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Abstract

Trust miscalibration issues, represented by undertrust and overtrust, hinder the interaction between drivers and self-driving

vehicles. A modern challenge for automotive engineers is to avoid these trust miscalibration issues through the development

of techniques for measuring drivers’ trust in the automated driving system during real-time applications execution. One

possible approach for measuring trust is through modeling its dynamics and subsequently applying classical state estimation

methods. This paper proposes a framework for modeling the dynamics of drivers’ trust in automated driving systems and

also for estimating these varying trust levels. The estimation method integrates sensed behaviors (from the driver) through a

Kalman filter-based approach. The sensed behaviors include eye-tracking signals, the usage time of the system, and drivers’

performance on a non-driving-related task. We conducted a study (n = 80) with a simulated SAE level 3 automated driving

system, and analyzed the factors that impacted drivers’ trust in the system. Data from the user study were also used for

the identification of the trust model parameters. Results show that the proposed approach was successful in computing trust

estimates over successive interactions between the driver and the automated driving system. These results encourage the use

of strategies for modeling and estimating trust in automated driving systems. Such trust measurement technique paves a path

for the design of trust-aware automated driving systems capable of changing their behaviors to control drivers’ trust levels to

mitigate both undertrust and overtrust.
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1 Introduction

Trust is fundamental to effective collaboration between

humans and robotic systems [39]. Trust has been studied by

the human–robot interaction (HRI) community, especially

from researchers who are interested in robotic technolo-

gies acceptance and human–robot teams [8,20,39,41,51].

Researchers have been trying to understand the impacts of

robots’ behaviors on humans’ trust evolution over time [42].

Moreover, they aim to use this understanding to design robots

that are aware of humans’ trust to operate in contexts involv-

ing collaboration with those humans [7,8]. Particularly for

self-driving vehicles and automated driving systems (ADSs),

trust has been used to explore consumer attitudes and enrich

the discussion about safety perception [22]. Trust in ADSs is

directly linked to perceptions of their safety and performance,

which is vital for promoting their acceptance [29,46,53].

Trust is a highly abstract concept, and this abstractness

makes measuring trust a challenging task [25]. Popular mea-

sures of trust are typically self-reported Likert scales, based
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on subjective ratings. For example, individuals are asked

to rate their degree of trust on a scale ranging from 1 to 7

[7,16,31]. Although self-reports are a direct way to measure

trust, they also have several limitations. First, self-reporting

is affected by peoples’ individual biases, which makes a pre-

cise trust quantification hard to achieve [33]. Second, it is

difficult to obtain repeated and updated measures of trust

over time without stopping or at least interrupting the task or

activity someone is engaged in [10,52]. Specifically, it is not

reasonable to expect ADSs to repeatedly interrupt drivers and

ask them to complete a trust survey. As such, self-reported

measures of trust are not an approach that can be relied on to

assess drivers’ trust in real-time.

An alternative approach to measuring drivers’ trust through

Likert scale surveys is real-time estimation, done through

observing drivers’ actions and behaviors. However, there is

still much to learn about real-time trust estimation techniques

as the current approaches have various limitations. Current

approaches fail to provide trust measurements in scales tradi-

tionally used for trust in automation [1], or require prohibitive

sophisticated sensing and perception methods [1,26]. These

sophisticated methods include the processing of psychophys-

iological signals (e.g.: galvanic skin response), that are not

practical for the vehicular environments, where driver-ADS

interactions are likely to take place.

Considering the potential implications for ADS and

the far-reaching importance of trust estimation to HRI

researchers, our lack of knowledge in this area is a significant

gap. For example, given the difficulties involved in measuring

real-time trust in the HRI area, such techniques could prove

to be valuable across a wide range of robotic interactions

with humans. In the case of self-driving vehicles, the ability

to indirectly measure trust would open several design possi-

bilities, especially for adaptive ADSs capable of conforming

to drivers’ trust levels and modifying their own behaviors

accordingly. Trust estimations could be used in solutions

for issues related to trust miscalibration—i.e., when drivers’

trust in the ADS is not aligned with system’s actual capabili-

ties or reliability levels [11,24,31]. In a simplified approach,

trust can be inferred with only the identification and pro-

cessing of observable variables that may be measured and

processed to indicate trust levels. These observation vari-

ables essentially represent the behavioral cues present in

interactions between drivers and ADSs. However, because of

the uncertainty involved in humans’ behaviors and actions,

a successful trust estimation method must be robust to the

uncertainty present in measurements of these observation

variables. Predictive models for the variable to be estimated

can be used for the development of estimation methods that

are robust to uncertainty. Thus, there is a fundamental need

for trust dynamic models, describing: (i) how drivers’ trust

in the ADS changes over time and (ii) the factors that induce

changes in drivers’ trust in the ADS. This need highlights

the importance of developing descriptive models for trust

dynamics over the events that occur within driver-ADS inter-

actions. Ultimately, these trust dynamic models are useful for

the development of reliable trust estimation techniques.

To address this gap, this paper proposes a framework

for the estimation of drivers’ trust in ADSs in real-time.

The framework is based on observable measures of drivers’

behaviors and trust dynamic models. Although different trust

estimation approaches have been previously reported in the

literature [1,26], our method is simpler to implement. Those

previous approaches represented trust as conditional prob-

abilities. Our trust estimates, instead, are represented in a

continuous numerical scale, which is more consistent with

Muir’s scale [32] and, therefore, also more consistent with

the theoretical background on trust in automation. More-

over, our estimation framework relies on a discrete, linear

time-invariant (LTI) state-space dynamic model and on a

Kalman filter-based estimation algorithm. This formulation

makes our trust estimation framework appropriate for treat-

ing the unpredictability that characterizes drivers’ behaviors

and for the design of innovative trust controllers. The trust

dynamic model is derived from experimental data obtained

in a user experiment with a self-driving vehicle simulator.

The estimation algorithm processes observation variables

that are suitable for the driver-ADS interaction conditions.

This trust estimator is intended to provide a means for the

self-driving vehicle’s ADS to track drivers’ trust levels over

time. It enables tracking drivers’ trust levels without the need

for directly demanding drivers to provide self-reports, which

can be disruptive and impractical [25].

The remainder of this paper is organized as follows: Sect. 2

discusses relevant literature. Sections 3 and 4 establish the

theoretical basis for the development of our model and esti-

mation solution. Section 5 presents details about the user

experiment. Section 6 presents the analysis of factors that

impact trust and the procedure for trust estimation. Sections 7

and 8 discusses the results and concludes the paper.

2 RelatedWork

2.1 Trust in Automation and Trust in Robots

Trust in automation has been discussed by researchers since

it was first identified as a vital factor in supervisory con-

trol systems [40]. Formal definitions of trust in machines

came from interpersonal trust theories [3,34] and were estab-

lished by Muir in the late eighties [31]. Muir identified the

need to avoid miscalibrations of trust in decision aids “so

that [the user] neither underestimates nor overestimates its

capabilities” [31]. Her work was then extended by Lee and

Moray, who used an autoregressive moving average vector

form (ARMAV) analysis to derive a transfer function for trust
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in a simulated semi-automatic pasteurization plant [21]. The

inputs for this model were system performance (based on the

plant’s efficiency) and faults. They later focused on function

allocation problems, and found that the difference between

trust and self-confidence is crucial for users to define their

allocation strategies [23].

The theoretical background on trust in automation has

formed the basis for the development of more specific trust in

robots measurement scales. Schaefer developed a scale that

relies on the assessment of forty trust items, related to the

human, the robot and the environment where they operate

[39]. Yagoda [51] created a measurement scale consider-

ing military applications and defining a list of HRI-related

dimensions suggested by experts with extensive experience

in the field. Charalambous et al. gathered qualitative trust-

related questions focusing on the industrial human–robot

collaboration (HRC) niche, and developed a trust measure-

ment scale for that specific context [6].

In this paper, we consider the widely accepted definition

of trust as “the attitude that an agent will help achieve an indi-

vidual’s goals in a situation characterized by uncertainty and

vulnerability” [24]. This definition aligns with Muir’s stan-

dard questionnaire for trust self-reporting, which we used

for trust quantification. Trust in automation is distinct from

reliance on automation. Trust is an attitude that influences

human’s reliance behavior, characterized by engaging in

automation usage. Trust miscalibrations are likely to induce

inappropriate reliance, such as automation misuse or disuse

[24].

2.2 Dynamics of Trust and Trust Estimation

Castelfranchi and Falcone [5] define the main aspects of

trust dynamics as: how do the experiences of the trustor

agent (both positive and negative experiences) influence trust

changes; and how the instantaneous level of trust influences

its subsequent change. These aspects are especially impor-

tant when a human agent (in this case, the trustor) interacts

with a machine (i.e., the trustee). As in a dynamic system,

trust evolution is assumed to depend on the trust condition

at a time instance and on the following inputs represented

by the trustor’s experiences with the trustee [21]. Several

works have considered these basic assumptions and pre-

sented different approaches for trust dynamics modeling. The

argument-based probabilistic trust (APT) model establishes

the representation of trust as the probability of a reliable

action, given the situation and system features [9]. In the

reliance model, reliance is considered a behavior that is

influenced by trust [24]. The three-layer hierarchical model

describes trust as a result of dispositional, situational and

learned factors involved in the human–automation interac-

tion [16].

A relevant approach for modeling the dynamics of trust

is that of Hu et al. [17], who developed a linear state-

space model for the probability of trust responses within two

possible choices: trust or distrust in a virtual obstacle detec-

tion system. In addition to developing trust-related dynamic

models, researchers have tried to use different psychophys-

iological signals to estimate trust. For instance, extending

Hu’s work [17], Akash et al. [1] proposed schemes for

controlling users’ trust levels, applying electroencephalog-

raphy and galvanic skin response measurements for trust

estimation. However, psychophysiology-based methods suf-

fer from at least two drawbacks. First and foremost, when

using the reported psychophysiological methods, trust is

not directly measured. Rather, the results of that method

are conditional probabilities of achieving two states (trust

or distrust), given prior signal patterns. Although this is a

reasonable approach, previous research suggests that trust

should be directly measured and represented in a continu-

ous scale [6,19,32,39]. Second, the sensor apparatus applied

in psychophysiology-based methods is intrusive and can

influence users’ performance negatively, bringing practical

implementation issues in applications such as self-driving

vehicles.

The work presented in this paper differs from previous

research in two ways. First, we propose a model that has

trust as a continuous state variable, defined in a numerical

scale consistent with Muir’s subjective scale [32]. Second,

we propose a simpler trust sensing method that relies only on

eye-tracking as a direct measure of drivers’ behavior. Other

variables that are used for sensing are intrinsic to the integra-

tion between ADS and the non-driving-related task (NDRT)

executed by the driver.

2.3 SystemMalfunctions and Trust

When not working properly, machines that are used to iden-

tify and diagnose hazardous situations—which might trigger

human intervention—can present two distinct malfunction

types: false alarms and misses [43]. False alarms occur when

the system wrongfully diagnoses nonexistent hazards. On

the other hand, when the system does not identify the exis-

tence of a hazard and no alarm is raised, a miss occurs.

These different error types influence system users differently

[2,27,28,54], and also have distinct impacts on trust. The

influence of false alarms and misses on operators’ behaviors

was investigated by Dixon et al. [13], who has established

a relationship with users compliance and reliance behaviors.

After being exposed to false alarms, users reduced their com-

pliance behavior, delaying their response to or even ignoring

alerts from the system (the “cry wolf” effect). On the con-

trary, after misses, users allocated more attention to the task

environment [12,47,48].
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It is clear that false alarms and misses represent expe-

riences that influence drivers’ trust in ADSs. As systems

that are designed to switch vehicle control with the driver

in specific situations, ADSs rely on collision sensors that

monitor the environment to make the decision to request

drivers’ intervention. Therefore, while other performance-

related factors—such as the ADS’s driving styles [4] or

failures on different components of the ADS—could affect

drivers’ trust, we consider that those collision sensors were

the most relevant and safety critical elements in SAE level 3

ADSs. In our study, we introduce system malfunctions only

in the form of false alarms and misses on the simulated vehi-

cle’s collision warning system, while keeping other factors

such as the vehicles driving style and other failure types

unchanged and generally acceptable: the vehicle followed

the standard speed of the road, and no other type of system

failure occurred.

3 Problem Statement

Our problem is to estimate drivers’ trust in ADS from drivers’

behaviors and actions in real-time, while they operate a vehi-

cle equipped with a SAE Level 3 ADS and concurrently

perform a visually demanding NDRT. Our method must

provide continuous trust estimates that can vary over time,

capturing the dynamic nature of drivers’ trust in the ADS.

The estimation method must avoid the impractical process

of repeatedly asking drivers their levels of trust in the ADS,

and be as unobtrusive as possible for sensing drivers’ behav-

iors and actions.

4 Methods

4.1 Scope

To define the scope of our problem, we make the following

assumptions about the ADS and the driving situation:

(i) the ADS explicitly interacts with the driver in events

that occur during vehicle operation, and provides auto-

mated lane keeping, cruise speed control and collision

avoidance capabilities to the vehicle;

(ii) the NDRT device is integrated with the ADS, allowing

the ADS to monitor drivers’ NDRT performance. The

ADS can also track driver’s head and eyes orientations;

(iii) drivers can alternate between using and not using the

driving automation functions (i.e., the vehicle’s self-

driving capabilities) at any time during the operation;

(iv) when not using the driving automation functions,

drivers have to perform the driving task, and therefore

operate the vehicle in regular (non-automated) mode;

(v) using the capabilities provided by the ADS, the vehicle

autonomously drives itself when the road is free but it is

not able to maneuver around obstacles (i.e., abandoned

vehicles) on the road. Instead, the ADS warns the driver

whenever an obstacle is detected by the forward colli-

sion alarm system, at a fair reaction distance. In these

situations, drivers must take over driving control from

the ADS and maneuver around the obstacle manually

to avoid a collision; and

(vi) the forward collision alarm system is not perfectly reli-

able, meaning that both false alarms and misses can

occur, and the ADS acknowledges when these errors

occur. These false alarms and misses lead to interactions

that are likely to decrease drivers’ trust in the ADS. As

mentioned in Sect. 2.3, no other system malfunctions

were implemented in the simulation.

4.2 Solution Approach

Assuming that the variations of trust caused by the inter-

actions between the driver and the ADS can be quantified,

we decide to apply a classical Kalman filter-based continuous

state estimation approach for trust. There are three reasons for

applying a Kalman filter-based approach: (i) the fact that the

continuous output measures of the estimator could be useful

for the design of controllers and decision making algorithms

in future applications; (ii) the aforementioned well accepted

practice of using continuous numerical estimates for trust

in automated systems; and (iii) the difficulties related to the

stochasticity of drivers’ behaviors, which can be mitigated by

the Kalman filter with recurring measurements. Therefore, to

represent trust as a state variable, we need the mathematical

derivation of a state-space model that represents the dynam-

ics of trust. We assume that the dynamics of trust is influenced

by the trustor agents’ instantaneous level of trust and their

experiences over time [5].

The implementation of a Kalman filter requires the def-

inition of observation variables that can be measured and

processed in real-time. These observation variables must be

related to the variable to be estimated. Therefore, to satisfy

the ease of implementation requirements stated in Sect. 3,

we select a set of variables that were easy to sense and

suitable for being used in a vehicular spatial configuration.

The variables are: (i) the amount of time drivers spent using

the autonomous capabilities provided by the ADS, i.e., ADS

usage time ratio; (ii) the relative amount of time drivers spent

focusing on a secondary task (the NDRT), measured with an

eye-tracker device, i.e., focus time ratio [25]; and (iii) drivers’

performance on that same NDRT, i.e., NDRT performance.

The focus time ratio obtained with the eye tracker is chosen

because it is conveniently easy to be measured in a vehicle,

and has been shown to be successfully representative of trust

metrics [25]. The other variables are chosen because they are
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assumed to be proportional to trust: the more a driver trusts

an ADS, the more s/he will use it; the more a driver trusts the

ADS, the better s/he will perform on her/his NDRT.

Finally, to identify the parameters of a model for drivers

trust in ADS, we need to obtain a training dataset contain-

ing both inputs and their corresponding outputs. The outputs

must be represented by drivers’ true levels of trust in the

ADS, which we can obtain by collecting their self-reports in

a controlled user experiment. Therefore, only for the purpose

of obtaining this training dataset, we establish a procedure

for asking drivers their levels of trust in the ADS.

4.3 Definitions

To implement our solution methodology, we must firstly

define the terms that will be used in our formulation.

Definition 1 (Trial)

A trial is concluded each time the driver operates the vehicle

and reaches the end of a predefined route.

Trials are characterized by their time intervals, limited by

the instants they start and end. Denoting these by t0 and t f ,

t0 < t f , the time interval of a trial is given by [t0, t f ] ∈ R
+.

Definition 2 (Event)

An event, indexed by a k ∈ N \ {0}, is characterized each

time the ADS warns or fails to warn the driver about an

obstacle on the road. Events occur at specific time instances

tk corresponding to k, t0 < · · · < tk < · · · < t f , when the

ADS:

(i) correctly identifies an obstacle on the road and alerts

the driver to take over control;

(ii) provides a false alarm to the driver; or

(iii) misses an existent obstacle and does not warn the driver

about it.

Definition 3 (Event Signals)

The event signals are booleans L(tk), F(tk) and M(tk) cor-

responding to the event k that indicates whether the event

was:

(i) a true alarm, for which L(tk) = 1 and F(tk) = M(tk) =

0;

(ii) a false alarm, for which F(tk) = 1 and L(tk) =

M(tk) = 0; or

(iii) a miss, for which M(tk) = 1 and L(tk) = F(tk) = 0.

Definition 4 (Instantaneous Trust in ADS)

Drivers’ instantaneous trust in ADS at the time instance t ,

t0 ≤ t ≤ t f is a scalar quantity, denoted by T (t).

T (t) is computed from trust variation self-reports and

from questionnaires answered by the driver, adapted from

the work by Muir and Moray [32]. We re-scale the numer-

ical range of the survey responses to constrain T (t) ∈

[Tmin, Tmax ], and arbitrarily choose Tmin = 0 and Tmax =

100. We also assume that T (t) is immutable between two

events, i.e., for tk ≤ t < tk+1. We consider T (t) to be our

basis for the development of the proposed trust estimator.

Definition 5 (Instantaneous Estimate of Trust in ADS)

The estimate of trust in ADS at the time instance t , t0 ≤ t ≤ t f

is the output of the trust estimator to be proposed, and is

represented by T̂ (t). Its associated covariance is denoted by

�̂T (t).

Definition 6 (Focus)

Drivers’ focus on the NDRT, represented by ϕ(tk), is the

percentage of time the driver spends looking at the NDRT

screen during the interval [tk, tk+1).

Definition 7 (ADS Usage)

Drivers’ ADS usage, represented by υ(tk), is defined by the

percentage of time the driver spends using the ADS self-

driving capabilities during the interval [tk, tk+1).

Definition 8 (NDRT Performance)

Drivers’ NDRT performance, represented by π(tk), is the

total points obtained by the driver in the NDRT during the

interval [tk, tk+1) divided by �tk = tk+1 − tk .

We also call ϕ(tk), υ(tk), and π(tk) our observation vari-

ables.

Figure 1 shows a timeline scale that represents events

within a trial. The NDRT and its score policies are explained

in Sect. 5.

4.4 Trust Dynamics Model

To translate Castelfranchi’s and Falcone’s main aspects of

trust dynamics [5] into mathematical terms, we must rep-

resent the experiences of the trustor agent, the subsequent

change in trust, and relate those variables. Describing the

user experiences with the passing time and the event signals
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Fig. 1 Timeline example for the stated problem. The event k − 1 is a
true alarm (there is an obstacle car and the ADS warns the driver about
it); the event k is a false alarm (there is no car but the ADS also warns
the driver); and the event k + 1 is a miss (there is an obstacle car and
the ADS does not warn the driver about it)

while also considering their discrete nature, we can expect a

general relationship with the form represented by Equation

(1),

T (tk+1) = f (tk, T (tk), L(tk), F(tk), M(tk)) , (1)

where f : [t0, t f ] × [Tmin, Tmax ] × {0, 1}3 → [Tmin, Tmax ].

Additionally, we can expect the relationship between

observations and trust to take the form represented by Equa-

tion (2),

⎡

⎣

ϕ(tk)

υ(tk)

π(tk)

⎤

⎦ = h(tk, T (tk), L(tk), F(tk), M(tk)) , (2)

where h : [t0, t f ] × [Tmin, Tmax ] × {0, 1}3 → [0, 1]2 × R.

For simplicity, we assume the functions f and h to be

linear, time-invariant, with additional random terms repre-

senting drivers’ individual biases. Moreover, we model trust

and the observation variables as Gaussian variables, and con-

sider the observations to be independent of the event signals

and within each other, representing the dynamics of trust in

the ADS with the LTI system state-space model in Equations

(3),

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T (tk+1) = AT (tk) + B

⎡

⎣

L(tk)

F(tk)

M(tk)

⎤

⎦ + u(tk) ;

⎡

⎣

ϕ(tk)

υ(tk)

π(tk)

⎤

⎦ = CT (tk) + w(tk) ,

(3)

where A =
[

a11

]

∈ R
1×1, B =

[

b11 b12 b13

]

∈ R
1×3,

C =
[

c11 c21 c31

]⊤
∈ R

3×1, u(tk) ∼ N (0, σ 2
u ) and w(tk) ∼

N (0,�w).

Fig. 2 Block diagram representing the trust estimation framework. The
event signals L , F and M indicate the occurrence of a true alarm, a false
alarm or a miss. The observations ϕ, υ and π represent the drivers’
behaviors. T is drivers’ trust in ADS while T̂ and �̂T are the estimates
of trust in ADS and the covariance of this estimate. A delay of one event
is represented by the z−1 block

4.5 Trust Estimator Design

The state-space structure permits the application of Kalman

filter-based techniques for the estimator design. We then pro-

pose the procedure presented in Algorithm 1. Figure 2 shows

a block diagram representation of this framework, highlight-

ing the trust estimator role in the interaction between the

driver and the ADS.

Algorithm 1 Trust Estimator

1: procedure Trust_Estimation(T̂ (tk), �̂T (tk),

L(tk), F(tk), M(tk), ϕ(tk), υ(tk), π(tk))
2: if k = 0 then

3: T̂ (t0) ← (C⊤C)−1C⊤

⎡

⎣

ϕ(t0)

υ(t0)

π(t0)

⎤

⎦

4: �̂T (t0) ← 1 ⊲ Initializes trust estimate and co-variance
5: else

6: K ← �̂T (tk)C
⊤(C�̂T (tk)C

⊤ + �w)−1 ⊲ Measurement
update starting with Kalman gain computation

7:

⎡

⎣

ϕ̂(tk)

υ̂(tk)

π̂(tk)

⎤

⎦ ← CT̂ (tk)

8: v ←

⎡

⎣

ϕ(tk)

υ(tk)

π(tk)

⎤

⎦ −

⎡

⎣

ϕ̂(tk)

υ̂(tk)

π̂(tk)

⎤

⎦ ⊲ Innovation

9: T (tk) ← T̂ (tk) + K v

10: �T (tk) ← �̂T (tk) − K C�̂T (tk)

11: T̂ (tk+1) ← AT (tk) + B

⎡

⎣

L(tk)

F(tk)

M(tk)

⎤

⎦ ⊲ Time Update

12: �̂T (tk+1) ← A�T (tk)A
⊤ + σu

13: end if

14: return T̂ (tk+1), �̂T (tk+1)

15: end procedure
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5 User Study and Data Collection

We reproduced the situation characterized in Sect. 4 with

the use of an ADS simulator. A total of 80 participants were

recruited (aged 18–51, M = 25.0, SD = 5.7, 52 male,

26 female and 2 who preferred not to specify their gen-

ders). Participants were recruited via email and printed poster

advertising. All regulatory ethical precautions were taken.

The research was reviewed and approved by the University

of Michigan’s Institutional Review Board (IRB).

5.1 Experiment and Data Collection

5.1.1 Study Design

We employed a 4 (ADS error types) × 2 (road shapes) mixed

user experimental design. Each participant experienced 2 tri-

als, and each trial had 12 events. These 2 trials had the same

ADS error type (between-subjects condition) and 2 differ-

ent road shapes (within-subjects condition). The ADS error

types that varied between subjects corresponded to 4 dif-

ferent conditions: control, for which all 12 events were true

alarms; false alarms only, for which the 2nd, 3rd, 5th, and 8th

events were false alarms; misses only, for which the 2nd, 3rd,

5th, and 8th events were misses; and false alarms and misses

combined condition, for which the 2nd and 5th events were

false alarms, while the 3rd and 8th events were misses. The

ADS error type was assigned according to the participants’

sequential identification number. The road shapes were rep-

resented by straight and curvy roads, and were assigned in

alternating order to minimize learning and ordering effects.

5.1.2 Tasks

We used a driving simulation designed and implemented with

the Autonomous Navigation Virtual Environment Laboratory

(ANVEL) simulator [14]. The NDRT was an adapted ver-

sion of the Surrogate Reference Task [18], implemented with

the Psychology Experiment Building Language (PEBL) [30].

Figure 3a shows the experimental setup with the tasks per-

formed by the driver.

In the driving task, participants operated a simulated vehi-

cle equipped with an ADS that provided it automatic lane

keeping, cruise control, and collision avoidance features. Par-

ticipants were able to activate the ADS (starting autonomous

driving mode) by pressing a button on the steering wheel,

and to take back control by braking or by steering. Figure 3b

shows the driving task interface with the driver.

With the ADS activated (i.e., with the vehicle in self-

driving mode), participants were expected to execute the

visual search NDRT. They were not allowed to engage in

both driving and executing the NDRT simultaneously, and

the experimenters would stop the test if they did so. Par-

ticipants were informed that the vehicle could request their

intervention if they identified obstacles on the road, as it is

expected for Level 3 ADSs [36]. They needed to find a “Q”

character among several other “O” characters, and obtained

1 point for each correctly chosen “Q”. Figure 3c shows the

NDRT interface with the driver.

Participants could not focus only on the NDRT, because

the ADS demanded them to occasionally take control of the

driving task. They were asked to be ready to take control

upon intervention requests from the ADS, as some obstacles

occasionally appeared on the road. At that point, the ADS

identified the obstacles and asked the driver to take control,

as the vehicle was not able to autonomously change lanes

and maneuver around them. If drivers did not take control,

the emergency brake was triggered when the vehicle got too

close to an obstacle, and then drivers lost points on their

ongoing NDRT score. In that situation, they still needed to

take control of the driving task, maneuver around the obstacle

and re-engage the autonomous driving mode. They lost 5

points each time the emergency brake was triggered.

With the events characterized by true alarms or misses,

drivers had to take control and pass the obstacle. Subse-

quently, they were asked about their “trust change”. When

asked, they had to stop the vehicle to answer the question

on a separate touchscreen. They reported their trust change

in the events characterized by true alarms, false alarms, and

misses. They had 5 choices, varying from “Decreased Sig-

nificantly” to “Increased Significantly”, as shown in Fig. 3d.

These choices were then used as indicators of the differences

�T
Q

k ∈ {−2,−1, 0, 1, 2} (we use the superscript Q to indi-

cate that the differences were quantized).

5.1.3 Procedure

Upon arrival, participants were asked to complete a con-

sent form as well as a pre-experiment survey related to

their personal information, experience with ADS, mood and

propensity to trust the ADS. After the survey, the tasks were

explained and the experimenter gave details about the exper-

iment and the simulated vehicle control. Participants then

completed a training session before the actual experiment

began and, in sequence, completed their two trials. After each

trial, participants were asked to complete post-trial surveys

related to their trust in the ADS. These surveys were admin-

istered electronically. Each trial took approximately 10 to 15

minutes, and the whole experiment lasted approximately 60

minutes.

A basic fixed level of cash compensation of $15.00 was

granted for the participants. However, they also had the pos-

sibility of receiving a performance bonus. The bonus was

calculated according to their best final NDRT score, consid-

ering both trials experienced by the participant. Those who

made up to 199 points in the NDRT did not receive a bonus.
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Fig. 3 Experimental design (a), composed of the driving task (b), the
NDRT (c) and the trust change self-report question (d). The trust change
self-report question popped up after every event within the trials (there
were 12 events per trial), including true alarms, false alarms, and misses

However, bonuses of $5.00 were granted for those who made

between 200 and 229 points; $15.00 for those who made

between 230 and 249 points; and $35.00 for those who made

250 points or more. From the total of 80 participants, 28 got

$ 5.00 bonuses, 6 participants got $ 15.00 bonuses, and no

participant got the $ 35.00 bonus.

5.1.4 Apparatus

As illustrated in Fig. 3a, the simulator setup was composed of

three LCD monitors integrated with a Logitech G-27 driving

kit. Two other smaller touchscreen monitors positioned to the

right hand of the participants were used for the NDRT and

for the trust change self-report questions. The console was

placed to face the central monitoring screen so as to create a

driving experience as close as possible to that of a real car. In

addition, we used Pupil Lab’s Pupil Core eye tracker mobile

headset, equipped with a fixed “world camera” to measure

participants’ gaze positional data.

5.1.5 Measured Variables

Measured variables included participants’ subjective

responses, behavioral responses and performance. Observa-

tion variables ϕ(tk), υ(tk) and π(tk) were also measured

and averaged for the intervals (tk, tk+1). Subjective data

was gathered through surveys before and after each trial,

including trust perception, risk perception, and workload per-

ception. We used questionnaires adapted from [32] and [35]

to measure post-trial trust and risk perception, respectively.

Eye-tracking data included eyes’ positions and orientations,

as well as videos of the participants’ fields of view.

T (tk) was computed from the post-trial trust perception

self-reports T (t f ) and the within trial trust change self-

reports �T
Q

k , as in Eq. (4),

⎧

⎪

⎪

⎨

⎪

⎪

⎩

T (t12) = T (t f ) ;

T (tk) = T (t f ) − α

12
∑

i=k+1

�T
Q

i ,
(4)

where k ∈ {0, 1, 2, . . . , 11}, and α = 3. Therefore, the trust

measures T (tk) were back-computed for the events within a

trial. The α value was chosen to characterize noticeable vari-

ations in T (tk), but also avoiding T (tk) values falling outside

the interval [Tmin, Tmax ]. Positive values for α between 1 and

3 were tested and provided results similar to those reported

in Sect. 6.

5.2 Model Parameters

Considering the formulation presented in Sect. 4 and the data

obtained in the user study, we turn to the identification of
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Table 1 Trust in ADS state-space model parameters

Parameter Value estimate S.E.Ma

a11 0.9809 4.0 × 10−3

b11 3.36 0.29

b12 − 0.61 0.32

b13 − 1.30 0.31

c11 6.87 × 10−3 3.3 × 10−4

c21 9.10 × 10−3 1.0 × 10−4

c31 4.38 × 10−3 1.0 × 10−4

σ 2
u 1.24 –

�w diag(1.0, 1.6, 1.8) × 10−3 –

aS.E.M Standard error of the mean

parameters for the trust model and the design of the trust

estimator. We found the best fit parameters for the short-

term (i.e., with respect to events) trust dynamics represented

by the state-space model in Eq. (3). From the 80 participants,

we selected 4 from the dataset—each one chosen randomly

within each of the 4 possible ADS error type conditions—

and used the data from the remaining 76 to compute the

parameters, which are presented in Table 1. We used the data

from the 4 selected participants for validation. The param-

eters of the state-space model from Eq. (3) were identified

with maximum likelihood estimation through linear mixed-

effects models. Our models included a random offset per

participant to capture their individual biases and mitigate the

effects of these biases in the results, and to represent normally

distributed random noises.

6 Results

6.1 Participants’Data Analysis

For each of the observation variables, we obtained 1920 mea-

surements (80 participants × 2 trials per participant × 12

events per trial). The parameters describing these distribu-

tions are presented in Table 2. The histograms for these

distributions are shown in Fig. 4; the probability density

functions corresponding to normal distributions N (μϕ, σ 2
ϕ ),

N (μυ , σ 2
υ ) and N (μπ , σ 2

π ) are also shown.

6.2 Trust Estimation Results

After obtaining the model parameters, we applied Algo-

rithm 1 to estimate the trust levels of the participants that were

excluded from the dataset. Figures 5a1:a4 and 6a1:a4 present

the trust estimation results for these participants (identified

as A, B, C and D). Participant A experienced the combined

ADS error type condition; participant B experienced the false

Table 2 Parameters for the Focus ϕ, ADS usage υ and NDRT perfor-
mance π measurements distributions

Parameter Distributions
ϕ υ π

Minimum 0.02 0.17 0.00

25th percentile 0.32 0.69 0.28

50th percentile 0.47 0.74 0.33

75th percentile 0.65 0.79 0.38

Maximum 0.97 0.92 0.56

Mean μ 0.49 0.73 0.32

Standard deviation σ 0.20 0.08 0.08

alarms only condition; participant C experienced the control

condition; and participant D experienced the misses only

condition. The plots bring together their two trials and the

different estimate results for each trial. For participants A

and B, trial 1 was conducted on a curvy road and trial 2 on a

straight road. For participants C and D, trial 1 was conducted

on a straight road and trial 2 on a curvy road.

The accuracy of our estimates improved over time, as the

participants interacted with the ADS. Figure 5a1 shows that,

for participant A, trial 1, the initial trust estimate T̂ (t0) and

the initial observed trust T (t0) were close to each other (in

comparison to Fig. 5a2). This means that the estimate com-

puted from the observations taken at the beginning of the

trial, i.e., ϕ(t0), υ(t0), and π(t0), approximately matched the

participants self-reported trust level. Considering the Kalman

filter’s behavior, the curves remained relatively close together

over the events, as expected. Therefore the estimate followed

the participants’ trust over the trial events. This accuracy,

however, was not achieved at the beginning of the second

trial, as can be observed in Fig. 5a2. This figure shows that,

in trial 2, T̂ (t0) and T (t0) had a greater difference, but this

difference decreased over the events as the curves converged.

A similar effect can be observed for participants B, trial 2 as

in Fig. 5a3:a4 and for participant C, as in Fig. 6a1:a2.

Participants’ responses to similar inputs were not always

coherent, and varied over time or under certain conditions.

Predominantly, participants’ self-reported trust increased

after true alarms (indicated by the prevailing positive steps

at the events that are characterized by orange circles). In

addition, after false alarms and misses, they usually reported

trust decreases (indicated by the prevailing negative steps

at the events characterized by yellow diamonds and purple

triangles). However, it is noticeable that, for participant A,

trial 2, the self-reported trust was more “stable”, as indicated

by fewer steps on the red dashed curve. Two different fac-

tors could have contributed to the less frequent variations on

T (tk): as the participant was on a straight road, the perceived

risk might not have been high enough to induce drops after

false alarms; or, as it was the participant’s second trial, the
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Fig. 4 Histograms for the Focus ϕ, ADS usage υ and NDRT per-
formance π measurements distributions and overlapping probability
density functions with corresponding means and standard deviations.

Each distribution had 1920 measurements (= 80 participants × 2 trials
per participant × 12 measurements per trial)

learning effects might have softened the self-reported trust

changes (especially after false alarms). In any case, the differ-

ence between the curve patterns in Fig. 5a1 and 5a2 suggests

a non-constancy on participant A’s characteristic behaviors.

A similar behavior was observed for participant C, trial 1

after the 8th alarm and for trial 2.

The observation variables we selected were effective in

representing drivers trusting behaviors. Figure 5b1:d4 show

the observation variables corresponding to the trust curves

in Fig. 5a1:a4, while Fig. 6b1:d4 correspond to Fig. 6a1:a4.

All observation variables have a positive correlation with

trust, and therefore it can be observed that some noticeable

peaks and drops in the observation variables correspond to

positive and negative variations in the estimate of trust in

ADS. This is especially true for counterintuitive behaviors of

the participants. For instance, as it can be seen in Fig. 5a3:d3,

after the 8th event—which was a false alarm—participant B

reported a drop in his/her trust level, indicating that T (t8) <

T (t7). However, his/her behaviors did not reflect that drop:

we can notice that ϕ(t8) > ϕ(t7), υ(t8) > υ(t7) and π(t8) >

π(t7). As a result, the trust estimate had an increase, and

eventually we had T̂ (t8) > T̂ (t7). Similar counter-intuitive

situations can be identified for participants A, C and D.

The accuracy of the estimates depends on the covariance

parameters, which can be tailored for the driver. The trust

estimate bounds represented by blue bands in Figs. 5a1:a4

and 6a1:a4 are approximations obtained with the overlay of

several simulations (100 in total). This variability is due to

the uncertainty represented by the random noise parameters

u(tk) and w(tk), and the width of the bound bands is related to

the computed covariances σ 2
u and �w. Both lower values for

σ 2
u and higher values for �w entries would imply a narrower

band, meaning that the estimator would have less variability

(and therefore could be slower on tracking trust self-reports).

Meanwhile, higher σ 2
u and lower values of �w entries would

imply, respectively, a less accurate process model and on

observations considered more reliable. This would charac-

terize wider bands, and thus the variations on the estimate

curves would be more pronounced.

Trust estimates may be more accurate with the individ-

ualization of the model parameters. Although we used the

average parameters presented in Table 1 for the results, a

comparison of Figs. 5a2, 6a1 and 6a3:a4 with Fig. 5a4, sug-

gests that the balance between σ 2
u and �w should be adapted

to each individual driver. It can be seen that these parameters

permitted a quick convergence of T (tk) and T̂ (tk) for partic-

ipants A, C and D, but that 12 events were not enough for

the estimator to track the trust self-reports from participant

B. We also computed the root-mean-square (RMS) error of

the estimate curves resulting from the 100 simulations for

participants A, B, C and D. The RMS error distributions had

the characteristics presented in Table 3.

Considering the 100-points trust range, for participant A

the error stands below 10%, while for participants B, C and D

it stands below 20%. This difference suggests that the param-

eters of the model are more suitable for participant A than

for participant B, C and D.

7 Discussion

7.1 Contributions and Implications

The goal of this paper was to propose a framework for real-

time estimation of drivers’ trust in ADS based on drivers’

behaviors and dynamic trust models. As shown by the results,

our framework successfully provides estimates of drivers’

trust in ADS that increase in accuracy over time. This

framework is based on a novel methodology that has con-

siderable advantages over previously reported approaches,

mainly related to our trust dynamics model and the simpler

methods needed for its implementation.
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Fig. 5 Trust estimation results for participants A and B. Participant A
experienced both false alarms and misses (combined ADS error type
condition) while participant B experienced false alarms only (false
alarms only condition). For both participants, the first trial was con-
ducted on a curvy road, while the second trial was conducted on a

straight road. Curves in (a1:a4) show the estimation results, indicating
that the estimator can track the trust self-reports, i.e., T̂ (tk) approaches
T (tk) over the events. This is made possible with the processing of the
observations variables focus time ratio (ϕ), ADS usage time ratio (υ),
and NDRT performance (π ) presented in (b1:d4)
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Fig. 6 Trust estimation results for participants C and D. Participant C
experienced only true alarms (control ADS error type condition) while
participant D experienced misses only (misses only condition). For both

participants, the first trial was conducted on a straight road, while the
second trial was conducted on a curvy road

First, the sensing machinery required for implementing

our methodology is as simple and as unobtrusive as possi-

ble. Considering practical aspects related to the framework

implementation, we have chosen observation variables that

are suitable for the estimation of drivers’ trust in ADS. An

eventual implementation of the proposed estimator on an

actual self-driving vehicle would depend only on the utiliza-

tion of an eye-tracking system and on the integration between

the ADS and the tasks performed by the driver. Our unique

observation variable that comes from a direct instrumenta-

tion of drivers’ behavioral patterns is the eye-tracking-based

focus on the NDRT. The other observation variables (NDRT

performance and ADS usage) are indirectly measured by the

ADS. Eye-tracking-based metrics are appropriate for trust

measuring as they do not require sensory devices that would

be impractical and/or intrusive for drivers. Although we have
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Table 3 RMS error of the estimate curves from Figs. 5 and 6

Participant Trial Mean Standard deviation

A 1 4.9 2.4

A 2 10.0 2.1

B 1 14.5 2.8

B 2 19.1 1.2

C 1 14.2 0.4

C 2 2.7 0.6

D 1 20.7 2.2

D 2 13.8 3.4

used an eye tracker device that has to be directly worn by the

participant, there exist different eye-tracking systems that do

not need to get in direct contact with the driver to sense their

gaze orientations, and could be used in a real world imple-

mentation of this framework.

Second, the results of our framework show that it can

successfully estimate drivers’ trust in ADS levels, but the

estimates accuracy were different depending on the driver.

The application of the model represented by Eq. (3) in the

trust estimator algorithm required average (population-wise)

state-space model parameters. These parameters were com-

puted with a minimization problem, and they are indications

of reasonable statistics for average values conditioned to

our pool of participants. However, these parameters could

vary drastically from driver to driver. In a more sophisticated

implementation of our modeling and estimation methodol-

ogy, the values from Table 1 should serve as preliminary

parameters only. A possible way to improve our proposed

methodology would be to the integrate it with learning algo-

rithms to adapt the model parameters to individual drivers.

Moreover, as drivers become accustomed to the ADS’s opera-

tion, these parameters might also vary over time (making the

time-invariant description from Eq. (3) not useful). There-

fore, an eventual ADS featuring our framework should also

be sufficiently flexible to track the changes in individual

drivers’ model parameters over time, as proposed in [49].

Third, the paper’s framework opens paths for more

research on the development of more complex models

and estimation techniques for trust. These techniques may

encompass both the driver-ADS context and other contexts

characterized by the interaction between humans and robots.

In the case of driver-ADS contexts, the events that trigger the

propagation of the trust state do not need to be restricted to

the forward collision alarm interactions characterized by true

alarms, false alarms and misses. A wider range of experiences

could be considered in the process model represented by Eq.

(3), such as events related to the ADS driving performance

or to external risk perceived by the ADS. Drivers could be

engaged in alternative NDRTs, as long as they are integrated

with the ADS and a continuous performance metric is defined

as observation variable. In the case of interactions between

humans and robots in different scenarios, the concepts that

were defined in Sect. 4 are easily expandable to other con-

texts. The main requirement would be the characterization

of what are the events that represent important (positive and

negative) experiences within interactions between the human

and robot. These positive and negative experiences would

generally characterize the robot’s performance, which is an

essential factor describing the basis of trust, as identified by

Lee and See [24]. Robots that execute specific tasks in goal-

oriented contexts could have their performances measured in

sequential time instances that would trigger the the transition

of the trust state. For instance, these performance measures

could be a success/failure classification, such as pick and

place task with a robotic arm [41,44,50]; or a continuous

performance evaluation, such as when a follower robot loses

track of its leader due to the accumulation of sensor error

[37,38].

Finally, the paper’s framework provides trust estimates

that are useful for the design of trust controllers to be embed-

ded in new ADSs. In our framework, trust is modeled as a

continuous state variable, which is consistent with widely

used trust scales and facilitates the processing and analysis

of trust variations over time. This trust representation permits

considering the incremental characteristics of the trust devel-

opment phenomena, which is consistent with the literature

on trust in automation and opens a path for the develop-

ment of future trust control frameworks in ADSs. Since it is

developed in the state-space form, our method for modeling

drivers’ trust in ADS enables the use of classical application-

proven techniques such as the Kalman filter-based method we

have used in Algorithm 1.

In addition, a practical implication of the proposed esti-

mation framework is that it could be used in innovative

adaptive systems capable of estimating drivers’ trust levels

and reacting in accordance with the estimates, in order to

control drivers’ trust in ADS. These functionalities would

need to involve strategies to monitor not only drivers’ behav-

iors but also the reliability of the system (for example, the

acknowledgment of false alarms and misses mentioned in

Sect. 4.1, assumption (vi)). These errors could be identified

after a sequence of confirmations or contradictions of the

sensors’ states, while the vehicle gets closer to the event posi-

tion, entering the ranges of higher accuracy of those sensors.

Moreover, the system could request the driver to provide

it feedback about issued alarms to identify its own errors,

asking confirmation about identified obstacles or enabling

quick report of missed obstacles, a functionality that is cur-

rently present in GPS navigation mobile applications [45].

Although these questions could represent an inconvenient

distraction, this strategy is not as disruptive as demand-

ing drivers to provide trust self-reports, especially during
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autonomous operation. The integration between the ADS

and the NDRTs would also be needed for the assessment

of observation variables and, eventually, actions to increase

or decrease trust in ADS could be taken to avoid trust-related

issues (such as under- and over-trust). These trust control

schemes would be useful for improving driver-ADS inter-

actions, having the goal of optimizing the safety and the

performance of the team formed by the driver and the vehicle.

7.2 Limitations

7.2.1 Trust Modeling and Estimation Methodology

A limitation of our study relates to the assumptions asso-

ciated with how we derive the state-space model for trust in

the ADS. The relationships represented by Equations (1) and

(2) restrict the experiences of the trustor agent (the driver)

to the events represented by true alarms, false alarms and

misses of the forward collision alarm. In fact, other experi-

ences such as the ADS’s continuous driving performances

can characterize events that could be represented by signals

of different types other than booleans. The simplification of

the relationships represented by (1) and (2) to the LTI sys-

tem represented by (3) is useful and convenient for the system

identification process and for the trust estimator design. How-

ever, the resulting model fails to capture some phenomena

that are likely to occur during the interactions between drivers

and ADSs. These phenomena might include the variation of

model parameters over time (i.e., after a reasonable period

of drivers’ interaction with the ADS) or the possibly nonlin-

ear relationship between trust and the observation variables.

An example is the relationship between trust and NDRT per-

formance: it is unlikely that in a more rigorous modeling

approach we could consider these variables to be directly

proportional. Usually an excess of trust (overtrust) in a sys-

tem can lead to human errors, which might eventually result

in performance drops.

7.2.2 User Study

There are several other limitations that relate to our experi-

mental study. First, most participants were young students,

very experienced with video games and other similar tech-

nologies. Our results could have been biased by these

demographic characteristics.

Second, we employed a simulator in our experimental

study. The use of a simulated driving environment is a means

of testing potentially dangerous technologies. In general,

people tend to act similarly in real and simulated environ-

ments [15]. However, due to the risks involved in driving, we

acknowledge that participants might not have felt as vulner-

able as they would if this study had been conducted in a real

car.

Finally, we employed a specific NDRT to increase the

participants’ cognitive load. The recursive visual search task

gives drivers the opportunity to switch their attention between

the driving and the NDRT very frequently. Other types of

NDRTs could demand drivers’ attention for longer periods

of time, and this could induce a different effect on trust, risk

perception or performance. The NDRT performance metric

in this study is very specific and may or may not be general-

izable to other task types.

7.3 FutureWork

Future research should focus on the use of this modeling

technique to design a trust management system composed

of the estimator and a trust controller. The trust manage-

ment system could compare the trust level estimates with the

assessed capability and reliability of the vehicle in different

situations, which would depend on the risk involved in the

operation. From the comparison, the trust calibration status

could be evaluated, and a possible mismatch between trust

and capability (or reliability) levels would indicate the need

for system reaction. This reaction would consist of actions

to manipulate trust levels, seeking to increase trust in case of

distrust (or undertrust) and to decrease it in case of overtrust.

Additional improvements to our framework may be

achieved by addressing the limitations of the reported user

study. A vehicle with autonomous capabilities can be utilized

to make the participants’ experience as similar as possible to

a realistic situation. Additionally, our methodology could be

tested in other different scenarios where the complexity of

the NDRT and of the environment are increased.

8 Conclusion

In this paper we presented a framework for the estimation

of drivers’ trust in ADSs. Our framework is applicable for

SAE level 3 ADSs, where drivers conditionally share driving

control with the system, and that system is integrated with a

visually demanding NDRT. In comparison to previous trust

estimation approaches, it has practical advantages in terms of

implementation ease and of the format of its trust estimates

outputs.

We investigated the effectiveness of the proposed frame-

work with a user study that is reported in Sect. 5. In this

user study, participants operated a simulated vehicle featur-

ing an ADS that provided self-driving capabilities for the

vehicle. Participants conducted two concurrent (driving and

non-driving) tasks, while reporting their levels of trust in the

ADS. Our goal was to establish a computational model for

drivers’ trust in ADS that permitted trust prediction during

the interactions between drivers and ADSs, considering the

behaviors of both the system and the driver. We found the
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parameters of a discrete-time, LTI state-space model for trust

in ADS. These parameters represented the average charac-

teristics of our drivers, considering the resultant experiment

dataset. With the parameters calculation it was possible to

establish a real-time trust estimator, which was able to track

the trust levels over the interactions between the drivers and

the ADS.

In summary, our results reveal that our framework was

effective for estimating drivers’ trust in ADS through the

integration of the NDRT and behavioral sensors to ADSs.

We also show, however, that a more advanced strategy for

trust estimation must take into consideration the individual

characteristics of the drivers, making systems flexible enough

to adjust their model parameters during continuous use. Our

technique opens ways for the design of smart ADSs able to

monitor and dynamically adapt their behaviors to the driver,

in order control drivers’ trust levels and improve driver-ADS

teaming. More accurate trust models can improve the per-

formance of the proposed trust estimation framework and,

therefore, are still required. However, the utilization of this

trust estimation framework can be a first step to designing

systems that can, eventually, increase safety and optimize

joint performances during the interactions between drivers

and ADSs embedded in self-driving vehicles.
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