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Abstract

Estimating a person’s energy expenditure and activity inten-

sity over time is an important component in managing vari-

ous health conditions or tracking lifestyle choices. To imple-

ment an automatic estimation, most current systems ultimately

require users to wear sensor devices. In contrast, this paper

presents a framework for the contact-free, real-time estima-

tion of energy expenditure, applicable to daily living scenar-

ios. This is a new application in real-time computer vision.

We demonstrate the effectiveness and the benefits of utilising

a basic set of features and evaluate the resulting framework on

the challenging SPHERE-calorie dataset. To ensure accurate

evaluation, automated estimates are compared against a simul-

taneously taken indirect calorimetry ground truth based on per

breath gas exchange. Following detailed experiments, we con-

clude that the proposed real-time vision pipeline is suitable for

monitoring physical activity levels in a controlled environment

with higher accuracy than the commonly used manual estima-

tion via metabolic lookup tables (METs), whilst being signifi-

cantly faster than existing automated methods.

1 Introduction

Physical activity is an important determinant in understanding

the development of chronic diseases. Current evidence-based

guidelines [19] indicate that people who are regularly physi-

cally active have a 20% to 40% lower risk of developing con-

ditions such as cardiovascular disease and type 2 diabetes than

those who are inactive, and suggest that adults should accumu-

late at least 150 minutes of moderate intensity physical activity

each week or 75 minutes of vigorous activity, or a combination

of the two.

Energy expenditure, also referred to as ‘calorific expendi-

ture’, is one commonly used single metric to quantify physical

activity levels over time. It can be accurately measured using

a calorimeter which operates based on the respiratory differ-

ences of oxygen and carbon dioxide in the inhaled and exhaled

air. Measurements can either be direct via a sealed respiratory

chamber [17] or indirect which requires carrying gas sensors

and wearing a breathing mask [1]. However, these devices are

impractical to use routinely in daily life due to their high cost,

lack of portability and cumbersomeness. On the other hand,

wearable devices have become a popular choice to measure

coarse categorisation of activity intensity levels [5]. Among

these, tri-axial accelerometers are the most broadly used iner-

tial sensors [8].

Computer vision techniques that help with the diagnosis

and management of health and wellbeing conditions have also

started to draw some research attention recently. Yet, although

there exists a significant body of literature describing the infer-

ence of activities from 2D colour intensity imagery [2], RGB-D

data [3], and skeleton-based data [16], studies on energy expen-

diture using visual sensors have been relatively limited. RGB

only video has recently been used by Edgcomb and Vahid [10]

to coarsely estimate daily energy expenditure where a sub-

ject was segmented from the scene background and changes

in height and width of the subject’s motion bounding box, to-

gether with vertical and horizontal velocities and accelerations,

were then used to estimate calorific uptake. However, we note

that their regression models were trained based on the ground

truth readings reported by wearable accelerometry, which may

provide only an approximate benchmark. Tsou and Wu [24]

took this idea further and estimated calorie consumption using

full 3D joint movements tracked as skeleton models using a Mi-

crosoft Kinect. In this setting skeleton data is commonly noisy

and currently only operates reliably when the subject faces the

camera [23], thus the method has difficulties to generalise to

more unconstrained scenarios.

The above examples exemplify that calorific uptake and

linked activity levels can often be directly related to body mo-

tion. Motion information could also be recovered directly using

the optical flow derived from two adjacent RGB images [22] or

4D surface normals [14] and more recently, dense 3D flow [20]

from depth images. These approaches, however, often suffer

from unaffordable run time, for example with a reported com-

putation time of up to 9 minutes per frames in [20].

Apart from the currently performed activity, energy val-

ues are also highly dependent on the previous energy expen-

diture, as adaptations of the human body cause an exponen-

tial increase/decrease to a plateau in oxygen consumption un-

til a steady state corresponding to the current activity is at-

tained [12]. Therefore, the motion information needs to be re-

covered from a sequence of data over some time window to

infer calorific uptake levels. Concatenating per-frame descrip-

tors is straightforward, but it often suffers from the curse of di-

mensionality and related high computational cost. Compacting

data within a temporal window may be achieved to some de-

gree by abstracting large feature arrays [15, 18], but remains a

challenge. Thus, in essence, any system will require capturing



Figure 1. Framework Overview. Image sequences are represented by features extracted from bounding boxes. The proposed

recurrent method RM (top) then maps features to calorie estimates. We compare this method to a direct mapping method DM,

and a manual standard using a lookup table MET (bottom).

visual aspects relevant to calorific expenditure, whilst limiting

the dimensionality of the descriptor.

Here, we propose a real-time framework for estimating

calorific expenditure levels from bounding box features only.

We evaluate the proposed system over daily activities per-

formed in a living room environment. Figure 1 shows in bold a

flowchart of our proposed approach – extracting features from

the bounding box, mapping the features directly to calorie esti-

mates via a monolithic classifier, and adding a cascaded and re-

current classifier as the last step to capture temporal dependen-

cies (RM in short). The proposed method is compared against

a ground truth as-exchange measurements (GT in short) and

two alternative methods also shown Figure 1: (1) direct map-

ping to calorie estimates without recurrent approach (DM in

short), and (2) manual mapping from activity classes to calo-

rie estimates via the Metabolic Equivalent Task lookup tables

[4] (MET in short). We also compare the processing time

of feature extraction and estimation accuracy of the proposed

method against that of a fully fledged vision system [21], which

uses detailed flow and depth features at the cost of sacrificing

real-time capabilities. We will show that the proposed system

can operate under real-time constraints whilst achieving accu-

rate activity intensity level prediction outperforming the widely

used MET method.

2 Proposed Method

2.1 Feature Representation

We first extract base features from bounding boxes, and then

form higher level motion features by a set of temporal filters.

We use the bounding box returned by the OpenNI SDK [13]

person detector and tracker using an Asus Xtion for capture.

Our per-frame descriptor describes the velocity vector and the

ratio of height and width of the bounding box.

To represent both short and long term temporal changes in

a video, one may model how the local/global information is

changing over time. Pooled motion features were first pre-

sented in [18], designed for egocentric video analysis. We

modify this pooling operator to make it more suitable for our

data.

Figure 2 illustrates the overall process of feature assem-

bly covering the initial time series representation, followed by

temporal pyramid alignment, and the final, serialised represen-

tation of the descriptor vector.

Let S be a set of time series data, such that S =
{S1, . . . , SN }, S ∈ R

N×T for a video in matrix form, where

N is the length of the per-frame feature vector, and T is the

number of frames. A time series Sn = [sn(1), . . . , sn(T )] is

the nth feature across 1, . . . , T frames, where sn(t) denotes

nth feature at frame t. The time series data S consists of a set

of time segments as S = [S1
i , . . . , S

2
i

i ] at level i. A set of tem-

poral filters with multiple pooling operators is applied to each

time segment [tmin, tmax] and produces a single feature vector

for each segment via concatenation.

As Figure 2 illustrates, we use three pooling operators, that

is max pooling, sum pooling, and spectral pooling. The first

two are defined respectively as

Omax(Sn) = max
t=tmin···tmax

sn(t) (1)

Osum(Sn) =

tmax∑

t=tmin

sn(t). (2)

Spectral pooling is used to perform dimensionality reduction

of the time series Sn in the frequency domain by the discrete

cosine transform and then truncating the representation. The

pooling operator takes the absolute value of the j lowest fre-

quency components of the frequency coefficients D, in order



Figure 2. Per-frame Feature Representation, Temporal Pyramid Pooling and its Feature Representation. This schematic

shows the temporal subdivision of data into various pyramidal levels (middle) and the concatenation of resulting features (e.g.

max, sum and DCT) into a descriptor vector (right).

to help remove high frequency noise

Odct(Sn) = |M1:jSn| , (3)

where M is the discrete cosine transformation matrix.

2.2 Recurrency

We pose the energy expenditure estimation problem as a se-

quential and supervised regression task. We train a support

vector regressor to predict calorie values from the given fea-

tures over a training set. The sliding window method naturally

converts the sequential supervised learning problem into the

classical supervised learning problem, which maps each input

window of width w to an individual output value yt. The win-

dow contains the current and the previous w − 1 observations.

The window features are assembled by temporal pooling from

the time series S = {St−w+1, . . . , St}.

The energy values for a particular time are highly depen-

dent on the energy expenditure history, thus the sliding win-

dow methods can be extended by including recurrent informa-

tion. In our system, these are most directly expressed by pre-

vious calorific predictions during operation. Thus, employing

recurrent sliding windows offers an option to not only use the

features within a window, but also take the most recent d pre-

dictions {ŷt−d, . . . , ŷt−1} into consideration to help predict yt.

During learning, as suggested in [9], the ground truth labels in

the training set are used in place of recurrent values.

3 Experimental Results

3.1 Dataset and Parameter Settings

In order to quantify performance of the proposed approach, we

conducted experiments on the SPHERE-calorie dataset1 [21].

It is a very challenging dataset for calorific expenditure estima-

tion collected within a home environment covering daily living

activities. The dataset consists of an RGB-D video sequences

captured by a Asus Xtion camera mounted at the corner of a

living room and ground truth readings from a COSMED K4b2

1The dataset is released on SPHERE website http://www.
irc-sphere.ac.uk/work-package-2/calorie

[1] portable metabolic measurement system. The dataset was

generated over 20 sessions by 10 subjects with varying anthro-

pometric measurements containing up to 11 common house-

hold activity categories per session. Each session lasts around

30 minutes, and totalling around 10 hours recording time. To

reflect variations in transitions between activity levels, we con-

sider 9 different combinations of three activity intensities in

each session.

Colour and depth images were acquired at a rate of 30Hz.

The calorimeter gives readings per breath, which occur approx-

imately every 3 seconds. Figure 3 shows a detailed example of

calorimeter readings and associated sample RGB images from

the dataset, together with activity intensity levels. The raw

breath data is noisy (in red), and so we apply an average filter

with a span of approximately 20 breaths (in blue). The partic-

ipants were asked to perform the scripted activities based on

their own living habits without any extra instructions.

The categories and their associated MET values (in brack-

ets) are: sit still (1.3), stand still (1.3), lying down (1.3), read-

ing (1.5), walking (2.0), wiping table (2.3), cleaning floor stain

(3.0), vacuuming (3.3), sweeping floor (3.3), squatting (5.0),

upper body exercise (4.0).

We compare the proposed method RM to the direct map-

ping method DM and the Metabolic Equivalent Task method

MET. DM is formalised as Yt = f(Xt), where Yt is the tar-

get calorie value regardless of activity at time t, and Xt con-

tains the associated feature vector over a window. The goal is

to find a function f(�) that best predicts Yt from training data

Xt. MET, one of the widely used methods for recording of

the intensity of a physical activity by clinicians and physio-

therapists, assumes that the clusters of activity are known. A

MET value is assigned to each cluster, together with anthropo-

metric characteristics of individuals. The amount of activity-

specific energy expended can then be estimated as energy =
0.0175(kcal/kg/min) × weight(kg)× MET values [4].

According to [4], activity can be categorized into three dif-

ferent intensity levels based on either MET values for each ac-

tivity or the average energy consumed per minute. Table 1 out-

lines the activity intensity levels and their associated energy ex-

penditure ranges. In our experiments, activity intensity levels

http://www.irc-sphere.ac.uk/work-package-2/calorie
http://www.irc-sphere.ac.uk/work-package-2/calorie


Figure 3. Ground Truth Example Sequence. Raw per breath data (red), smoothed COSMED-K4b2 calorimeter readings (blue),

predicted calorie values using MET table (green), and sample colour images corresponding to the activities performed by the

subject. Activity intensity levels are quantised into three levels based on ground truth readings (gray bars).

are quantised based on the ground truth readings (see Figure 3)

instead of using MET values. This is because a fixed number is

assigned to each activity which may overlook the drift during

activity and transition between activities.

We use a linear support vector regressor for predicting calo-

rie values from training data. The libsvm [7] implementation

was used in the experiments. For testing, we apply leave-one-

subject-out cross validation on the dataset.

This process iterates through all subjects, and the average

testing errors of all iterations are reported. We use the root-

mean-squared error (RMSE) as a standard evaluation metric

for the deviation of estimated calories from the ground truth.

MET values kcal/min

Light < 3.0 < 3.5

Moderate 3.0 - 6.0 3.5 - 7

Vigorous > 6.0 > 7

Table 1. Physical Activity Intensity Levels. The table shows

intensity levels and their associated energy expenditure ranges.

3.2 Quantitative Evaluation

Temporal Window Size - The accuracy of predicted calorie

values is affected by the number of previous frames used for

making the prediction. For the first set of experiments, we use

the direct mapping method DM to investigate the relation be-

tween window length and calorie prediction errors.

All the sequences are tested with three different window

sizes w = {450, 900, 1800}, corresponding to a 15, 30 and 60

seconds time slot. Table 2 illustrates the average RMSEs for

calorie prediction of different window length w.

The results clearly show that calorie values are better pre-

dicted when the larger window (60 seconds) is applied. This

may be attributed to the fact that human body adaptation causes

an adjustment [12] of energy uptake over significant time du-

rations, and thus access to previous measurements becomes a

vital cue for accurately predicting current consumption.

Evaluation of recurrent system layout - We set the direct

mapping method DM with window size w = 1800 as our base-

line method. To evaluate the use of recurrency, we now test

two recurrent sliding window approaches to explicitly encode

previous energy estimates. The first one (RM1) uses the most

recent predictions of the baseline method as input together with

both visual features to predict current calorie value. Thus, it im-

plements indirect recurrency utilising the predicted values from

the baseline as recent predictions. The second one (RM2) im-

plements full recurrency, i.e. it uses its own output as recurrent

input together with visual features.

Table 3 shows the effect of using recurrent information.

The best results for each activity are highlighted. In general,

RM1 outperforms the other approaches for most activities. As

expected, a recurrent method captures information that was not

only being captured by the current sliding window. However,

the full recurrency, RM2, suffers from significant drift and pro-

duces the worst results for half of the activities and also overall.

We select RM1 as the “the proposed method RM” in the fol-

lowing sections.

Model Comparison - Table 6 provides the results for each

sequence of the dataset individually. We report estimation ac-

curacy and also the correlation between the ground truth and

the observed values. The proposed RM achieves higher ac-

curacy and correlation in more sequences than DM and MET

based methods, and obtains better rates on average. In addition,

we compare performance to a system using complex visual

features (VF in short) [21] instead of bounding box features

only. VF produces, as expected, better prediction results in

most cases, however, RM operates more than 400 times faster

than VF as detailed in the next section.

Looking at coarse categories of calorific expenditure, Ta-

ble 4 lists overall results for the accuracy of predicting activity

intensity levels only. For this task it is worth noticing that the

proposed RM is able to produce comparable results to VF.

Processing Time - To analyse the efficiency of the proposed

method further, we compare the processing time of feature con-

struction procedures in RM and in VF where the average run-

time of each frame though all subjects is reported. All the re-



w stand sit walk wipe vacuum sweep lying exercise stretch clean read overall

450 0.68 0.76 0.92 0.84 1.44 1.79 1.26 2.78 2.96 1.53 1.17 1.40

900 0.65 0.72 0.92 0.83 1.45 1.77 1.22 2.55 2.86 1.53 1.15 1.36

1800 0.60 0.68 0.90 0.80 1.40 1.77 1.20 2.33 2.56 1.56 1.07 1.33

Table 2. Temporal Window Size and Calorific Expenditure Prediction. Calorific expenditure prediction error (RMSE) with

different window length. The best results in each activity are in bold.

stand sit walk wipe vacuum sweep lying exercise stretch clean read overall

DM 0.60 0.68 0.90 0.80 1.40 1.77 1.20 2.33 2.56 1.56 1.07 1.33

RM1 0.57 0.62 0.87 0.80 1.39 1.66 1.11 2.30 2.21 1.48 0.95 1.24

RM2 0.58 0.62 0.82 0.96 1.31 1.81 1.33 3.67 2.57 1.17 1.17 1.40

Table 3. Activities and Calorific Expenditure Prediction. Average calorific expenditure prediction errors (RMSE) for each

activity with different learning approaches. The best results in each activity are in bold.

RM DM MET VF

Light 86.65 90.68 89.60 85.02

Moderate 83.81 72.58 54.21 86.99

Vigorous 79.91 59.32 40.24 86.32

Overall 84.79 81.85 75.94 85.38

Table 4. Estimation of Activity Intensity Levels. Recogni-

tion accuracy (%) of activity intensity levels. The table shows

the performance of the proposed real-time method RM, com-

pared to other approaches.

feature

extraction (ms)

temporal

pooling (ms)
overall (ms)

RM 7.213E-04 1.4 1.4

VF 446.6 3.3 449.9

Table 5. Runtime Performance Results. Average computa-

tional costs (in milliseconds) for each frame processed by the

VF and DM methods.

sults are produced using Matlab on a workstation with an In-

tel i7-3770S CPU 3.1GHz processor and 8Gb RAM. Table 5

shows the average computational costs for feature extraction,

temporal pooling and overall costs of each frame.

Extracting complex visual features is time consuming, with

VF running on average at 449.9 millisecond per frame, which

is insufficient for performing in real-time. The light-weight

pooled bounding box features in RM obtain a processing rate

450 times faster than that achieved in VF, requiring only 1.4

milliseconds per frame.

Considering these values, the required processing time for

RM is lower than state-of-the-art trackers such as KCF [11] or

real-time RGB-D trackers such as [6], which run respectively

on average at 6 and 25 millisecond per frame. Thus, the pro-

posed method can readily fit into real-time monitoring systems.

Indeed, the proposed method has been successfully tested in the

real-time multi-camera video platform of the SPHERE sensor

network system [25].

4 Conclusion

This paper presented a real-time vision system for a contact-

free estimation of calorific expenditure estimation in daily liv-

ing scenarios. The proposed method used pooled temporal

pyramids of bounding box features, and subsequently built a

recurrent sliding window approach upon it. We demonstrated

the effectiveness and efficiency of the proposed method via de-

tailed experiments on accuracy and runtime performance in a

comparative study.

The proposed method shows its ability to outperform the

widely used METs estimation approach in estimating calorie

expenditure, and to provide results in the same region of accu-

racy of an approach using complex visual features in estimating

activity intensity levels, at a fraction of the computational cost.

Future work will include investigating fusion approaches for

improving prediction results based on both visual and inertial

sensors.
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