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Abstract—This paper proposes an approach for estimation of
the road angles independent from the road friction conditions.
The method employs unknown input observers on the roll
and pitch dynamics of the vehicle. The correlation between
the road angle rates and the pitch/roll rates of the vehicle
are also investigated to increase the accuracy. Dynamic fault
thresholds are implemented in the algorithm to ensure reliable
estimation of the vehicle body and road angles. Performance of
the proposed approach in reliable estimation of the road angles
is experimentally demonstrated through vehicle road tests. Road
test experiments include various driving scenarios on different
road conditions to thoroughly validate the proposed approach.

I. INTRODUCTION

ROAD grade and bank angles considerably affect the ve-
hicle dynamics and measured accelerations. Road angles

consequently play a key role in the vehicle state estimation
and stability. Several studies investigating the vehicle stability
control and state estimation have been carried out based on
known road angles [1]–[3]. Direct measurement of these angles
in real-time is not practical for commercial vehicles due to
costs. Therefore, recent developments in vehicle’s active safety
systems have underlined the need for real-time estimation of
the road bank and grade angles as addressed by many recent
studies.

Several studies focus on estimation of road inclinations
while assuming the road friction condition is known. A method
for dynamic estimation of the road bank angle is discussed in
[4], in which the roll and lateral dynamics are used to develop
the bank angle estimator. The steady-state approximation of the
bank angle is used as a reference to calculate the estimation
error and design the observer. This steady-state approximation
is obtained using a linear vehicle model by implementing
road friction information and tire characteristics. To reduce the
effects of inaccuracies in transient conditions, a dynamic factor
based on the understeer coefficient in high-friction scenarios
is integrated with the observer. Practical problems in terms
of stability control associated with estimation stability due to
switching between the steady-state and transient conditions
should be investigated. Zhao et al. introduced a sliding-mode
observer in [5] for the velocity estimation with the road angle
adaptation. Their method employs a tire model that requires
the road friction and tire parameters. Menhour et al. suggest
an unknown input sliding-mode observer in [6] to estimate
the road bank angle. Their method employs a linear bicycle
handling model for the vehicle, which needs tires’ cornering
stiffness and road friction information subsequently.

Alternatively, to address the road friction uncertainties, some
studies identify the road friction conditions simultaneously,
which may be challenging in itself because of the issues arising

from lack of excitations, tire models, etc. Grip et al. suggest
a nonlinear vehicle sideslip observer in [7] that incorporates
time-varying gains and road friction parameters to estimate
the longitudinal/lateral velocities and road angles using a
tire model. Their method suggests concurrent estimation of
the vehicle states, road angles, and the road condition. A
time-varying observer is utilized in [8] by Grip et al. for
the concurrent estimation of the road bank and the road-tire
friction characteristics. They also modulate the observer gains
based on a set of practical driving scenarios to improve the
performance on low-friction surfaces.

Some approaches do not implement the knowledge of the
road friction, but do not isolate the vehicle roll/pitch dynamics
from the road inclinations. A road angle estimation is proposed
by Hahn et al. in [9]. The vehicle pitch/roll induced by the
suspension deflection is not separated from the road grade/bank
angles. Imsland et al. suggested a nonlinear observer for
the bank angle estimation in [10] to accommodate various
road conditions and compared their method with an extended
Kalman filter from the view point of numerical complexity. An
unknown input observer is also proposed in [11] to estimate the
lateral states of the vehicle as well as the bank angle. In their
study, the road bank angle is assumed to be constant and its
time-varying characteristics have not been taken into account
in the error dynamics. A proportional integral H∞ filter is
proposed by Kim et al. in [12]. They modified a bicycle model
and made the estimation algorithm more robust against model
and measurement uncertainties. In their model, the vehicle roll
is not separated from the road bank.

Other literature has offered methods independent from the
road friction and has included roll/pitch dynamics with ad-
ditional measurements. Utilizing a tire model and steering
torque measurement, Carlson et al. offer a methodology for
the separation of the road angles from the induced vehicle
angles in [13] to avoid vehicle rollover. Ryu et al. used
two-antenna GPS receivers to estimate the road bank and
compensate the corresponding roll effect on the vehicle state
estimator in [14]. Roll dynamic parameters are also identified
in their method. Hsu and Chen in [15] provide a model-
based estimation approach for the road angles. Their method
combines multiple roll and pitch models and a switching
observer scheme. However, the knowledge of the vehicle
yaw angle, which is not accessible in commercial vehicles is
required in their proposed observer.

To summarize, three main challenges exist in the current
studies on the road angle estimation: a) unknown road friction
conditions and tire parameters; b) incorporating effects of the
vehicle roll and pitch angles; c) using available sensors and
available measurements. Therefore, an estimation approach
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which tackles these challenges will be promising. This paper
proposes a structure independent of the road friction to esti-
mate the road angles without limiting assumptions. The road-
body kinematics is also investigated to relate the measured
angle rates, vehicle body motion, and the rate of change of
the road angles. The proposed estimation scheme operates in
different driving scenarios as verified by road test experiments.

This article has been divided into four sections. Section II
includes estimation of the vehicle body’s angles, observer
development on the roll/pitch dynamics, and the road-vehicle
kinematics. An unknown input observer is also proposed in
section II for the estimation of the road bank and grade
angles. The road experiments to verify the approach in various
maneuvers and driving conditions are presented in section III.
Finally, conclusions are provided in section IV.

II. ESTIMATION OF THE ROAD ANGLES

The proposed estimation structure is depicted in Fig. 1. An
unknown input observer is developed to estimate the road bank
and grade angles. The Sprung mass kinematic model provides
vehicle body angles φ̄v, θ̄v for the unknown input estimator.
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Fig. 1: The proposed structure for the road angle estimation

The body angles are estimated using corners’ displacements
measured by the suspension height sensors installed at corners.
The Road-body kinematics module is employed to relate the
vehicle’s frame, body, and road angles. This module relates the
road angle rates and the measured angles rates by the sensors
attached to the vehicle body, and provides time derivatives
˙̄φv−ij ,

˙̄θv−ij of the vehicle body angles. The Unknown input
observer module uses estimated vehicle angles and their rates
for the road bank/grade estimation. Details for each block are
presented in the following subsections.

A. Sprung mass kinematics
The sprung mass kinematics is used to estimate the vehicle’s

body roll and pitch angles φv, θv using corners’ displacements

zij . These displacements are measured by the suspension
height sensors installed at corners. A schematic of the sprung
mass model and the positions of the suspension height sensors
are depicted in Fig. 2
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Fig. 2: Height sensors and sprung mass kinematics

The auxiliary coordinates (xa, ya, za) is a right-handed
orthogonal axis system obtained by rotating the global coor-
dinates about the zG axis by the vehicle yaw angle ψ. The
intermediate axis system (xi, yi, zi) is given by pitch rotation
θ about the ya axis (from the auxiliary coordinates) [16].
The vehicle frame coordinates (xf , yf , zf ) is also a right-
handed orthogonal axis system located at the center of the
frame on undeformed body. Thus, it is parallel to the plane of
the road. The subscript b represents the coordinates attached
to the vehicle body as can be seen in Fig. 2. The sensor
position vectors in the frame coordinate system (xf , yf , zf )
are described with i ∈ {f, r} (front and rear tracks) as follows:

PiL = [li Tri/2 ziL]T

PiR = [li − Trr/2 ziR]T , (1)

where lf and lr are the longitudinal distances between the
origin Of and the front and rear axles, respectively. The
front and rear track widths are denoted by Trf and Trr,
respectively. Relative position vectors ρij,mn between two
corners can be obtained by:

ρij,mn = Pmn − Pij , (2)

The normal vector for the sprung mass plane is then expressed
as the cross product of any two relative position vectors:

N = ρij,mn × ρij,pq, (3)

in which the subscripts ij,mn, pq ∈ {fL, fR, rL, rR} rep-
resent front-left (fL), front-right (fR), rear-left (rL), and
rear-right (rR) corners. Therefore, using any three suspen-
sion height sensor data and corner positions, the respective
normal vectors can be written as N−fL = ρrL,rR × ρrR,fR,
N−fR = ρfL,rL × ρrL,rR, N−rL = ρrR,fR × ρfR,fL,
and N−rR = ρfL,rL × ρfL,fR where the subscript −ij
represents a scenario in which the suspension height pro-
vided by sensor ij is not used. Subsequently, components



N−ij = [N x
−ij N y

−ij N z
−ij ]

T are used to estimate the
vehicle angles. The roll and pitch angles φ̄v−ij , θ̄v−ij can be
written with incorporation of the corresponding normal vector
N−ij as follows:

φ̄v−ij = cos−1
N y
−ij

||N−ij ||
, θ̄v−ij = cos−1

N x
−ij

||N−ij ||
. (4)

Four estimates for the vehicle roll angle, and four estimates for
the vehicle pitch angle, can be obtained using different combi-
nations of the suspension sensors, and a weighted average will
be used to have reliable estimates in case of existing outlier
data due to uneven surfaces at each corner as follows.

The four estimates for the vehicle’s roll and pitch angles
from (4) (four combinations of set of three corners) are
examined to check the possibility of being an outlier because of
road disturbances, such as bumps and uneven surfaces at each
corner. Validity of the vehicle’s roll/pitch angles is checked at
two stages. First, all four angles φ̄v−ij , θ̄v−ij are compared
to each other with variance checking scheme to eliminate
the one with the largest deviation. Second, for each corner,
the residuals of the vehicle angle rates are defined as the
difference between the time derivatives of the estimated angles
˙̄φv−ij ,

˙̄θv−ij at 200[Hz]and the measured angle rates φ̇s, θ̇s of
vehicle:

R ˙̄φ−ij
= |φ̇s − ˙̄φv−ij |, R ˙̄θ−ij

= |θ̇s − ˙̄θv−ij |. (5)

When there is no disturbance at each corner, all residuals of
corners R ˙̄φ−ij

, R ˙̄θ−ij
fall below a certain threshold Tq = Tsq+

Teq(|ax|+ |ay|) where q ∈ {φ, θ}. The static minimum value
for the threshold is denoted by Tsq , and Teq introduces the
effect of longitudinal/lateral excitations to the threshold. Low-
pass filters can also be utilized to smooth the time derivatives
of the estimated angles. After isolation of the outliers by the
mentioned two tests, weighted vehicle angles φ̄v−ij , θ̄v−ij from
each combination of the three corner sensors are employed in
the estimation of the vehicle’s roll/pitch angles as follows:

φ̄v =
∑
ij

γ−ij φ̄v−ij , θ̄v =
∑
ij

γ−ij θ̄v−ij , (6)

where the weight of each three sensor combination is denoted
by γ−ij and is set to 0.25 (average of the calculated angles) for
the case in which there is no outlier. Whenever a disturbance
or an outlier is detected in the suspension height sensor
measurement at a corner, three weights will be zero since
the subsequent three estimated body angles by such an outlier
are not reliable. For instance, when there is a disturbance at
the front-right suspension height sensor, its residuals exceed
the thresholds Tφ, Tθ, thus the only non-zero weight will be
γ−fR and all other three weights will be zero. When more than
one outlier is identified, the estimated vehicle roll/pitch angles
are not valid and the algorithm incorporates the previously
estimated valid body angles. The estimated vehicle angles (6)
are employed for the unknown input observer to estimate the
road angles as will be discussed in the following subsection.

B. Unknown input observer for road angle estimation
This section presents a methodology to estimate the road

angles using unknown input observers (UIO). The problem
of constructing an observer for systems with unknown inputs
(epitomizing disturbances, faults, and uncertainties) has been
widely tackled in the literature with realizing full and reduced-
order observers [17]–[20] and turns out to be considerably
useful in diagnosing system faults [21]–[23]. A general form
of the UIO is utilized in this section to estimate the unknowns
(terms representing the road angles) with implementation of
the vehicle body angles and their rates as the outputs. Roll
and pitch dynamic models are used for the proposed UIO
and graphically illustrated in Fig. 3. The road bank and grade
angles are denoted by φr and θr respectively.

Fig. 3: Roll and pitch models with the road angles

Employing vehicle kinematics, the roll and pitch dynamics
can be expressed as ẋφ = Aφxφ + Bφuφ and ẋθ = Aθxθ +
Bθuθ where the states are xφ = [φv φ̇v]

T , xθ = [θv θ̇v]
T

[24], and the roll and pitch angles of the sprung mass are
denoted by φv, θv . The roll and pitch dynamics yield the
following:

ẋφ =

[
0 1
−Kφ

Ix+msh2
RC

−Cφ
Ix+msh2

RC

]
xφ +

[
0

mshRC
Ix+msh2

RC

]
uφ, (7)

ẋθ =

[
0 1
−Kθ

Iy+msh2
PC

−Cθ
Iy+msh2

PC

]
xθ +

[
0

mshPC
Iy+msh2

PC

]
uθ, (8)

in which road bank and grade angles φr, θr appear in un-
known inputs uφ, uθ. In (7) and (8), the distances between
the roll/pitch axes and the center of gravity are denoted by
hRC and hPC . The moments of inertia about the roll and
pitch axes parallel to the frame coordinate system are shown
by Ix, Iy . Roll/pitch stiffness Kφ,Kθ and damping Cφ, Cθ
are used for derivation of the roll and pitch dynamics. The
unknown longitudinal and lateral inputs are denoted by:

uφ = V̇y + rVx + g sin(φ̄v + φr), (9)

uθ = −V̇x + rVy + g sin(θ̄v + θr), (10)

in which φr and θr show the road bank and grade respectively.
The vehicle’s yaw rate r is measured by the available stock



inertial measurement unit (IMU) sensor. The longitudinal and
lateral velocities Vx, Vy can be measured by a GPS or can be
estimated using linear, nonlinear, or Kalman-based observers
provided in the literature [1], [3], [25]–[28]

Therefore, systems (7), (8) can be rewritten as ẋq =
Aqxq + Bquq and yq = Cqxq + Dquq with state vector
x ∈ R2, unknown input vector uq ∈ R, output y ∈ R2,
and system matrices Aq, Bq, Cq, Dq of appropriate dimensions
where [Bq Dq]

T is full-column rank and q ∈ {φ, θ}. The
road angles also appear as unknown parameters in roll/pitch
dynamics (7) and (8). An unknown input observer [19], [22]
is designed to estimate the road bank φr and road grade θr
(unknown inputs uq) using vehicle body’s roll/pitch angles
φ̄v, θ̄v and their rates ˙̄φv,

˙̄θv as measurements. Derivation of
the vehicle roll/pitch rates is discussed at the end of the next
subsection Road-body kinematics.

To develop the observer for practical application, discretiza-
tion of the systems (7), (8) is performed by the step-invariance
method [29], because of its precision and response character-
istics. Input to the continuous-time systems (7) and (8) is the
hold signal uq[k] = uq(t[k]) for a period (sample time Ts).
Then, the discrete-time system has the state, input, and output
matrices Āq = eAq(t)Ts , B̄q =

∫ Ts
0
eAq(t)τBq(t)dτ, C̄q =

Cq, D̄q = Dq . Thus, the discrete-time form of the roll and
pitch dynamics yields the foloowing:

xq[k + 1] = Āqxq[k] + B̄quq[k]

yq[k] = C̄qxq[k] + D̄quq[k], (11)

The system (11) has an L-delay inverse if it is feasible to
uniquely recover the unknown input uq[k] from the initial state
x[0] and outputs up to time step k + L for a positive integer
L; the least integer L which leads to L-delay inverse is the
inherent delay of the system. The upper bound on the inherent
delay is defined as L , n−Null(D̄q) + 1 in [30]. The output
equation from (11) can be accumulated for L time steps:

yq[0 : L] = OLqx[0] + JLquq[0 : L]. (12)

where JLq is the invertibility matrix of the system (11), L
is required for recovery of xq[0] from the output yq[0 : L],
and OLq is the observability matrix for the pair Āq, C̄q .
Observability and invertibility matrices are provided in the
appendix. When the start point is the sample time k, (12) yields
yq[k : k + L] = OLqx[k] + JLquq[k : k + L].

The unknown input observer for a positive arbitrary L
results in the following estimator, which provides the states
x̂φ[k], x̂θ[k] as well as unknown inputs ûφ[k], ûθ[k]:

x̂q[k + 1] = Eqx̂q[k] + Fqyq[k : k + L], (13)

ûq[k] =

[
B̄q

D̄q

]−1 [
x̂q[k + 1]− Āqx̂q[k]

yq[k]− C̄qx̂q[k]

]
, (14)

where Eq and Fq are observer gain matrices obtained by
pole placement as will be described in the following. The
general form of the discrete-time system (11) with state vector
xq ∈ Rn, output yq ∈ Rm, and unknown input vector
uq ∈ Rp has the observability and invertibility matrices

OLq ∈ Rm(L+1)×n,JLq ∈ Rm(L+1)×p(L+1) and observer
gain matrices Eq ∈ Rn×n, Fq ∈ Rn×m(L+1) respectively.
Thereby, for the discretized form of the systems (7), (8),
the observability matrix, invertibility matrix, and observer
gain matrices are OLq ∈ R2(L+1)×2,JLq ∈ R2(L+1)×(L+1)

and Eq ∈ R2×2, Fq ∈ R2×2(L+1) when the vehicle body’s
roll/pitch angles and their rates φ̇v, θ̇v are utilized as measure-
ments.

The discrete-time estimation error for the pitch and roll
dynamics can be expressed as follows using (11) and (12),
and the unknown input observer (13):

eq[k + 1] = x̂q[k + 1]− xq[k + 1]

= Eqxq[k] + Fqyq[k : k + L]

+ (Eq − Āq)xq[k]− B̄quq[k]

= Eqeq[k] + FqJLquq[k : k + L]

+ (Eq − Āq + FqOLq)xq[k]− B̄quq[k] (15)

where the smallest Lq with upper bound Lq < n −
Null(D̄q)+1 should be determined such that rank(JLq+1)−
rank(JLq) = p. In order to have asymptotic stability on the
error dynamics (15) regardless of xq[k] and inputs, Eq should
be stable, i.e. |λi(Eq)| < 1,∀i ∈ {1, ..n}, and Fq should
simultaneously satisfy the following [22]:

FqJLq = [B̄q 0...0], (16)

FqOLq + Eq − Āq = 0. (17)

The matrix Fq is obtained from Fq = MqV where V =
[0 0; Ip 0] and Mq = [M̄q B̄q]. The matrix M̄q is chosen
by a pole placement such that matrix Eq = Āq − B̄qW̆q −
M̄qW̄q is stable. The matrix Wq = [W̄q W̆q]

T is defined as
Wq , VOLq in which W̆q has p rows.

The stability of the state estimation error dynamics (15),
system equations (11) and the estimated unknown input (14)
guarantees that ûq[k]→ uq[k] as k →∞

Remark 1: An unknown input observer with delay Lq can
be designed for the system (11) if and only if the system is
strongly detectable [19]. This is equivalent to the following
conditions:

rank(JLq)− rank(JLq−1) = p, (18)

rank

([
Aq − zIn Bq

Cq Dq

])
= p+ n ∀z ∈ C, |z| ≥ 1. (19)

Remark 2: The systems (7) and (8) with the discretized
form (11) and two measurements (roll/pitch and their rates)
is strongly detectable. Thus, an UIO can be designed for this
system.

The road bank angle φ̂r is obtained employing the estimated
unknown input ûφ from (14), the roll input definition (9) and
the vehicle’s roll angle from (6) as follows:

φ̂r[k] = sin−1 ûφ[k]− V̇y[k]− r[k]Vx[k]

g
− φ̄v[k]. (20)



Similarly, the unknown input observer (14) is employed for the
estimation of the road grade θ̂r, which appears as an unknown
input to the pitch dynamics (8). Given the vehicle’s pitch angle
from (6), the pitch input definition (10) and the estimated
unknown input ûθ from (14), the road grade is estimated as:

θ̂r[k] = sin−1 ûθ[k] + V̇x[k]− r[k]Vy[k]

g
− θ̄v[k]. (21)

The two measurements: roll/pitch angles from the suspen-
sion height sensors and their rates are used for the road
grade and bank angle estimation employing the unknown input
observer (14) and equations (20) and (21). To calculate the
roll/pitch angle rates, taking time derivatives of the vehicle
angles (6) is not a proper choice since it generates oscillations
due to measurement noises. Filtering such noises usually
imposes undesirable delays. Thus, implementing available
measurements (roll/pitch rates) from the IMU seems more
promising. In order to use the measured roll/pitch rates from
the sensor attached to the sprung mass, transformation between
the vehicle’s frame coordinate and the body coordinate should
be investigated. The following section focuses on the road-
vehicle kinematics in order to relate the measured angle rates,
vehicle body motion, and the rate of change of the road bank
and grade angles.

C. Road-body kinematics

Euler angles ψ, θ, φ are utilized in this section to transform
from the global coordinates (xG, yG, zG) to the vehicle frame
axis system shown in Fig. 2. These angles are successive
rotations about zG, ya and xf , respectively. Using the rotation
matrices, the angular velocity of the frame relative to the
global axis system can be described by Γ̇f = RGf Γ̇ where
Γ̇f = [φ̇f θ̇f ψ̇f ]T is the rotation rate of the frame relative
to the global coordinates defined in the vehicle frame-fixed
coordinates, and Γ̇ = [φ̇ θ̇ ψ̇]T represents the rate of
Euler angles. Defining Φ̇ = [φ̇, 0, 0]T , Θ̇ = [0, θ̇, 0]T , and
Ψ̇ = [0, 0, ψ̇]T , one can write the rotation matrix RGf as

RGf = Rxf ,φΦ̇ +Rxf ,φRya,θΘ̇ +Rxf ,φRya,θRzG,ψΨ̇, (22)

in which Rxf ,φ shows the third rotation by an angle φ about the
xf axis, Rya,θ is the second rotation by an angle θ about the
ya axis, and RzG,ψ represents the first rotation by an angle ψ
about the zG axis. Substituting rotation matrices in (22) yields
the following:

RGf =

1 0 −Sθ
0 Cφ SφCθ

0 −Sφ CφCθ

 (23)

in which C∗ = cos(∗) and S∗ = sin(∗). Road angles are
defined between the vehicle frame and the auxiliary axis
system (xa, ya, za) [16]. Therefore, the angular velocity of the
vehicle frame relative to the auxiliary coordinates represents
the rate of change of the road angles Γ̇r = [φ̇r θ̇r ψ̇r]

T .
Transformation (Rya,θ)

T from the intermediate coordinates

(xi, yi, zi) to the auxiliary one is used to relate the road and
Euler angle rates as follows:

Γ̇r = (Rya,θ)
T Φ̇ + Θ̇ =

 Cθ 0 0

0 1 0

−Sθ 0 0

 Γ̇ (24)

Substituting Γ̇ = (RGf )−1Γ̇f into (24) results in:

Γ̇r =

 Cθ SφSθ CφSθ

0 Cφ −Sφ
−Sθ −SφSθ tan θ −CφSθ tan θ

 Γ̇f

= Rfr Γ̇f , (25)

in which the rotation matrix Rfr represents the transformation
between the road and frame angles. The third component ψ̇r
can be neglected since the yaw rate of the road is not the
concern for this study. Therefore, (25) is reduced to:

Γ̇r =

[
Cθ SφSθ CφSθ

0 Cφ −Sφ

]
Γ̇f = χfr Γ̇f , (26)

where Γ̇r = [φ̇r θ̇r]
T shows the rate of the change of the

road grade and bank angles. Afterwards, employing the pseudo
inverse (χfr )−1, one can express the frame rotation rates as
Γ̇f = (χfr )−1Γ̇r from (26). The pitch and roll rate sensors are
mounted on the body sprung mass which has an orthogonal
axis system (xb, yb, zb). This body-fixed coordinate system is
obtained by consecutive rotations of φv, θv around the xf
and yf axes of the vehicle frame coordinates, respectively.
The measured rotation rate signal, Γ̇s = [φ̇s θ̇s ψ̇s]

T is
affected by the rotation rates of the body-fixed coordinate
Γ̇v = [φ̇v θ̇v ψ̇v]

T , and the frame rotation rate as Γ̇s =
Γ̇v +Rfb Γ̇f . Rotation matrix Rfb is from the frame-fixed axes
to the body-fixed axes and is a function of the vehicle roll/pitch
angles φv, θv about the frame-fixed x-axis:

Rfb =

Cθv SφvSθv −CφvSθv
0 Cφv Sφv

Sθv −CθvSφv CφvCθv

 (27)

The relationship between the pitch/roll rate sensor measure-
ments, vehicle pitch/roll rate, and road angle rates can be
described using (26) as

Γ̇s = Γ̇v +RbrΓ̇r (28)

where the rotation between the road and the body-fixed axes
is denoted by the rotation matrix Rbr = Rfb (χfr )−1. An
implication of (28) is that the road angle rates should be taken
into account for the estimation of the vehicle angle rates Γ̇v .

Conclusively, replacing φv, θv with the calculated vehicle
roll/pitch angles φ̄v, θ̄v from (6), one can summarize the rela-
tion between the estimated vehicle angle rates ˙̂

Γv−ij , estimated

road angle rates ˙̂
Γr−ij , and the sensor measurement ˙̂

Γs−ij , in
a scenario without using the suspension height sensor ij as

˙̄φv−ij = φ̇s −R1(φ̄v−ij , θ̄v−ij )
˙̂
φr−ij

˙̄θv−ij = θ̇s −R2(φ̄v−ij , θ̄v−ij )
˙̂
θr−ij (29)



where R1, R2 are components of Rbr = [R1 R2]T . The esti-
mation on the roads with the combined bank and grade angles
can be achieved with (29) which presents the relation between
the frame, body, and road angles. Equation (29) implies that
the time derivatives of the vehicle angle rates ˙̄φv−ij ,

˙̄θv−ij can
be calculated with the measured vehicle angle rates φ̇s, θ̇s and
the rate of change of the road angles. Assuming the road angles
change smoothly, the road angle rates are obtained by the time
derivative of the estimated ones φ̄r−ij [k− l], θ̄r−ij [k− l] over
l previous time steps. This is shown in Fig. 1, in which the
estimated road angles over l previous time steps and measured
body’s angle rates are utilized in the Road-body kinematics to
estimate the vehicle angle rates. Substituting the rates (29) and
allocating the weights γ−ij , the roll/pitch rates of the vehicle
are expressed as follows:

˙̄φv =
∑
ij

γ−ij
˙̄φv−ij ,

˙̄θv =
∑
ij

γ−ij
˙̄θv−ij . (30)

The average weight (γ−ij = 0.25) is used when there is
no outlier. Whenever, a disturbance exists at the corner mn,
the residuals (5) exceed the thresholds Tq and an outlier is
detected. Therefore, three weights related to that corner are
set to zero and the only non-zero weight will be γ−mn.
Consequently, the vehicle roll/pitch rates (30) are utilized
as measurements for the unknown input observers (13) and
(14) described in the previous subsection. The next section
includes road tests to validate the proposed UIO (14) with
measurements (6) and (30) on different roads with separate or
combined bank/grade angles.

III. RESULTS AND DISCUSSION

Several experiments have been carried out on a four-wheel-
independent-drive sport utility vehicle with specifications listed
in Table I to verify the proposed estimation scheme.

TABLE I: Vehicle Parameters for Experiments

Parameter Unit Value Description
m,ms [kg] 2260, 1989 Total & sprung mass
Ix, Iy [kg.m2] 967, 2710 Moments of inertia
Lf , Lr [m] 1.31, 1.50 Front/rear axles to CG
Re [m] 0.37 Effective radius

hRC , hPC [m] 0.55, 0.55 Roll/pitch axis height
Kφ, Kθ [N/m] (1.51, 2.08)× 105 Roll/pitch stiffness
Cφ, Cθ [N.s/m] (0.63, 2.52)× 104 Roll/pitch damping
Trf , Trr [m] 1.61, 1.60 Front/rear track width

The vehicle’s roll, pitch, and yaw rates as well as the
longitudinal and lateral acceleration are measured with a 6-axis
IMU (and GPS) system RT2000. The Road Angle Estimator
module requires longitudinal and lateral velocities, which can
be measured using the GPS or estimated by the Velocity
Estimator module as shown in Fig. 4. Four suspension height
measurement sensors (from Delphi Co.) are installed at four
wheel positions to measure vertical displacements of each
corner and estimate vehicle body’s angles. Measured signals
are communicated using a CAN-bus. Real-time acquisition and
processing of sensory information and the developed algo-
rithm is realized using the dSPACE R© MicroAutobox. The

dSPACE compiles measurements for MATLAB/SIMULINK,
and the controller provides control signals for the dSPACE
as well. Visualization of the experiment results is performed
through the ControlDesk and MATLAB/SIMULINK. The sam-
pling frequency for the experiment is set to be 200[Hz].

Wheel Speed, 3‐axis IMU, 
Steering, Wheel Torques

RG_BA

CAN‐bus

dSpace
Micro‐

AutoBox II

Velocity
Estimator

Road 
Angle 

Estimator

Height 
sensors

Visualization
(Matlab/Simulink)

RT2500 
6‐axis 

IMU/GPS

Controller

Vehicle

Fig. 4: The I/O and hardware layout

The performance of the estimator is experimentally exam-
ined in three cases on roads with different bank and grade
conditions. The UIO gain matrices Eq, Fq are provided in the
appendix; the inherent delay for both roll and pitch dynamics in
the observer is Lq = 1, the static thresholds Tsφ = 0.02, Tsθ =
0.04 and excitation thresholds Teφ = 0.0015, Teθ = 0.0019 are
also used for the road experiments.

Case 1: Acceleration/brake on the graded road
The real-time performance the estimator in a maneuver with
minor steering and successive acceleration and brake on a
graded road is investigated in this section. Longitudinal and
lateral accelerations for this maneuver are depicted in Fig. 5
which shows excitations in the longitudinal direction.

0 10 20 30 40 50 60
−8

−6

−4

−2

0

2

4

6

8

time [s]

ac
ce

le
ra

tio
n 

[m
/s

2 ]

 

 

a
x
, Long. Accel.

a
y
, Lat. Accel.

Fig. 5: Acceleration measurement on the graded road

Suspension height sensor measurements are shown in Fig. 6
that confirms several body pitch excitations due to the succes-
sive acceleration and brake.
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Fig. 6: Suspension height measurements on the graded road

Estimated vehicle body angles φ̄v, θ̄v are illustrated in
Fig. 7-a. There is no disturbance/outlier and the averaging
method is used by the algorithm for the vehicle pitch/roll angle
estimation. The estimated road grade in the ISO coordinate
system is shown in Fig. 7-b, which exhibits correspondence
with the measured actual grade in spite of harsh excitations
on the vehicle body angles observed in Fig. 7-a.
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Fig. 7: Estimation results for Case1: (a) vehicle angles and (b)
road grade

This substantiates that the suggested unknown input ob-
server can accurately estimate the road grade regardless of
the longitudinal (body pitch) excitations.

Case 2: Normal driving on a banked road
To distinguish between the estimated bank and grade on
different roads and check the performance of the suggested
estimator, a normal driving scenario with steering and lateral
excitation is performed on a banked road. Figure 8 illustrates
the longitudinal and lateral accelerations for this maneuver.

Variations in the lateral acceleration after t = 50[s] are
caused by the road bank angle and the lateral excitation. Such a
coupling makes the task of accurate real-time bank estimation
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Fig. 8: Acceleration measurements on the banked road

more challenging. The displacements of each corner for this
maneuver are illustrated in Fig. 9.
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Fig. 9: Suspension height measurements on the banked road

The suspension height displacement measurements depicted
in Fig. 9 have large fluctuations, but the suggested vehicle
angle estimators (6) reject outliers and provide smooth vehicle
roll and pitch angles as demonstrated in Fig. 10-a. Finally, the
proposed estimator detects the road bank around the region of
t = 50[s] as illustrated in Fig. 10-b.

The estimation results shown in Fig. 10-b confirm that
even with the presence of the vehicle body angles around
t = 5 and t = 20[s], the developed estimator can successfully
differentiate between the road and the body angles generated
by lateral excitations and does not provide any road bank. The
observed deviations around t = 65[s] may be contributed to
improper selection of Eq, Fq matrices and estimated vehicle
velocities.

Case 3: Steering on a combined grade/bank
The performance of the unknown input observer on the roads
with combined bank and grade angles is investigated in this
case study. The maneuver includes driving on a graded road,
lateral excitations by steering, and steering on a road with
combined bank and grade. Estimating the road angles in this
maneuver is challenging since the lateral excitations by the
driver is performed on the combined banked/graded road.
Figure 11 illustrates lateral and longitudinal excitations of the
vehicle between t = 35 and t = 92[s], which includes both
the driver and road excitations.

Measured suspension height displacements are provided in
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Fig. 10: Estimation results for Case2: (a) vehicle angles and
(b) bank angle
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Fig. 11: Acceleration measurement on combined grade/bank

Fig. 12, which depicts lateral and longitudinal excitations.
Suspension height displacements are smooth and no outlier
is detected.

Successive excitations between t = 60 and t = 70[s] are
because of the sine steering on the graded road. The results of
the calculated vehicle angles φ̄v, θ̄v are shown in Fig. 13-a.

Despite the fact that the lateral excitations happened on the
road with inclinations, the proposed unknown input observer
can detect the road angles and distinguish between the body
and road angles as depicted in Fig. 13-b. In spite of several
pitch excitations (acceleration and brake) for t ≤ 60[s],
the proposed UIO distinguishes between the road grade and
vehicle body pitch angles and detects the road grade. Thus,
the body pitch/roll does not affect this method significantly
and is implemented as inputs in (20) and (21) to identify the
road angles.
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Fig. 13: Road experiments: (a) estimated vehicle angles on
combined grade/bank and (b) estimated road angles

The experiments on various roads and with different drivers’
inputs demonstrate that the proposed UIO can reject the
outliers due to uneven road conditions at each corner and
estimate the road angles.

IV. CONCLUSION

This paper sets out to estimate the road angles and has
proposed and experimentally tested a real-time structure for
the estimation of road bank and grade angles. The suggested
algorithm includes an unknown input observer on the roll
and pitch dynamics of the vehicle. Observer gain matrices
are designed to guarantee a fast convergence rate and satisfy
(16) and (17). Road disturbances and outliers are isolated
in the provided method using a dynamic threshold based
on the longitudinal and lateral excitations of the vehicle.
Incorporating road-body kinematics helped to achieve more
accurate vehicle angle measurements. Road angle estimation



in maneuvers with high excitation on banked/graded roads,
fast convergence and robustness against harsh excitations, road
disturbances, and outliers are among the advantages of the
proposed methodology. Based on the developed unknown input
observer and the performance of the road experiments on an
instrumented vehicle, the following conclusions can be made:

The proposed algorithm can estimate different types of sep-
arate and combined bank/grad road angles in various driving
conditions.

The observer does not require any information about the
road friction, tire forces, and tire parameters. This enables the
algorithm to perform reliably on different road conditions.

The current state estimators on the instrumented test vehicle
(platform) are robust to errors in the road angle estimation
up to 2[deg] and the developed UIO exhibits errors less than
this value. However, there is a 4.1[deg] deviation around
t = 65[s] in Case2 (Fig. 10) which may be due to the errors
in estimated vehicle velocities and inappropriate selection of
the UIO gain matrices that will be addressed in future. The
proposed algorithm can be integrated with various active safety
systems (e.g. stability control and rollover prevention systems),
and vehicle state estimators to ensure the reliable performance
of such systems in the presence of accelerations, roll rate, and
pitch rate measurements affected by road inclinations.

APPENDIX

Observability and invertibility matrices: the following in-
cludes the invertibility and observability matrices used in
Section II. The discrete-time output equation (11) can be
rewritten as follows by iterating over L+ 1 time steps:

yq[0]

yq[1]

yq[2]

...
yq[L]


=



C̄q

C̄qĀq

C̄qĀ
2
q

...
C̄qĀ

L
q


x[0]+



D̄q 0 0 · · · 0

C̄qB̄q D̄q 0 · · · 0

C̄qĀqB̄q barCqB̄q D̄q · · · 0

...
...

...
. . .

...
C̄qĀ

L−1
q B̄q barCqĀ

L−2
q B̄q C̄qĀ

L−3
q B̄q D̄q





uq[0]

uq[1]

uq[2]

...
uq[L]


(A1)

Therefore, the output equation (A1) can be expressed as the
observability and invertibility matrices:

yq[0 : L] = OLqx[0] + JLquq[0 : L]. (A2)

Unknown input observer gain matrices: the implemented
UIO gain matrices for the road experiments are obtained
by stable pole placement in Eq = Āq − B̄qW̆q − M̄qW̄q .

Implementing the pitch dynamics yields to:

Eθ =

[
3.330e− 4 1.301e− 6

−1.734e− 6 0.026

]
,

Fθ =

[
6.33e− 4 1.572e− 6 0.999 1.592e− 6

6.458e− 3 −0.0259 −6.458e− 3 1.0

]
.

(A3)

The roll dynamics also results into the following UIO gain
matrices:

Eφ =

[
3.340e− 4 1.297e− 6

1.746e− 6 0.0258

]
,

Fφ =

[
6.294e− 4 1.558e− 6 0.997 1.579e− 6

6.487e− 3 −0.0259 −6.487e− 3 1.0

]
,

(A3)
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