar to Cloud in working, it just have been

introduced to meet the needs of users, which are

increasing at a tremendous rate so that no havoc comes in

network traffic.

Here below discussing some of load balancing

techniques in a cloud computing environment.

Maximize resource utilization in a cloud computing

environment can be achieved for good services by

considering both task priority and its length [10]. In this

high priority tasks are not given much importance

because the tasks are taken from the queue from both first

and last indexing to get a more stable system. To

schedule tasks total credit system is funded from a

combination of both credit_length calculate from task

length and credit_priority calculate from task priority.

Finally, the tasks having high credit will be executed first.

This algorithm has certain shortcomings that if the total

credits of some tasks become equal, then FCFS have to

be used along with it does not guarantee tasks to get

completed before or to its deadline.

In this analog behavior of honey bee is used to

implement efficient load balancing algorithm, in a cloud

computing environment, taking priority as the main QoS

factor, such that no process has to wait for a long time in

a queue resulting in maximum throughput and less

execution time [11]. In HBB-LB algorithm, there are two

type of bees, one is scout bees who searches the food and

after finding it out it inform other bees about its quality,

quantity and its distance from the beehive, by signaling

it through the waggle/tremble/vibration dance, the higher

its intensity the more food is available. The other is

forager bees which follow the short path used by scout

bees to reach the food location, after depleting the food

source they inform other bees about how much is still left

and thus become scout bee and this process goes on. In

the same way tasks are scheduled, here tasks and honey

bees represent virtual machines and food sources

respectively. VM’s here are categorized into three parts,

balanced overloaded, high overloaded and low over

loaded. The tasks are removed from overloaded VM’s
and they act as a honey bee which then are submitted to

under loaded VM’s depending upon how many high

priority tasks are executing there. In this only that under

loaded VM is first chosen which along with being low

overloaded have less number of priority tasks executing

on them. After proper assignment of tasks on VM,

information is globally updated so that remaining tasks

can get the required under load VM. Its enormous benefit

lies in the fact that it enhance through proper resource

utilization, giving a maximum throughput along with

maintaining other QOS factors which are based on task

priority. Its limitation is that low priority tasks have to

remain idle or wait for a long time in the queue, thus

neglecting them thereby unbalancing the balancing

workload.

A dynamic and optimized based algorithm approach is

used for load balancing [12]. In the centralized load

balancing algorithm, the central node takes the decision

of distributing the workload with fewer messages, but its

disadvantage is that if a central node fails the whole

working of the system will collapse thereby degrading the

system performance. So here, for achieving better

performance getting maximum throughput and

optimization can be considered as one of the solution.

It can be done in two ways; first it uses the complete

method where valid values are assigned to all variables to

find the result or if in case one assigned value get wrong

then it will not be considered as a solution.

Second is the incomplete solution where probability is

the key factor. The input parameters which give more

correct answers are considered as a solution. Its

characteristics lie in its simplicity, effectiveness, and

faster speed for solving problems. This approach is

named as Stochastic Hill Climbing known best for

solving the optimization problem. It has a loop which

generates random values arranged in increasing order

which is analogous to moving the uphill upwards. The

loop stops generating values when a unique upper value

4 Real Time Efficient Scheduling Algorithm for Load Balancing in Fog Computing Environment

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 1-10

or analogously a higher peak is found in uphill which no

other uphill is having in its nearby neighborhood. The

probability of the optimized solution depends on the

steepness of the uphill move. Here, continuously mapping

is set to be valid if new values getting mapped to old

ones in a set by doing a bit change in old ones fall in

some predefined criteria. The best value obtained from

the set is used for next assignment and it goes till an

optimized solution is found or stopping criteria are met.

The key components consist of candidate generator which

map solution of one candidate sets to into another based

on successor values and next is evaluation criteria which

find out the best solution and give ranks to the solution so

that it can further improve results to get the best solution.

In future, to get good results soft computing approaches

can be used in it.

Resource utilization can be done efficiently to improve

the throughput, thereby reducing the cost of an

application running in a SAAS environment without

violating service level agreements [13]. In this algorithm

tasks are bound to VM’s in such a way that they get

executed faster. Firstly, tasks are assigned priorities such

that High QoS are given low QoS value and low QoS are

given high value, thereby making task with lower value a

high priority and a vice versa. Secondly, VM’s are
assigned QoS values, such that VM’s having high MIPS
are assigned a high QoS value and low MIPS as low QoS

value. Now on the basis of minimum size and minimum

QoS value task is selected using function based on sorting.

The tasks are sorted in descending order from high MIPS

to low MIPS and after this they are assigned to a list of

VM’s which are also sorted in such a way that the first

task from task list is assigned to the first VM in VM list,

the second task to second VM in the list and in the same

way process of assignment for further tasks goes on to

other VM’s. Once all tasks have been assigned till last

VM in VM list, then the upcoming next task is assigned

to first VM and this process goes on. In this algorithm

minimal QoS parameters like execution time have been

considered, so in future other QoS factors can be added.

In a Cloud computing environment, resources can be

made fast available virtually irrespective of the time and

location along with maintaining the trust of end users [14].

Trust plays a key role in maintaining integrity of data

during data transfer through one location to another in a

cloud environment. So here this trust is maintained by

using a combination of two approaches BAT algorithm

and heuristic search. In BAT algorithm, analog behavior

of BATS is used as Bats uses sonar waves in their path to

find their prey and avoid obstacles. Sound waves after

getting emitted get transformed into another frequency by

reflecting back from the obstacles. The time delay from

emission to reflection is used for navigation. Secondly, in

heuristic search, a perfect state of harmony is found by

optimizing meta_heuristic approach in music. The

advantage of this algorithm is that it efficiently reduces

time to complete tasks.

In a Cloud computing environment, on the basis of

priority and admission control based service scheduling

policy a good optimization along with maximum

throughput can be achieved [15].In this user requests are

served in such a way that have to spend less time in a

queue thereby fully utilizing available resources. The

users which pay higher for cloud services get higher

precedence as compare to others. In future for enhancing

further performance other features can be included such

as of security and hiring resources from other cloud.

In this a framework for global server load balancing

has been proposed for managing enormous data by

replacing expensive physical network load balancers by

virtualized network load balancers [16]. The need of data

varies as per customer requirement and network service

providers deploy a load balancer dynamically in data

centers. It consists of two levels of balancing, first load

acts as a master and other acts as a slave which further

comprises of load balancer selector and network load

balancer. The network load balancer ensures high

availability of web services respectively. In this mostly

software-type load balancer is preferred over hardware-

type load balancer as its cost puts high burden on

enterprise users. Its advantage lies in the fact that web

connection limitation in single network has been resolved,

additionally, users can update algorithm by adding or

decreasing the number of load balancers. In future

performance can be further improved for large users

prevailing in internet by implementing it in hybrid cloud

environment.

Different scheduling algorithms with different QoS

parameters for different environment have been proposed

[17]. Scheduling is done to get the enormous profit and to

enhance the efficiency of work load. So for the same

different types of scheduling algorithms exist like FCFS

algorithm, Round Robin algorithm, Min-Min algorithm

and Max-Min algorithm, but the one which proves to be

most efficient is a heuristic technique. It comprises of

three stages for scheduling in a cloud computing

environment, First one, is to find out the resource, then

selecting a best target resource and finally submitting task

to the target resource.

A different scheduling algorithm based on deadline

with the perspective like cost, delay, execution time,

response time, resource utilization time and task selection

over different tools and environment have been

compared[18]. Scheduling is done to minimize response

time and fully utilizing the resources. On the basis of

deadline different types of scheduling algorithms exist

like Priority and admission control based algorithm,

Schedule –as–soon-as-possible algorithm, Preemptive

scheduling of Online real time service with task

migration, Sporadic task approach with deadline

constraints, Level based scheduling algorithm, TPD

scheduling algorithm. These proposed algorithms, are

trying to do cost optimization efficiently.

III. PROPOSED ARCHITECTURE

In a cloud computing environment, the load balancing

plays a key role for efficient resource utilization,

bandwidth and to get good response time. Load balancing

can be categorized [19] on the basis of the state of cloud

 Real Time Efficient Scheduling Algorithm for Load Balancing in Fog Computing Environment 5

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 1-10

environment like static and dynamic scheduling, on the

type of load balancer like hardware and software based,

on the basis of who initiated the process like sender,

receiver and symmetric, on the basis of policies like

information , resource ,selection, location and transfer. In

our proposed architecture, the load balancing algorithm

has been proposed in fog computing environment. In fog

computing environment, the fog servers are situated near

to the clients, thus allowing easy access of resources with

minimum response time and enormous economic benefits

in factors such as cost. Our proposed architecture has

been implemented for solving the issues related to

deadlines, execution time, data consistency and proper

resource utilization as given in figure 3.

Fig.3. A three Layer architecture for efficient Load balancing in cloud -fog environment.

To solve the issue of load balancing in a fog computing

environment, we have proposed a design model.

A. Design Model

In this model how the servers in cloud environment are

interacting with the servers in fog environment is

presented. It consists of three layers named as the client

layer, fog layer and the cloud layer. During load

balancing first we balance the load between client and the

fog layer so as to fulfill clients’ requirement of resources

with minimum delay. In Second part, if clients do not get

the required resource then the request is forwarded to the

cloud layer. Given below various intermediate steps of

First and Second portion.

Step 1: In Fog and cloud computing layer we have data

centers which comprise of hosts and hosts in turn consists

of VMs and VM manager.

Step 2: Fog computing layer consists of Fog Server

Masters (F_S_M) and Coprocessor Fog Servers in

different regions. Fog Servers on even indexes on the Fog

Server Master Table are non preemptive in nature and

dedicated to Real tasks while on odd indexes are

preemptive dedicated to Soft tasks.

Step 3: Initially, when a client sends its request, it will be

forwarded to fog server master (F_S_M) which is nearest

to its region. The threshold capacity of F_S_M used is

90 %, and rest 10 % is reserved for ideal use, for instance

suppose if all the system present in this region get

overloaded and unexpectedly real tasks arrived at F_S_M

so on during that instant of time real time tasks will be

executed on F_S_M while soft tasks are kept waiting on

the queue.

Step 4: If F_S_M fails in a worst case, then Mirror Server

of F_S_M will process Request.

Step 5: If the demand for VM requirement increases

during executing of real tasks on even coprocessor then

F_S_M by seeing its table will allocate nearby low

loaded preemptive Coprocessor so that execution of real

tasks become feasible or request be will transferred to

Ideal Coprocessors. The total threshold capacity of a

system comprises of 90 percent capacity of fog servers

6 Real Time Efficient Scheduling Algorithm for Load Balancing in Fog Computing Environment

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 1-10

and the rest 10 percent belongs to ideal servers, which

will be used when during execution of real tasks if even

index coprocessor fails.

Step 6: If during execution of Step 3 and Step 5 data

needed is not available within the same region, then

F_S_M will send an acknowledgement for Data copy to

cloud server, and also during the same time F_S_M also

checks by seeing its table which fog servers F_S are low

overloaded.

Step 7: The received data copy after used will not be

forwarded to other Fog servers or Cloud servers till

commit acknowledgement is granted by the F_S_M to

cloud servers thus maintaining consistency.

Step 8: During the worst case if all the fog servers fail,

then request will be forwarded directly to the cloud

servers.

B. Functional components

Role of F_S_M: To ensure the availability of all

Coprocessors to the client.

Role of VMs: To process the requests, which are sent

to the Fog Servers and Cloud Servers, and after

processing the results are sent back to the clients.

Role of F_S: Each region consists of Fog Servers

which in turn comprises of virtual machines that execute

the Real tasks or Soft tasks by using the Server

virtualization technique.

IV. PROPOSED WORK

The proposed algorithm, RTES pseudo code for Load

balancing in the Fog computing environment is given

below. The main objective of RTES is to efficiently

balance the load by using the available bandwidth,

executing the real tasks before they met their deadline,

and to give response to the clients in less time by using

the intermediate fog layer.

 ceven- A variable which is used to count the

number of real tasks executing on VM.

 codd- A variable which is used to count the

number of soft tasks executing on VM.

 cs - Cloud server process the request.

 c_d_m - Cloud data manager.

 copro- Coprocessor which can be preemptive or

non preemptive in nature.

 data_ava- Data available.

 data_c - Data copy.

 f- Fails.

 Idealc - Ideal coprocessor.

 indexeven- Non preemptive processor dedicated to

real tasks.

 indexodd- Preemptive processor dedicated to soft

tasks.

 Maxcap - Capacity of fog server master.

 MasterS - Master server.

 Net_TExe- Time remains left after subtracting total

spent time from total execution time.

 Net_TEvenexe- It is the net total time remains left

after execution of even tasks.

 Net_TOddexe- It is the net Total time remains left

after execution of odd tasks.

 Request if - The request from users to fog master

server.

 rem_t- Remaining time.

 Tcom- Time spent by client to connect with fog

server master.

 TRemeven- The time still remaining of a task for

proper execution on even processor.

 TRemodd- The time still remaining of a task for

proper execution on odd processor.

 TSpenteven- The time already used by a real task after

getting executed on coprocessor.

 TSpentodd- The time already used by soft task after

getting executed on coprocessor.

 Tser- Time spent by fog server master in finding

data and load of coprocessor in same region.

 Ttrans- Transferring tasks.

 TTot - Total execution time of a task.

 TTotRemeven- It is the total current sum of remaining

execution time of even tasks.

 TTotRemLow- It is the total current sum of load on

Coprocessor.

 Tn- Tasks set which is a combination of Tnreal and

Tnsoft. .

 𝜎 - Threshold capacity of the fog server master.

1. For each Request if.

2. Each Request if is sent to MasterS nearest to its Region

3. if Maxcap > 𝜎 then

 MasterS check if task is Treal or Tsoft through

 arguments if Treal then TRelease , TDeadline

 else Tsoft = TRelease

 if Treal = yes then

 Req. will be forward to indexeven copro. &&

 Net_TEvenexe = TTot – TSpent (Tcom+ Tser)

 while Tnreal execute on indexeven copro rem_t

 for i= 1 to Tnreal

 TRemeven[i] =Net_TEvenexe[i] – TSpenteven[i]

 If copro indexeven=f && TRemeven[i] =0

 then

 Updatedata = successful

 ceven ++

 else

 if indexeven= f &&TRemeven[i]>0

 then

 Tnreal – ceven will Ttrans to Idealc

 end if

 end if

 end for

 end if

 else

 if Treal != yes then

 Req. is forwarded to indexodd

 for i = 1 to Tnodd

 TRemodd[i] = Net_TOddexe[i] – TSpentodd[i]

 if copro indexodd =f &&TRemodd[i]=0 then

 Updatedata = successful

 codd++

 Real Time Efficient Scheduling Algorithm for Load Balancing in Fog Computing Environment 7

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 1-10

 else

 if indexodd = f && TRemodd[i]>0 then

 Tnodd – codd will be kept waited

 if Idealc! =available

 and TRemodd >=TTotRemLow then

 Tsoft will release Res.

 end if

 else

 if Idealc! =available

 and TRemodd <=TTotRemLow then

 execute Tsoft tasks

 end if
 else

 if Idealc =available

 and TTotRemeven = 0 then

 execute Tsoft task

 end if

 end if

 end for

 while executing of Tnreal tasks for data

 consistency call Updatedata function

 4. if Maxcap < 𝜎 then

 MasterS will forward Req to nearby server

 in the same Region

 if Treal = yes and

 ((Net_TExe=TTot - TSpent(Tcom+Tser)) <=TTotRemLow

 then

 execute Treal task

 end if

 else

 if Treal = no then

 Req. will sent to F_S_M of other Region

 end if

 Here also for data consistency call Updatedata

5. else

 if F_S_M fails then

 its Mirror Server will process Tn tasks

 end if

6. if all F_S fails then

 all Req. will be forwarded directly to CS

 end if

Algorithm for maintaining consistency of Data

Updatedata

1. while client sent Req. to MasterS

2. if data_ava = yes && copro are LOL then

 client Req. is processed.

 else

 if data_ava =no && copro are LOL then

 MasterS sent ack. to c_d_m for data_c.

 and at same time MasterS checks which

 copro are LOL.

 end if

 end if

 else

 if data_c processed = yes then

 commit ack. is sent to other copro. to fetch

 same data_c

 end if

end while

Our algorithm objective is to complete the Real tasks

before or on the QoS parameter deadline, which in itself a

very critical factor for execution of real tasks. Resource

allocation to VM’s are done in such a way that no VM

has to remain in the idle state. It also maintains data

consistency during the communication between VM’s in
the cloud layer and fog layer.

In this first the request is sent by the client to fog layer

which is far more nearer to them as compared to the

cloud layer. So this algorithm is efficient enough to

allocate the resources, minimizing the response time and

to give maximize the throughput.

V. SIMULATION SETUP AND EXPECTED RESULTS

A. Simulation Tool (CloudSim)

Our proposed RTES algorithm, have been

implemented on simulator CloudSim [20, 21] 3.0.2 to

execute tasks along with Window 7 OS, core i3 2.10 GHz

processor and NetBeans IDE 7.2.1. The results obtained

are then compared on the basis of the parameter

turnaround time with the existing task scheduling

algorithm like FCFS, Priority and Multi Objective Task

Scheduling. In this task having varying size are executed

on different number of VM’s. The VM’s created have the

processing power ranging from 1000 to 5000 MIPS while

executing task size on VM varies from 1000 to 8000.

During execution of tasks, VM gives priority to real tasks

over to soft tasks.

B. Result Comparison

Table 1. Simulation results using Turnaround time in seconds.

Turn Around Time Using

WL VM TASK RTES MOTS FCFS PRIORITY

WL 1 3 20 4.08 10 12 12

WL 2 3 50 7.46 18 22 20

WL 3 3 100 18.57 30 42 44

WL 4 3 200 37.6 62 85 80

WL 5 5 50 1.43 10 12 11

WL 6 10 100 0.88 6 7 8

The results obtained after implementing our proposed

architecture and algorithm on CloudSim by using various

workloads (WL) is shown in the above table. The detailed

result obtained by Real time effective scheduling

algorithm is compared on the basis of parameter

Turnaround time with another algorithm like Multi

Objective Task Scheduling, Priority Scheduling, First

Come First Serve of the research paper [13]. It clearly

shows that our algorithm gives the minimum amount of

Turnaround time in seconds. In this we have shown

comparison of six workloads having various numbers of

8 Real Time Efficient Scheduling Algorithm for Load Balancing in Fog Computing Environment

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 1-10

virtual machine executing different types of task. In

workload first when we execute twenty tasks on three

VM’s then total time taken by all the tasks in retrieving

data individually from cloud and fog layer is 4.08

seconds. It is quite a less time as compared to the time

taken by MOTS, FCFS and PRIORITY i.e. 10, 12, 12

seconds respectively to retrieve the data from the fog and

cloud layer for 20 tasks over three VM’s. In workload
second when fifty tasks are executed on three VM then

again the time taken by RTES i.e. 7.46 is very less as

compared to the time taken by MOTS, FCFS and

PRIORITY which is 18, 22 and 20 respectively.

Following this when we take workload third, fourth, fifth

and sixth respectively our proposed algorithm does not

affect the scalability of the system it still gives the less

amount of turnaround time. The consequently increasing

the number of VM’s and executing tasks on them does

not affect the efficiency. In the above table, we can

clearly see that in the workload third and fourth taking

the same number of VM’s and executing 100 and 200
tasks still gives the less amount of time, i.e. 18.57 and

37.6 respectively , increasing workload does not affect

the functioning of the system. In workload five when we

execute 50 tasks on 5 VM’s, by increasing the data size

up to 5000 in size fog server master still balance the load

and give total results in 1.43 seconds, it is quite less as

compared to 10, 12, 11 taken in whole number from

research paper [13] of MOTS, FCFS and PRIORITY.

The last result obtained from workload six by executing

100 tasks on 5 VM’s consisting of data size up to 3000
gives 0.88 seconds, which is still great as compared to 6,

7, 8 seconds of MOTS, FCFS and PRIORITY. RTES

algorithm implemented in our architecture does data

updating in fog layer and cloud layer in lesser amount of

time. The fog servers in fog layer give quick response to

the client requests because they are nearer to the clients

as compared to the cloud when they demand for

processed data. The increase in the intensity of client

requests does not affect the efficiency and system

throughput. Our proposed algorithm ensures proper

utilization of resources as no virtual machine has

remained in idle state during execution of tasks because

the fog server master keep track of everything like

continuously checking load on servers and allocating

proper resources to them. RTES algorithm ensures that

when the arrival intensity of real tasks increased on the

fog server master, it does not crash it and must complete

real tasks before they met their deadline. When the

system is overloaded beyond its limit, then fog server

master dispatches real tasks for execution over ideal

server and within the same time it searches in its table

which servers are low loaded so that it can allocate

resources to the future upcoming real tasks. Fog server

master categorizes the tasks into real tasks or soft tasks

by looking into its table contents and then assign them

even or odd coprocessor which are non preemptive or

preemptive in nature. It also ensures that soft tasks do not

have to wait for a long time in a queue as they too are

also important for getting maximum throughput of the

system. If the execution of real tasks becomes vital then it

can be assigned to odd coprocessor by preempting

already executing soft tasks from the odd coprocessor.

The final output of our proposed algorithm on the basis of

Turnaround time, clearly shows that our proposed

algorithm proves to be the best as compared to others as it

gives the minimum amount of execution time and lowers

it to a greater extent. The results obtained here will also

remain dependent on the system state, i.e. how many

tasks are executing on your computer, how much capacity

of ram you are using and whether you are using an Intel 7

or Dual core processor or anyone else. RTES algorithm

does not get affected by the increase in the transactions of

data, it balance the load effectively to give maximum

throughput.

Fig.4. Perfrmance evaluation of proposed scheduling algorithm with FCFS , Priority and Multi Objective Task Scheduling.

 Real Time Efficient Scheduling Algorithm for Load Balancing in Fog Computing Environment 9

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 1-10

In the above graph we can clearly see that our

proposed technique is better among existing algorithm on

the basis of Turnaround time.

VI. CONCLUSION

In our proposed work, the load balancing scheduling

algorithm has been developed in a Fog Computing

environment. Fog layer is basically an intermediate layer

between client layer and cloud layer and has been

introduced to improve the efficiency of cloud computing

environment by proper utilization of bandwidth, as data

transmitted or exchanged between cloud and fog for

processing get reduced. In fog computing environment,

the enormous amount of data of wireless objects such as

sensors and Internet of things in distributed environment

has been placed the at the edge of the cloud, so that it

allows faster accessing, give maximum throughput and

met other computing requirement of real time

applications. It’s become feasible as it has not to be

hosted and worked from a centralized cloud thereby fog

computing is also called as an edge computing. In our

proposed work, a real time efficient scheduling (RTES)

load balancing algorithm has been proposed and

implemented in the CloudSim tool in the fog computing

environment. The result obtained after implementing our

proposed architecture and algorithm are tremendously

good, it has given minimum execution time, fast response

to the client request, completing real tasks before they

met their deadline, meanwhile maintaining data

consistency along with proper resource and bandwidth

utilization as compared to the existing algorithms like

FCFS, Priority and Multi Objective Tasks scheduling

algorithm in fog computing environment. Our proposed

algorithm is 90 percent efficient and in future it can be

further improved by including other QoS factors such as

security etc.

REFERENCES

[1] Rajkumar Buyya, James Broberg and Andrzej Goscinski

CLOUD COMPUTING Principles and Paradigm, Jhon

Wiley & Sons,2011.

[2] M.D. Dikaiakos, G. Pallis, D Katsa and P.Mehra “Cloud
Computing: Distributed Internet Computing for IT and

Scientific Research”, in Proc. of IEEE Journal of Internet

Computing, Vol. 13, No. 5, pp.10-13, 2009.

[3] Ivan Stojmenovic, sheng Wen, “The Fog Computing
Paradigm: Scenarios and security issues” Proceedings of
the IEEE International Fedrerated Conference on

Computer Science and Information Systems, 2014, pp.1-8.

[4] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, Sateesh

Addepalli “Fog Computing and its Role in the internet of
things”,http://conferences.sigcomm.org/sigcomm/2012/pa

per/mcc/p13.pdf.

[5] Zhen Xiao, Senior Member, IEEE, Weijia Song, and Qi

Chen, “Dynamic Resource Allocation Using Virtual
Machines for Cloud Computing Environment”, “,IEEE
Transactions on Parallel and Distributed Systems, Vol.24,

No. 6, June 2013, pp. 1107-1117.

[6] LoadBalancing,https://en.wikipedia.org/wiki/Load_balanc

ing_%28computing%29.

[7] Aditya Marphatia, Aditi Muhnot, Tanveer Sachdeva, Esha

Shukla, Prof. Lakshmi Kurup,” Optimization of FCFS
Based Resource Provisioning Algorithm for Cloud

Computing” , IOSR Journal of Computer Engineering
(IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727 Vol.

10, Issue 5 (Mar. - Apr. 2013), PP 01-05.

[8] Chandrasekhar S. Pawar, Rajnikant B. Wagh,” Priority
Based Dynamic resource allocation in Cloud Computing

with modified Waiting Queue”, Proceeding of the IEEE
2013 International Conference on Intelligent System and

Signal Processing(ISSP) Pages 311-316.

[9] El-Sayed et al.” Extended Max-Min Scheduling Using

Petri Net and Load Balancing”,International Journal of
Soft Computing and Engineering(IJSCE) ISSN: 2231-

2307, Vol. 2, Issue 4, September 2012.

[10] Antony Thomas, Krishnalal G, Jagathy Raj V P,”Credit
Based Scheduling Algorithm in Cloud Computing

Environment”, International Conference on Information

and Communication Technologies, Procedia Computer

Science 46(2014) 913-920.

[11] Dhinesh Babu L.D, P. Venkata Krishna,”Honey bee
behavior inspired load balancing”, Elsevier, Applied Soft

Computing 13(2013) 2292-2303.

[12] Brototi Mondala, Kousik Dasguptaa, Paramartha

Duttab”Load Balancing in Cloud Computing using
Stochastic Hill Climbing-A Soft Computing Approach”,
Elsevier, Procedia Technology 4(2012) pp. 783 – 789.

[13] Atul Vikas Luthra and Dharmendra Kumar Yadav,”Multi-
Objective Tasks Scheduling Algorithm for Cloud

Computing Throughput Optimization”, International
Conference on Intelligent, Communication &

Convergence, Procedia Computer Science 48(2015) 107-

113.

[14] V. Suresh Kumar,” Trust Based Resource Selection in
Cloud Computing Using Hybrid Algorithm” I.J.
Intelligent Systems and Applications, 2015,08, 59-64.

[15] Dr. M. Dakshayini and Dr. H.S. GuruPrasad,” An Optimal
Model for priority based service Scheduling Policy for

Cloud Computing Environment”, International Journal of
Computer Applications(0975-8887) Vol. 32- No.9,

October 2011.

[16] Po-Huei Liang and Jiann-Min Yang,”Evaluation of two
level global load balancing framework in Cloud

Environment”, International Journal of Computer Science
and Information Technology(IJCSIT), Vol. 7 No 2, April

2015.

[17] Shimpy, Jagandeep Sidhu,” Different Scheduling
Algorithms In Different Cloud Environment”,
International Journal of Advanced Research in Computer

and Communication Engineering Vol. 3, Issue 9,

September 2014.

[18] Himani and Kamaljit Kaur,” Deadline Scheduling in
Cloud Computing: A Review”, International Journal of

Computer Applications(0975-8887),Vol. 96-No.24,\june

2014.

[19] Manisha Verma, Neelam Bhardwaj Arun Kumar Yadav,”
An architecture for load balancing techniques for Fog

computing environment”, International Journal of

Computer Science and Communication, Vol. 8 • Number
2 Jan - Jun 2015 pp. 43-49.

[20] Rahul Malhotra, Prince Jain,” Study and Comparison of
Various Cloud Simulators Available in the Cloud

Computing”,International Journal of Advanced Research
in Computer science and Software Engineering ISSN:

2277 128X Vol. 3, Issue 9, Sept 2013.

[21] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling And
Simulation Of Scalable Cloud Computing Environments

And The CloudSim Toolkit: Challenges And

10 Real Time Efficient Scheduling Algorithm for Load Balancing in Fog Computing Environment

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 1-10

Opportunities,” Proc. Of The 7th High Performance
Computing and Simulation Conference (HPCS 09), IEEE

Computer Society, June 2009.

Authors’ Profiles

Manisha Verma has done B. Tech in

Computer Science & Engineering from

F.E.T. Engineering College, Agra. She is

now pursuing M.Tech in Computer Science

& Engineering from Hindustan Institute

Technology & Management, Agra.

Her research interest includes

Cryptography and Network Security,

Distributed System, Object Oriented System, Cloud Computing

and Fog Computing.

Neelam Bhardwaj has done M.Sc from

Banasthali Vidyapith, Rajasthan in

Computer science & Engineering, M.Tech

in Computer Science & Engineering from

Banasthali Vidyapith, Rajasthan and

pursuing Ph.D. in Computer Science and

Engineering from MNNIT, Allahabad.

Presently she is working as Associate

Professor in the Department of Computer Science &

Engineering at H.I.T.M Agra, Uttar Pradesh, India.

Her research interest includes Digital image processing,

Pattern recognition, Cloud Computing and Fog Computing.

Arun Kumar Yadav has done B.E.

(Computer Science & Engineering) from

G.B. Pant Engineering College, Pauri

Garhwal, M.Tech (Information

Technology) from Sam Higginbotom

Institute of Agriculture, Technology &

Sciences, Allahabad and pursuing Ph.D. in

Computer Science and Engineering from

Uttarakhand Technical University, Dehradun. Presently he is

working as Associate Professor in the Department of Computer

Science & Engineering at ITM University Gwalior, Madhya

Pradesh, India.

His research interest includes Distributed Database Security,

Cloud Computing and Fog Computing. He is a senior member

of IACSIT and IAENG Technical Societies.

How to cite this paper: Manisha Verma, Neelam Bhardwaj,

Arun Kumar Yadav,"Real Time Efficient Scheduling Algorithm

for Load Balancing in Fog Computing Environment",

International Journal of Information Technology and Computer

Science(IJITCS), Vol.8, No.4, pp.1-10, 2016. DOI:

10.5815/ijitcs.2016.04.01

