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Abstract—Electric vehicles are more eco-friendly and energy
efficient than the conventional internal combustion engine vehi-
cles. This technology adds new challenge to the existing energy
distribution network. Specifically, electric vehicles are allowed
to start charging their batteries the moment they are parked
into a charging lot which creates a unpredictable load on the
energy distribution network. Ideally, the energy supply system
must always be in a state where the amount of energy consumed
is equal to the amount of energy produced. This priori is also for
the reduction of energy wastage. Hence, load forecasting serves as
an estimated preemption for the supply system. In this paper, time
series techniques for electric vehicles’ load forecasting are pro-
posed. Experiments are given using Singapore’s energy dispatch
system. A framework to provide the relevant electric vehicles’
load forecast to fulfill the timing criteria is also proposed.

I. INTRODUCTION

In this new millennium, global warming and conservation
has been foremost issue of many governments [1]. Excessive
release of greenhouse gases from various human activities was
deemed the main cause of global warming by the intergov-
ernmental panel on climate change (IPCC) [2]. As shown in
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Fig. 1. Rising global temperatures from 1880 to 2012 with NASA projection
from 2012 to 2020. Image source: NASA [3].

Fig. 1, from 1880 to 2012, the global average temperature,
inclusive of continental and oceanic, has risen by 0.85 °C
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and it is expected to further increase by 2.4 °C by 2020.
Global warming causes are linked to natural disasters and
many countries have agreed to reduce their greenhouse gases
emissions [1].

Greenhouse gases are made up of carbon dioxide, methane
and nitrous oxide; carbon dioxide (CO3) being the largest in
production [4]. One of the main contributor of CO- has been
the burning of fossil fuels [5]. Technology has vastly reduced
its emission since its beginning in the industrial revolution
[6]. However, there still exist a sizable COy production in
the world; internal combustion engine vehicles (ICEV) or
motorcars [7]. ICEV has a energy conversion efficiency at 10-
50% [8] whereas the electric vehicles (EV) has it at 30-99.9%
[9]. It is estimated that CO, emission of an ICEV is 411g
emission per mile or 257g emission per kilometer [10] and
the estimated CO, emission is 70g emission per kilometer for
electric vehicles [11].

Given the current emission situation, it is no surprise that
curbing climate change emission gases has become one of
the primary motivation auto-manufacturers to build EV [12].
They get energy from the energy distribution system, better
known as the power grid (PG). The EV is able to recharge
at any point of the grid. However, its expected load is not
known until the point of charging. This unexpected temporal
and spacial energy load poses a challenge for the PG. This is
because the amount of energy input into the PG must always
be equal to the amount of load.

Likewise, this is also a problem for retailers that requires
forecast information to meet energy trade transactions related
to the PG. Take for instance the national electricity market of
Singapore (NEMS) [13], it can be seen in Fig. 2 that energy
is traded half-hourly. In total there are 48 half hourly periods
for a day. Each period starts at the zeroth and thirtieth minute
of the hour. Demand, uniform Singapore energy price (USEP)
and other indices are also updated in the same time interval. 2
provides a graphical view of the relationship between demand
and energy prices. Most importantly, it also shows the forecast
of all the indices and also finalized values for periods passed.
Retailers depends on such information for planning their
energy trades. Every retailer has to follow the rules and timing
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Fig. 2. Daily energy demand versus price. Image source: Energy Market
Company, Singapore [13].

cut-offs if they want to participate in the energy market. For
example, retailers buying energy has to finalize their bids at
T — 4 minutes where T is the beginning of a energy dispatch
period. And the market clearing engine will clear the bids and
offers within 4 minutes. Power system operators must dispatch
the energy within the 30 minutes time periods. There cannot
be energy spill over to the next period for dispatch.

Participants of NEMS will need to work with the latest in-
formation to perform energy trades within the same half-hour
period. Some participants can simultaneously be the providers
and consumers of energy. They are known as prosumers [14].
They must optimize both their buying and selling strategy
compared to energy generators or consumers. This principle of
half-hourly decision and action processes would also apply to
all dealings and operations that involves this market; primarily
the power systems operators(PSO). The end goal is to provide
an approach to choose and approximate the amount of data
required to make an accurate forecast within a energy-market
dictated time interval.

In recent years there have been much focus using deep
learning machines in forecasting. For example, the best re-
sults in the European Energy Market 2016 (EEM2016), Price
Forecasting competition, were obtained using long-short term
memory; a form of recurrent neural networks [15]. Deep
learning networks for python have become very user friendly
these days. Especially, with tools like Keras [16] and Tensor-
flow [17], such technologies are becoming more deployable in
business; allowing people to improve on their work and not
be bogged down by its implementation details.

Since deep learning machines have high computation costs,
under given hardware resources it becomes difficult to find
the optimal answer within a time limit for real-time world
deployment. Moreover, load forecast for electric vehicles is not
straightforward as it is affected by traffic conditions, weather
and other road-related factors. It also has to fulfill the energy
dispatch timing constraint.

In this paper, the approach to use deep learning methods

within limited hardware resources and time to forecast EV’s
load is presented. Past EV’s load data is obtained using a
multi-agent system simulating EV on a road network. This is
then used as inputs to the deep learning methods. We introduce
operational time constraints to the approach. We used NEMS
as a context for relevancy to the real world. Together with the
constraints and input data, we search for the maximal amount
of data in terms of data that produces the optimal result as
well as satisfy the constraints. Finally, we conclude on the
best method for the discussed approach.

II. EXISTING SOLUTIONS

Forecasting has been used for many purposes. Forecasting
uses past data to estimate future values or trends. In modern
day, forecasting is used in weather, in finance for stock ex-
changes amongst many others. However, the use of forecasting
has been dated back as early as 650 B.C by Babylonians
attempting to make short-term weather forecasts [18].

Forecasting has been used in the areas of seismology
for earthquake prediction, land re-development for land-use
prediction, finance for credit default risks against customers
borrowing money and more recently in supply chain manage-
ment for logistic prediction; forecasting the product to be at
the right place and time. Forecasting has become integrated
into our daily lives and activities.

Even so, forecasting for EV isn’t easy because of two con-
tributing energy loads for the EV; energy consumed for trav-
eling and energy consumed for powering the air-conditioning.
The former is determined by driver behavior while the latter by
temperature. It is shown in Fig. 3 that weather forecasts are so
complex and unpredictable that a 10 days daily temperature
forecast has as little accuracy as a similar 5 days forecast.
The variance is as much as 10 °F difference on either the 5
or 10 days forecasts, if not more. And even for a day-ahead
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Fig. 3. Variance in daily temperature forecasts as observed in experiments
executed by M. Paret and E.Martz [19]. Image source: Minitab [19].

temperature forecast, there is still a difference of at least 6.2
°F [19]. This impacts greatly on the margin of error on EV
energy consumption. Forecasting EV load based on estimated
information will have even a larger margin of error.
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In general, forecasting involves deriving future information
from patterns or entropy in historical data. Voyant uses linear
regression in solar radiation forecasting to estimate the en-
ergy harvest [20]. Auto-regressive integrated moving average
with exogenous outputs (ARIMAX) has also been explored
in photo-voltaic panels energy output forecasts [21]. Both
methods can also be combined with different types of data
in Ensemble machine learning to perform the same task [22].

Deep learning has been the main forecasting method used
recently; noticeably in the energy price forecast competition
2016” [15]. The winning entry used a deep-learning method
called long-short term memory (LSTM). It is a neural network
(NN) that is able to adaptively determine if information from
an distant or closer past has more effect on the future outcome
[23]. This makes it powerful because it can keep track on the
information’s entropy and determine best when to use it.

Recurrent neural network (RNN) has also gained popularity
recently. RNN differs from traditional artificial neural network
(ANN) is that its information flow is cyclic and directed;
whereas in an ANN it is linear. Its accuracy is determined by
a fitness or reward function as opposed to verifying against
provided labels that came with the input data [24].

Multilayer perceptron (MLP) utilizes feed-forwarding tech-
nique in order to draw relationships between the input data and
output results. Commonly, layers are used as intermediaries for
information mapping. Learning is supervised through back-
propagation [25]. Traditionally, MLP is useful for solving
classification problems. However, by labeling time-series data
certain outcomes, it can also be used to treat time-series trend
analysis as a classification problem and forecast outcomes.

In this paper, an approach to use the various forecasting
methods for energy trading will be made. The best method
will be selected. It will be based on accuracy of the forecast,
time and among of time required for the computation. In order
to facilitate its use in timely dispatch of energy from the pool,
a time constraint will be placed during the computation.

III. DATA

To-date there are no real data detailing change in velocities
for the vehicles while traveling on the roads. Therefore, data
used for the energy load was obtained from simulations using
a traffic multi-agent system called MATSim [26]. For the
simulations, we use the road network system of Singapore.
The vehicles that use the road network are modeled as agents
in here. The number of vehicles and its likely usage are
determined according to professional and housing locations in
Singapore. This information can be determined from several
reports consolidated by Singapore’s ministries. The number
of cars traveling on the roads is found in vehicular figures
documented in annuals from the ministry of transport. The
homestead locations of the agents are divided accordingly to
population census from Singapore’s department of statistics.
The workforce distribution of people residing in Singapore
can be found in reports from the ministry of manpower.

Agents are intelligent entities that are capable of interacting
with their surrounding environment. They interact after self-

deciding the next action after sensory observations of their
environment. In this research, the agents are car-owners of a
city or country. The different behaviors of the agents in the
simulations were modeled based on the workforce distribution
statistics and assumptions on the daily activities of people:

Assumption 1. Everyone uses the shortest path algorithm to
get to their destination

Assumption 2. Most people will continue to use the road for
leisure or errand matters after the office hours

An example for the simulation on a typical day consists of
people using the road network system for commutes to and
from work, play, for work-related purposes under Assumption
1, running of errands and also for leisure under Assumption
2. Details on the behavior formulation can be found in this
paper [27]. The data obtained from the simulations are traveled
distances and time consumed on the roads by each vehicle and
the average flow speed of each road segment on the network.
Energy consumed by the vehicles is made up by two main
components; the energy used in traveling the physical distance
and the energy used to power all electrical components it has.
Electrical components are lightings and other electrical parts
that have a fixed energy consumption. The energy consumed
for traveling is calculated as the required force to overcome
the drag of the car in against air multiplied by the distance
traveled. The Drag’s force component [28] is given as:

Fp = (C))

where Fp is the drag force component generated, p is the mass
density of air, v is the velocity of the vehicle, Cp is the drag
coefficient and A is the reference area of the vehicle going
against air. Energy consumed is thus the product of distance
traveled dt and drag force Fp.
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Fig. 4. Aggregated EV charging load distribution over 48 hours

Air-conditioning is more difficult to calculate compared to
other electrical components. The energy consumed by it is
dependent on the varying temperatures of the day. Hence, we
developed and used a model simulating the air-conditioning
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system of a car. This potential energy is aggregated with the
traveling load to form the total consumption [27] as shown
in the Fig. 4 for all vehicles. The blue line represented
the energy consumed while traveling on the road. The red
line represent the traveling load while the green line is the
combined traveling and air-conditioning load. Both lines are
the expected load on the energy grid when the vehicle stops at
its destination. This is a note-worthy observation as it informs
the power generators that they do not need to abruptly increase
their power generation to support this new load.

IV. FORMULATING THE APPROACH

Trading on the energy pool of Singapore occurs every 30
minutes. According to its market rules, the bids for energy
trading will close 5 minutes before the end of every half
hourly. If market clearing happens fast, then the new energy
price is always given at the half hourly mark. Every energy
retailer in Singapore would have 25 minutes to derive a new
bid based on the new information for the next trade.

To formulate the above into an axiom, we use time interval
between two trading events of i seconds and a closing time
of ¢ seconds exists before each trading event. We also assume
that after the market is cleared and the latest clearing price is
publicly available in u seconds. The total amount of time d for
deriving the new bids can then be formulated as the remaining
time d after deducting ¢ and wu.

There is a constraint that is to be satisfied; in order for the
optimally computed bids to be submitted promptly, the time ¢
for deriving the optimal trading bids must be within time d.
Time ¢ is a result of running the function of forecast technique
o with data size n. Therefore, n and o determines time t.

In principle, forecast accuracy higher with more data. How-
ever, as said previously, computing time increases as the size
of input data becomes larger. Moreover, the computing time
is also affected by the learning method used. Therefore, we
need to maximize the accuracy of each methods used while
keeping to time limit d. And from the three methods, select
the one that offers the best accurate forecast. The mathematic
formulation of the above is given below in equation 2.

Og}LaSXDO f(o,n) < d, where
o ={LSTM,RNN, MLP}
V. EXPERIMENTS

In this work, RNN, MLP and LSTM are the forecasting
methods selected for study based on the literature review
conducted and explained in section 2. LSTM is derived from
RNN, but in the interest of this work, it would be good to find
out if the added layer of improvement in LSTM is worth the
additional time and resources in this scenario.

(@)

A. Experimental Setup

The charging load data is a non-continuous daily time series;
consisting of 110 days worth in total. We separated the data
into 3 groups, namely training, testing and verification data
sets. It is divided in the ratio of 6:3:1 respectively; 60%
training, 30% testing and the remaining 10% verification.

Part of the research is to investigate the effect of data size n
on the computing time t. We tested the effect of data size on
the time ¢ by varying the amount of data from 1 to 47 days.

B. Programming language and hardware

The forecasting algorithms were developed and built in
python. Libraries such as keras [16], tensorflow [17], pandas,
numpy, statsmodels and etc were used. The hardware configu-
rations that the forecasting algorithms were executed on are a
3.8 Ghz quad-core processor with a 6 MB cache, 8 GB mem-
ory and a NVIDIA GeForce GTX 1050Ti with 2GB GDDRS5.
The cuda library was invoked during tensorflow utilization to
expedite the deep-learning process of the algorithms.

C. Settings for the learning networks

RNN, MLP and LSTM were programmed using Keras [16].
The base configurations for each network was used. There
wasn’t any optimization done on finding the best parameters
that suited each learning network individually. Hence, tuned
networks may incur additional time and skew the results. The
learning function for all networks is based on root mean square
error propagation as specified within Keras [16]. Likewise, the
accuracy for all predictions is also based on root mean square
function.

VI. RESULTS
A. Computation Time Complexity

Tensorflow is able to make use of the CUDA library to
accelerate the computation time required for training and
forecasting with each model.

The computation time used by each learning network for
training and testing can be seen in Fig. 5. It is interesting
to note that LSTM as a variant of RNN required lesser
computation time to process the same amount of data and
also the computation time required to train the RNN model
increases much faster compared to LSTM and MLP. This is
due to the additional complexity incurred by bi-directional
flow of information in the hidden layers of the RNN. The
information flow in MLP is uni-directional, thus having lower
complexity. LSTM has a “forget” capability that reduces the
data processing required. Therefore, LSTM will always have
a lower computation complexity compared to RNN. In com-
paring all three models, MLP required the least computation
time compared to RNN and LSTM.

B. Accuracy

Besides being fast, there is also a need to be accurate. Fig.
6. shows the outcome of verifying the training data on itself.
This is known as recall accuracy [29]. It can be seen that
for recall MLP can be very bad at times. These are indicated
by the peaks shown in Fig. 6. Possible reasons could be due
MLP network not being able to fit data outliers in the training
phase. Hence, when recalled with the same outliers, accuracy
becomes bad.

Fig. 7. shows the results of using the trained models to
provide the forecasts. Again, it can be seen that if data
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encountered is similar to those outliers in the training set,
the accuracy will become bad. Although MLP is fast, it is
not capable of maintaining consistency in terms of prediction
variance. RNN is able maintain the consistency of prediction
variance. RNN is better in this sense but its error rates are
higher than that of LSTM, which appears to be the best model
of these three.

At this point, it can be said that even with 47 days of
data, the computation time will still be within the events’
interval time. This is however based on Singapore’s energy
market context. We need to know when the models will
become infeasible. It can be observed in Fig. 5. that amount
of additional computation time required to train the learning
model is increasing much faster for RNN than LSTM and
MLP. By extrapolating Fig. 5 for all three models, it can be
seen in Fig. 8. that RNN will become infeasible when training
with 62 days of data. MLP and LSTM are still able to take in
further amounts of data before themselves becoming infeasible
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energy market trading

to compute trade bids for Singapore’s energy market; LSTM
will become infeasible first followed by MLP.

It can be seen in Fig. 6. that LSTM has the best recall
results followed by RNN and MLP. In Fig. 7, RNN seems
to have better results when higher data amounts are used. If
in the case where not that much data is available, RNN will
not yield better results than LSTM. Therefore LSTM is able
to work for low as well as high data amounts. In view of
this, LSTM has the best consistent precision results followed
by RNN and MLP. In terms of timing, MLP uses the least
computation time for the same amount of data used across
all the methods. LSTM came in at second whereas the limit
of RNN is reached at 62 days of data point. However, MLP
performs poorly in both the recall and precision results. Hence,
therefore in terms accuracy and computation time, the deep
learning method best suited for using real-time information of
formulating energy trade bids for Singapore’s Energy Market
is LSTM.
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This methodology is useful for people that needs to develop
machine learning models for forecasting under time require-
ments. This methodology considers all constraints and tries to
reduce and uniform their variables to a singular domain. For
this paper, it was time. For example, using newly published
market information and cut-off submission of the energy
trading bids are all time constraints. In this comparison, we
also see the performance of the three methods in the context of
energy market information. The erratic precision performance
of MLP was unexpected. RNN being unable to give good
results when low data is used is also unexpected. Therefore,
this served as a validation that LSTM still performed well in
forecasting energy trading bids.

VII. CONCLUSION

This is the first study of using LSTM, MLP and RNN
in forecasting electric vehicles’ energy consumption. Further-
more, this was a study with the real world time limit of
25 minutes on computing time for forecasting the electric
vehicles’ further load. The time limit is based on Singapore’s
energy trading market. This is exactly the same amount of
time that market participants have to determine the amount of
energy to trade or sell. From Fig. 7. it is seen that LSTM has
the best forecasting accuracy with thirteen days of data. The
remaining methods requires at least twenty-five days of data
for good results to be achieved. The advantage of LSTM here
would be that it allows users to give the forecasting model a
few runs to ensure the confidence of the forecast results.

In all the learning networks, the number of hidden layers
and neurons assigned were not optimized. Therefore, for
future works, the number of hidden layers and neurons for
all three methods will be optimized for accuracy. This can
be determined by repeating the training and test protocol
illustrated in this paper with a fixed amount of data but varying
the number of hidden layers and neurons for each iteration.
The optimal data size that will produced the best accuracy
was not determined in this paper and will also be considered
for future works. From initiative results with regards to the
precision of all three learning networks, it would seem that
this search is heuristic in nature.
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