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Abstract
In response to the COVID-19 emergency, many countries have introduced a series of 
social-distancing measures including lockdowns and businesses’ shutdowns, in an attempt 
to curb the spread of the infection. Accordingly, the pandemic has been generating 
unprecedented disruption on practically every aspect of society. This paper demonstrates 
that high-frequency electricity market data can be used to estimate the causal, short-run 
impacts of COVID-19 on the economy, providing information that is essential for shaping 
future lockdown policy. Unlike official statistics, which are published with a delay of a few 
months, our approach permits almost real-time monitoring of the economic impact of the 
containment policies and the financial stimuli introduced to address the crisis. We illustrate 
our methodology using daily data for the Italian day-ahead power market. We estimate that 
the 3 weeks of most severe lockdown reduced the corresponding Italian Gross Domestic 
Product (GDP) by roughly 30%. Such negative impacts are now progressively declining 
but, at the end of June 2020, GDP is still about 8.5% lower than it would have been without 
the outbreak.
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1 Introduction

COVID-19, the disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-COV-2), first struck in China’s Hubei Province at the end of 2019 (Zhu et al. 2020). 
It quickly spread across the globe and was recognized by the World Health Organization 
(WHO) as a pandemic on the 11th of March 2020 (WHO 2020). At the time of writing, at 
the beginning of July 2020, the pandemic has resulted in excess of 11 million confirmed 
cases and more than 500,000 deaths. In order to reduce the pace of the infection, most 
countries introduced a variety of containment strategies, such as lockdowns, international 
and national travel restrictions, social-distancing and shutdowns of non-essential busi-
nesses, schools and public offices. These measures have saved lives by reducing the conta-
gion and alleviating the burden on health care systems (e.g. Anderson et al. 2020). How-
ever, they have also generated substantial disruption on practically every aspect of social 
and economic life.

Preliminary studies indicate that the reduction in economic activity has been extremely 
significant. According to the most recent estimates (Eurostat 2020a, b; Organization for 
Cooperation and Development (OECD) 2020), practically all developed economies have 
experienced a contraction in the first quarter of year 2020. Furthermore, the prospect of 
an international recession much deeper than the financial crisis of 2008–2009 is extremely 
likely (International Monetary Fund (IMF) 2020).

Albeit informative, official statistics have two main drawbacks. First, they are typically 
released with a delay of at least 3 months.1 Second, in the context of the present pandemic, 
they simply provide an overall picture of the status of the economy, but fail to disentangle 
the impact of COVID-19 from those of all other factors affecting production and consump-
tion. In other words, they do not offer any causal estimates of the impact that the virus and 
the related containment measures are having on economic activities. However, in this time 
of uncertainty and economic downturn, policy makers urgently require timely indicators to 
(1) monitor in real-time the impact of COVID-19 on the economy and (2) understand the 
causal impact of the policies designed to respond to the COVID-19 pandemic, including 
both those implemented to contain the virus and those developed to stimulate production 
and consumption after restrictions are lifted.

This paper shows how high-frequency electricity market data can provide both types 
of information. Electricity is traded on hourly (or even half-hourly) bases in most devel-
oped countries across the world and up-to-date information on consumption is publicly 
accessible via the system operators’ websites. In developed countries, electricity contrib-
utes to virtually every human activity and the relationship between electricity consump-
tion (often indicated by the term “load”) and economic development is well established in 
the energy economics literature (e.g. Kraft and Kraft 1978; Chen et al. 2007; Stern 2018). 
By taking advantage of this strong link, satellite data on night lights are used to provide 
geographically disaggregated GDP estimates (Henderson et al. 2012) and even to forecast 
economic growth (Galimberti 2020). The relationship between electricity consumption and 
economic activities is particularly strong in the short-run. For example, significant drops 
in load occur during nighttime, weekends and public holidays when many businesses are 
shut down, creating the characteristic multi-level (daily, weekly and annual) seasonality 

1 As an example, economic assessments for the fourth quarter of 2019 were available only in April 2020 
for both the European Union (Eurostat 2020b) and the United States (Bureau of Economic Analysis, BEA 
2020).
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of electricity markets’ time-series (Bunn and Farmer 1985). This paper develops a meth-
odology to harness the wealth of information contained in electricity market data in order 
to monitor in real-time the state of the economy and to estimate the causal impact of the 
pandemic.

We illustrate our approach using daily data from the Italian day-ahead power market. 
Italy was the first European country to experience the outbreak of COVID-19 and, there-
fore, the one with the longest history of coping with the virus. It was also the first European 
country to implement a series of nation-wide restrictions on social and economic activities 
in an attempt to reduce the spread of the pandemic. Since the Italian Government intro-
duced (and then lifted) a variety of measures of gradually increasing severity, our daily 
information allows us to separately estimate the short-run economic impact of each of the 
different restrictions. For all these reasons, Italy is a highly informative case-study regard-
ing both the impact of containment strategies and the possible path of economic recov-
ery. Taking into consideration the appropriate caveats, our estimates also provide valuable 
insights on how economic activities may react to future restrictions.

Our identification strategy relies on a fixed-effect estimator and on daily electricity load 
information for the years 2015–2020. We estimate the impact of COVID-19 on consump-
tion and then apply a simple and yet effective rescaling approach in order to derive the 
implications for GDP. Our best estimate of the impact of the virus in the first quarter of 
2020 in Italy is a 5.1% GDP reduction (with a 95% confidence interval between 3.8 and 
6.4%), which is consistent with the official figures reporting a 5.3% drop (Eurostat 2020a, 
b; OECD 2020). Of course, our data is considerably more chronologically disaggregated 
and up-to-date and, therefore, we are not limited to the first quarter of 2020. On the con-
trary, we can distinguish the dynamic impacts of different policies and monitor the recov-
ery of the economy thus far. We find that each newly introduced restrictive measure is fol-
lowed by a significant reduction in economic activity. Not surprisingly, the strictest policies 
cause the largest economic impacts. For example, we estimate that the 3 weeks of most 
intense lockdown (with the temporary shutdown of a large number of factories) curtailed 
the corresponding GDP by about 30%. In similar fashion, when Italy started the gradual 
resumption of economic and social activities, our estimated impact gradually diminishes. 
However, at the end of June 2020 load has not yet reached the level that it would have been 
according to our counterfactual, signaling that the adverse impact of COVID-19 on the 
economy is still significant and ongoing.

2  Electricity Market Data

The Italian electricity market opened in year 2004, which makes it one of the youngest 
power markets in Europe. Most Italian electricity consumption pertains to three large sec-
tors: industry (39.6%), commercial and public services (32%) and residential (22.4%). 
The remaining 5.9% is allocated to transport, agriculture, forestry and fishing. The overall 
annual demand of about 300TWh is met by a mix of fossil fuels (about 65%), renewables 
(21%) and imports (14%).2

We calculate daily electricity load from the publicity-available, hourly information 
provided by the Italian day-ahead electricity market system operator, Gestore dei Mercati 

2 Source: International Energy Agency: https ://www.iea.org/data-and-stati stics .

https://www.iea.org/data-and-statistics
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Energetici (GME).3 Our dataset ranges from the 1st of January 2015 to the 30th of June 
2020. To illustrate the key dynamics of electricity consumption and provide a first, visual 
inspection of the impact of COVID-19, Fig. 1 compares the daily load for years 2019 and 
2020. Considering 2019, represented by the gray line, weekly seasonality is pronounced, 
with the reduced business activity in the weekends translating into roughly a 20% drop in 
load. Similar sharp falls also characterize public holidays. While these features are com-
mon to all electricity markets across the world, in Italy the effect of economic activities on 
load is also visible from the substantial reduction in consumption during the two central 
weeks of August, which is when the majority of Italian businesses shut down for the sum-
mer break. We also observe a smoother, annual seasonality, which follows the path of tem-
perature, with peaks during winter and summer, when consumption for air-conditioning is 
at the highest.

Electricity consumption in 2020, shown by the black line, follows virtually the same 
path as in 2019 until the first week of March, when it diverges markedly. That is when the 
Italian Government started introducing a series of social-distancing measures in order to 
contain the escalating numbers of COVID-19 cases (a detailed timeline of the policies is 
reported in Table A1 in the Appendix in Electronic Supplementary Material). On the 10th 
of March the first national-level lockdown was implemented, quickly followed by the pro-
visional closure of all shops, including bars and restaurants.4 The most restrictive measures 
were introduced in the last week of March and enforced until the second week of April. 
During this period, most factories were shut down and only supermarkets, pharmacies and 
other essential services were allowed to operate, but with reduced opening hours.5 Not sur-
prisingly, this is when the gap between the electricity loads of the 2 years is at the widest. 
Production and consumption steadily recovered in the following weeks, with the gradual 

20
00

0
25

00
0

30
00

0
35

00
0

40
00

0
45

00
0

Months

El
ec

tri
ci

ty
 c

on
su

m
pt

io
n 

(M
w

h)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

year 2019
year 2020

Fig. 1  Daily average electricity consumption in years 2019 and 2020

4 DPCM 9th of March, Official Gazette: https ://www.gazze ttauffi cia le.it/eli/id/2020/03/09/20A01 558/sg.
5 DPCM 22nd of March, Official Gazette: https ://www.gazze ttauffi cia le.it/eli/id/2020/03/22/20A01 807/sg 
and DPCM 25th of March, Official Gazette: https ://www.gazze ttauffi cia le.it/eli/id/2020/03/25/20G00 035/
sg.

3 GME historical data is available at: https ://www.merca toele ttric o.org/En/Tools /Acces sodat i.aspx.

https://www.gazzettaufficiale.it/eli/id/2020/03/09/20A01558/sg
https://www.gazzettaufficiale.it/eli/id/2020/03/22/20A01807/sg
https://www.gazzettaufficiale.it/eli/id/2020/03/25/20G00035/sg
https://www.gazzettaufficiale.it/eli/id/2020/03/25/20G00035/sg
https://www.mercatoelettrico.org/En/Tools/Accessodati.aspx
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re-opening of the economy. However, at the end of June we can still observe a substantial 
gap between the 2 years.

Figure  2 examines the impact of COVID-19 containment policies in more detail. It 
compares the weekly seasonality across all years in our 2015–2020 sample, distinguishing 
between two periods: (1) right before the 2020 lockdown dates (weeks 5–9 in February and 
March) and (2) during the most restrictive 2020 lockdown times (weeks 12–16 in March 
and April). Prior to the lockdown the pattern of electricity consumption in 2020 appears 
to be close to the average level of the previous 5 years, arguably a result of the slow GDP 
growth and of increased energy-efficiency (e.g. Malinauskaitea et al. 2019). However, dur-
ing the lockdown weeks, the difference between 2020 and the previous years is remarkable. 
In that period, consumption in the weekdays of 2020 is comparable to that of the weekends 
of 2015–2019, while during the weekends of 2020 we observe an even lower load.

All these findings confirm the robust short-run relationship between the intensity of 
economic activities and electricity consumption. As mentioned earlier, another important 
determinant of load is air temperature. To represent this variable, we use an average of the 
mean daily temperature in the two largest Italian cities: Rome and Milan. We download 
this information up to the 13th of May 2020 from the University of Dayton archive.6

Fig. 2  Average electricity consumption in each day of the week. Notes: For all years the “before lockdown” 
period consists of weeks 5–9 (35 days in February and March), while the “during lockdown” period con-
sists of weeks 12–16 (35 days in March and April)

6 Source: http://acade mic.udayt on.edu/kisso ck/http/Weath er/defau lt.htm. This website is not updated every 
day and, therefore, for the most recent month (June 2020) we used temperature information from the moni-
toring stations of the National Oceanic and Atmospheric Administration (https ://www.ncdc.noaa.gov/cdo-
web/).

http://academic.udayton.edu/kissock/http/Weather/default.htm
https://www.ncdc.noaa.gov/cdo-web/
https://www.ncdc.noaa.gov/cdo-web/
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3  Modelling Approach

The visual inspection of the data given in the previous section highlighted that electricity 
consumption in 2020 exhibited very similar patterns to those in the previous 5 years, at 
least up to the day in which the first containment measures were introduced. Therefore, 
the information in those earlier years can be used to construct a plausible counterfactual 
for what electricity consumption would have been in year 2020 in the absence of the pan-
demic. This line of reasoning has been already used to show that, in most countries, official 
figures greatly underestimate the real death toll of the outbreak (e.g., Ciminelli and Garcia-
Mandicó 2020).

Indicating with t the daily steps of our time-series, our base model is:

where yt is the natural logarithm of electricity load, djt are six dummy variables identifying 
the day of the week (with Monday as the baseline), dht are two dummy variables identify-
ing official public holidays and other observances, γw = are week-of-the-year fixed effects, 
γw,2020* are week-of-the-year fixed effects interacted with a dummy variable identifying 
year 2020, tempt = is the average air temperature and f(.) a non-linear functional form, βs 
are the remaining a parameters to be estimated and ut is the random component.7

This specification is designed to capture all the peculiar features of electricity con-
sumption and so isolate the causal impact of COVID-19. The week-of-the-year fixed 
effects γw encompass the slow-moving yearly seasonality of electricity load connected to 
both weather and cultural habits, such as the distinctive drop in consumption in the cen-
tral 2 weeks of August that we mentioned in the previous section. The non-linear effect 
of the short-term variation in temperature is represented by f(.), which we specify as joint 
piecewise linear function as δ1tempt+ δ2(tempt − k)dkt, where k is the threshold in which the 
relationship between temperature and load reverts and δ1, δ2 are the parameters to be esti-
mated. This flexible specification generates a V-shaped function. We set k to 62 °F (about 
16.5 °C) by visually inspecting the scatterplot of the data (see Figure A1 in the Appendix 
in Electronic Supplementary Material). Furthermore, the effects of the weekly seasonality 
and the public holiday effects are captured by the corresponding dummy variables.

Our model does not include electricity price. In fact, a peculiar characteristic of electricity 
markets is that the demand function can be considered as completely inelastic in the short-
run, since the majority of final consumers do not purchase on the wholesale exchange but, 
rather, are supplied by utility companies at fixed tariffs (e.g., Fezzi and Bunn 2010). These 
companies operate on the day-ahead market, but are required to fulfill their orders to the final 
consumers and, therefore, cannot respond to price variation. Because of this feature, short-run 
electricity load forecasting models do not typically include price information (e.g. Taylor et al. 
2006) and, practically, all short-run price forecasting methods treat quantity as exogenous (e.g. 

(1)yt = �0 +

6
∑

j=1

�jdjt +

2
∑

h=1

�hdht + �w + �∗
w,2020

+ f
(

tempt
)

+ ut,

7 Regarding the week-of-the-year fixed effects, we tested two alternative definitions. In the first one we 
used calendar weeks. With this approach, in different years the days covered by each fixed-effects do not 
correspond and the number of days represented by the first week can vary across years. In the second 
approach, we defined the fixed effects as groups of 7 days, always starting from the 1st of January of each 
year. Therefore, the only difference across years is caused by leap years. This second method provided a 
slightly superior fit and, therefore, is the one we adopt in the all our models.
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Weron 2014; Fezzi and Mosetti 2020). In line with this long-standing literature, therefore, we 
exclude price effects from our short-run analysis of electricity consumption.

The key-parameters for our study are the coefficients γw,2020*, which measure the impact 
of COVID-19. These interaction effects capture the differences between each week of year 
2020 and the average of the corresponding week in the previous 5 years which cannot be 
explained by any of the other observed factors. If our model is correctly specified, the 
γw,2020* parameters corresponding to the weeks before the outbreak (i.e. during January 
and February) should be not significantly different from zero. Of course, we still include 
these parameters in our model because they serve as implicit in-time placebo tests for our 
modelling assumptions. On the other contrary, we expect to estimate highly significant and 
negative γw,2020* parameters when the COVID-19 containment measures are introduced, 
i.e. roughly from the second week of March 2020.

If the error component ut is independently and identically distributed (iid), our model 
can be consistently estimated with ordinary least squares (OLS). A possible concern with 
this estimator is that the iid assumption may not be satisfied, since the unobserved fac-
tors represented by the stochastic component may be autocorrelated. This situation can be 
generated by autocorrelated measurement errors. For example, the average temperature in 
Milan and Rome is unlikely to perfectly represent the weather profile of the entire coun-
try and, therefore, some remaining demand variation is undoubtedly present in the error 
term. Since weather shocks are typically autocorrelated, this missing variation is likely 
to generate autocorrelation in the residuals of our model. Possible omitted variables (e.g. 
special events or dynamic adjustments in residential and commercial load to temperature 
variations) are also plausible causes of residual autocorrelation. We investigate this issue 
through two distinct approaches. In the first one, we apply to the OLS covariance matrix 
the heteroscedasticity and autocorrelation consistent (HAC) correction proposed by Newey 
and West (1987). By setting the maximum lag for the correlation weights at seven we also 
attempt to capture any remaining weekly seasonality. In the second approach, we impose 
an autoregressive AR(1) specification for the random component (i.e. ut = ϕut−1) and esti-
mate the resulting model with maximum likelihood. As a further check of the robustness of 
our findings, we re-estimate the base model after removing the piecewise function of tem-
perature from the equation, in order to evaluate the susceptibly of our estimates to omit-
ted variable bias. As shown in the next section, none of these alternative specifications 
alter our estimates of the effect of COVID-19 lockdown in any significant way. We run our 
analyses in R (R Development Core Team 2006), using the packages lmtest (Hothorn et al. 
2019), MASS (Ripley et al. 2013), nlme (Pinheiro et al. 2017) and sandwich (Zeileis 2004).

If our model is correctly specified and passes the time-placebo test discussed above, 
the coefficients γw,2020* from week 11 to week 22 can be interpreted as the causal impact 
of COVID-19 on electricity load. Therefore, we can estimate the impact of the pandemic 
and lockdown by comparing daily in-sample predictions obtained by (1) the full model and 
(2) a model in which such coefficients are set to zero. Indicating these two predictions (on 
the original scale of the variable) respectively with Ŷt and Ŷ∗

t
 , we can write the percentage 

impact of COVID-19 on electricity load as:

(2)lt = 100
(

Ŷt − Ŷ∗

t

)

∕Ŷ∗

t
,
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and derive appropriate confidence intervals via Monte Carlo simulations.8
Ideally, in order to translate electricity load reductions into GDP impacts we would want 

to employ detailed information, disaggregated by industry type, on changes in electricity 
consumption, value added and amenability to distance-working solutions. Unsurprisingly, 
this wealth of data is not available, particularly at the daily time-scale of our analysis. As 
a second-best solution, we employ some deliberately simple and intuitive assumptions to 
transform our estimates of electricity load changes into GDP impacts.

We assume that, in the short run and at the national level, GDP changes are proportional 
to the changes in electricity consumption by all productive sectors (i.e. all sectors but the 
residential one). In order to evaluate this claim, we run a back-of-the-envelope calculation 
on GDP and electricity consumption information for Italy for the years 1990–2018.9 Both 
variables are non-stationary and, therefore, we compute a correlation analysis on the first 
differences (in percentage) in order to avoid measuring a spurious relation. We estimate 
a correlation coefficient of 0.88, indicating an extremely strong linear covariation in the 
long-run. We believe this relationship to be even stronger in the short-run, justifying the 
simple assumption of a 1:1 relationship in our calculations (the plot is reported in Figure 
A2 in the Appendix in Electronic Supplementary Material).

In order to derive the impact of COVID-19 on the electricity consumption of the pro-
ductive sectors we need to rescale our estimates, which are calculated on the total load. We 
compare two simple approaches. In the first one, we assume that residential consumption 
has remained unaffected by the restrictions and, therefore, all the reduction in electricity 
load due to the COVID-19 can be traced back to the other sectors. In the second one, we 
follow recent International Energy Agency’s estimates (IEA 2020) reporting that residen-
tial consumption has increased by 40% during the lockdown, and rescale our calculations 
accordingly. The percentage GDP impacts following these two methods can be written as:

where r represents the percentage of consumption of the residential sector, which in Italy 
corresponds to 22.4% according to the most up-to-date IEA estimates (footnote 3). While 
for transparency we report both measures, we believe that (4) should be the preferred esti-
mate during the lockdown months (March and April) while (3) should be more accurate for 
the post-lockdown period, i.e. from the month of May onward. Although extremely simple, 
the next section shows that these assumptions provide results that are remarkably close to 
the official estimates of the GDP changes during the first quarter of 2020. Of course, our 
results extend well beyond the first quarter and provide an up-to-date assessment of the sta-
tus of the economic disruption caused by the pandemic.

(3)GDP1t = lt100∕(100−r), and

(4)GDP2t = lt100∕(100−1.4r),

8 Because of Jensen’s inequality (e.g. Silva and Tenreyro 2006), the predictions on the original variable’s 
scale are not simply the exponent of the predictions on the log, but actually depend on the distribution of 
the random component. The practical significance of this inequality is influenced by the magnitude of the 
residuals, i.e. by the noise-vs-signal ratio. In our specific case the difference is negligible since all our speci-
fications present extremely high fit (all  R2 are higher than 0.92) and, therefore, for simplicity we employ the 
Gaussian assumption, i.e. we use Yt = exp{[log(yt)] + (s2/2)}, with s indicating the estimated standard devia-
tion of the error component.
9 Source: IEA, https ://www.iea.org/data-and-stati stics  and The World Bank, https ://data.world bank.org/.

https://www.iea.org/data-and-statistics
https://data.worldbank.org/
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Table 1  Electricity load equation estimates

All parameters except the intercept multiplied by 100 to improve readability. In italics we report param-
eters’ standard errors. Significance levels are *0.05, **0.01 and ***0.001. Model 1 and 2 estimated with 
OLS (HAC standard errors returned slightly smaller intervals and, therefore, we report the original OLS 

Model 1
Base

Model 2
No temperature

Model 3
Autocorrelation

Intercept 10.47*** 0.03 10.38*** 0.07 10.42*** 0.02
Tue 4.04*** 0.29 4.10*** 0.31 4.09*** 0.18
Wed 4.78*** 0.29 4.85*** 0.31 4.88*** 0.23
Thu 4.65*** 0.29 4.74*** 0.31 4.78*** 0.25
Fri 3.75*** 0.29 3.71*** 0.31 3.70*** 0.25
Sat − 11.91*** 0.29 − 11.92*** 0.31 − 11.85*** 0.23
Sun − 23.66*** 0.29 − 23.66*** 0.31 − 23.70*** 0.18
dholiday1 − 21.35*** 0.50 − 21.27*** 0.53 − 18.59*** 0.33
dholiday2 − 5.43*** 1.04 − 5.47*** 1.11 − 0.40 0.68
Temp − 0.21*** 0.03 – – − 0.08* 0.03
(Temp-62)d62 0.81*** 0.05 – – 0.37*** 0.06
Week1,2020 0.97 1.44 1.40 1.53 1.76 2.32
week2,2020 2.13 1.44 3.08* 1.53 2.99 2.47
Week3,2020 2.32 1.44 2.28 1.53 2.48 2.47
Week4,2020 2.09 1.44 1.60 1.53 1.16 2.47
Week5,2020 0.93 1.44 − 0.06 1.53 0.49 2.48
Week6,2020 0.31 1.44 0.06 1.53 − 0.22 2.48
Week7,2020 0.10 1.44 − 0.47 1.53 − 0.18 2.48
Week8,2020 − 0.25 1.44 − 0.86 1.53 − 0.78 2.48
Week9,2020 − 1.19 1.44 − 1.60 1.53 − 1.52 2.48
Week10,2020 − 0.01 1.44 0.11 1.53 − 2.55 2.48
Week11,2020 − 8.15*** 1.44 − 8.48*** 1.53 − 9.45*** 2.48
Week12,2020 − 18.70*** 1.44 − 18.36*** 1.53 − 16.32*** 2.48
Week13,2020 − 23.84*** 1.45 − 22.66*** 1.54 − 21.95*** 2.48
Week14,2020 − 22.52*** 1.44 − 21.62*** 1.53 − 21.44*** 2.48
Week15,2020 − 25.57*** 1.46 − 25.67*** 1.56 − 24.26*** 2.48
Week16,2020 − 18.31*** 1.44 − 18.35*** 1.54 − 16.25*** 2.48
Week17,2020 − 10.83*** 1.44 − 11.40*** 1.53 − 14.33*** 2.48
Week18,2020 − 11.38*** 1.44 − 12.03*** 1.53 − 11.04*** 2.48
Week19,2020 − 10.85*** 1.44 − 11.00*** 1.53 − 11.40*** 2.49
Week20,2020 − 9.09*** 1.45 − 7.34*** 1.53 − 8.45*** 2.49
Week21,2020 − 7.26*** 1.45 − 5.16*** 1.53 − 7.18** 2.53
Week22,2020 − 7.68*** 1.44 − 9.27*** 1.53 − 8.19*** 2.83
Week23,2020 − 5.03*** 1.45 − 7.89*** 1.53 − 6.58** 2.48
Week24,2020 − 4.24** 1.46 − 8.27*** 1.53 − 6.38* 2.49
Week25,2020 − 5.71*** 1.45 − 8.01*** 1.53 − 6.53** 2.50
Week26,2020 − 6.68*** 1.44 − 6.58*** 1.53 − 7.33** 2.62
Weekly FE YES YES YES
ϕ NO NO 0.67
R2 0.940 0.932 0.926
Log-likelihood 3945.54 3815.62 4323.199
AIC − 7711.09 − 7455.25 − 8464.38
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4  Results

Table  1 presents the parameter estimates of our electricity load specifications. All three 
models provide an impressive fit to the data with  R2 statistics higher than 0.92. In the first 
column we report our base model (1). All parameters have the anticipated signs and mag-
nitudes. The temperature parameters estimate an asymmetric V-shaped relationship, with 
one degree higher than the threshold of 62 °F increasing electricity load roughly as much 
as three degrees below, reflecting the demand for cooling and heating respectively. A pos-
sible explanation for this asymmetric response is that, in Italy, a significant share of heating 
is generated directly by natural gas and, therefore, does not impact on electricity consump-
tion. Day-of-the-week and public-holidays dummy variables indicate that consumption 
drops significantly during weekends and festivities. It is worth mentioning that directly 
interpreting these coefficients as semi-elasticities is incorrect since the derivative of a func-
tion with respect to a dichotomous variable does not exist. Nevertheless, semi-elasticities 
can be computed by a simple rescaling operation, which depends on both the sign and the 
magnitude of the coefficient (e.g. Halvorsen and Palmquist 1980). For example, the coef-
ficient of Sundays is − 0.237. The appropriate decrease in load compared to Mondays (the 
baseline category) is 21.1% and not 23.7%.10 

The focus of our analysis are the parameters γw,2020*, i.e. the coefficients of the inter-
action terms between year 2020 and the weekly dummy variables, reported in the rows 
from  week1,2020 to  week26,2020. The parameters of the first 10  weeks are all non-signifi-
cant, indicating that until the beginning of March there were no unobserved factors dis-
tinguishing the pattern of electricity load in year 2020 from the weekly averages of the 
previous 5 years. Therefore, our specification passes the in-time placebo test. We interpret 
this result as supporting the causal interpretation of our estimates. More specifically, the 
impacts estimated by the parameters γw,2020* from the 11th week onwards can be traced 
back to COVID-19 and not to any unobserved factors. All these parameters are negatively 
signed and strongly significant, in line with our expectations that the containment policies 
caused significant reductions in electricity load. The strongest reductions happened during 
the 3 weeks of most intense restrictions (weeks 13–15), where we estimate a causal effect 
of about – 20% on electricity load.

In the second column, we report the specification in which we removed temperature in 
order to examine if our results are affected by the omission of relevant explanatory vari-
ables. The coefficient of the 2nd week of year 2020 is now significant at the 5% level, 
signaling that this model does not capture some of the distinctive features of electricity 

standard errors for conservative inference), while Model 3 is estimated with maximum likelihood. Variables 
 dholiday1 and  dholiday2 indicate dummy variables for (1) public holidays and (2) observances, while the temp 
terms represent the piecewise linear function of temperature, ϕ is the error-term autocorrelation parameter. 
All models include 52 weekly fixed effects (weekly FE). N = 1979

Table 1  (continued)

10 Semi-elasticities ξ can be obtained using the following rescaling equation: ξ = 100(exp{c} – 1), where 
c indicates the coefficient of the dummy variable (Halvorsen and Palmquist 1980). This equation assumes 
that the coefficients is known, while in reality it is a random variable. The correct formula depends on the 
distribution of the error term (van Garderen and Shah 2002) but, in most cases, makes little difference, par-
ticularly when the parameters are highly significant. We tested different approximations but none changed 
our results in a meaningful way and, therefore, we opted for the above equation for simplicity.



895Real-Time Estimation of the Short-Run Impact of COVID-19 on…

1 3

consumption during the current year and, therefore, fails the in-time placebo test. Here the 
reason is obviously the omitted temperature: the 2nd week of 2020 was, in fact, markedly 
colder than the average of the previous 5 years and the corresponding dummy variable is 
capturing this discrepancy. Incidentally, this result confirms that our in-time placebo test 
is powerful enough to detect unobserved factors. Despite the temperature omission, the 
γw,2020* coefficients measuring the impact of COVID-19 (i.e. weeks 11–26) remain remark-
ably stable and, therefore, our results are essentially unaffected by this misspecification.

The third column reports the maximum likelihood estimates of the model with an 
AR(1) error term. In this specification the  R2 cannot be directly compared with those of the 
previous regressions, since this index does not take into account the parameter of random 
component. Instead, we can compare the Akaike’s Information Criteria and the log-likeli-
hood. Both values clearly indicate that the performance of Model 3 is superior to the two 
alternatives. The ϕ coefficient is about 0.67, signaling substantial autocorrelation in the 
error component. The standard errors of this model are somewhat larger than those of the 
previous specification. This feature suggests that OLS (and also the HAC standard errors) 
slightly underestimate the uncertainty of our findings. Apart from this difference, all the 
parameters appear to be consistent with those of the simpler specifications.

Table 2 summarizes the estimated impact of the lockdown and social-distancing meas-
ures on electricity load, calculated as illustrated by Eq. (2), and on GDP, calculated using 
both the approaches described by Eqs.  (3) and (4). In order to preserve space, we report 
only the results according to our best-fitting specification (Model 3). In bold we indicate 
what we believe is the preferred method to calculate GDP impacts for each month, taking 
into account that residential electricity consumption increased during the lockdown (IEA 
2020) but should have reverted to its usual level when the restrictions limiting people’s 
movements were lifted (i.e. at the beginning of May 2020). In March our best estimate 
concludes that the pandemic caused a 15.4% drop in GDP which, rescaled to the entire first 
quarter, leads to a 5.1% overall reduction, with the 95% confidence interval being from a 
3.8% to a 6.4% fall in GDP. Our mean value is remarkably close to the recession of 5.3% 
projected by Eurostat (2020a, b) and the OECD (2020). However, it is worth mentioning 
that the interpretation of our results is different from those of the official statistics. They 
estimate the variation of GDP from the previous quarter, while our model isolates, ceteris 
paribus, the impact of COVID-19. Nevertheless, in our case-study the two measures are 
not likely to differ substantially given the sluggish growth of the Italian economy prior to 
the pandemic. Comparing results over time, the most affected month is April 2020, with 

Table 2  Estimated monthly impacts of COVID-19

Results according to Model 3 in Table  1. Electricity indicates the estimated impact on electricity load, 
GDP1 indicate the impact on GDP assuming that residential consumption has not changed, while GDP2 
indicates the impact on GDP assuming that residential consumption increased by 40%. The square brackets 
report 95% confidence intervals calculated via 5000 Monte Carlo simulations. In bold we highlight our pre-
ferred GDP-change estimates

Electricity (%) GDP1 (%) GDP2 (%)

March − 10.6 [− 7.9; − 13.2] − 13.7 [− 10.2; − 17.0] − 15.4 [− 11.5; 19.3]
April − 16.8 [− 14.3; − 19.3] − 21.7 [− 18.4; − 24.9] − 24.5 [− 20.8; 28.1]
May − 8.8 [− 6.1; − 11.4] − 11.3 [− 7.8; − 14.6] − 12.8 [− 8.8; 16.6]
June − 6.6 [− 3.5; − 9.4] − 8.5 [−4.6; − 12.1] − 9.6 [− 5.2; 13.7]
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a GDP reduction of roughly 25%. On the other hand, we start witnessing some signs of 
recovery in May, for which estimate an average reduction of 11%, and in June, in which we 
register a decrease of 8.5%.

These dynamics are represented more in detail in Fig.  3. In line with our parameter 
estimates, impacts on both electricity load (top image) and GDP (bottom image) are non-
significant for all the weeks before the outbreak. Starting from the introduction of the 
first lockdown measures in the second week of March 2020, each incremental constraint 
(once again, see Table A1 for the timeline of the lockdown policies in Italy) is followed 
by a significant drop in electricity consumption. In a similar fashion, the loosening of the 

Fig. 3  Estimated impact of COVID-19. Notes: The bold solid line is the estimated impact of COVID-19 on 
electricity load (top figure) and GDP (bottom figure) according to our preferred specification (Model 3) and 
the dashed line are the 95% confidence intervals calculated via 5000 Monte Carlo repetitions. GDP impacts 
are calculated according the Eq. (4) for the lockdown weeks and to Eq. (3) for all other periods
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restrictions, which started on the 3rd week of April 2020, prompted a resumption of eco-
nomic activities and, therefore, our estimated negative impact steadily diminishes.

GDP dynamics follow roughly the same pattern but are somewhat amplified, with the 
strictest policies causing roughly a temporary 30% drop in GDP. Our method allows us 
to track impacts in real-time and, therefore, we report estimates until literally a few days 
before the final submission of this article, i.e. until the end of June 2020. To date, the Ital-
ian Government has lifted the strictest restrictions, but social-distancing requirements still 
constrain many economic activities. For example, shops and restaurants are open with 
reduced capacity, while the tourism sector is experiencing significant losses. Figure 3 indi-
cates that the GDP recovery that started in the last week of April (and persisted in May) 
has, unfortunately, reached a plateau in June, in which we register a roughly constant 8.5% 
reduction compared to the counterfactual level. Therefore, at the time of writing we do not 
detect a full comeback of the economy, or even just a temporary rebound triggered by the 
rescheduling of the industrial processes halted by the 3-weeks shutdown in the months of 
March and April.

An important issue, which needs to be kept in mind when interpreting our most recent 
estimates, is international spillover effects. The production (Backus and Kehoe 1992), con-
sumption (Cavaliere et  al. 2008) and financial assets (Forbes and Rigobon 2002) of one 
country do not exist in isolation, but are inextricably connected to the economic conditions 
of the rest of the word. Since Italy was the first European country to introduce strict lock-
down policies, we believe that our estimates correspond to the short-run causal impact of 
such early restrictions. However, by mid-April 2020 the crisis had spread across much of 
the world and, therefore, our estimates for the tail end of our data go beyond the impact of 
national policies and need to be interpreted by taking into account the global recession and 
the disruption of international supply-chains caused by the pandemic (e.g. Baldwin and 
Weder di Mauro 2020).

5  Conclusions and Caveats

We develop a simple and practical methodology for estimating the short-term impact of 
COVID-19 on the economy by analyzing high-frequency electricity market data. The main 
advantage of our approach lies in its real-time nature. While official statistics (e.g. Eurostat 
2020a, b; OECD 2020) are typically published with a delay of about 3 months, our method 
provides updated estimates of the economic impact of the pandemic on a weekly (or even 
daily) basis. In the current uncertain economic environment, timeliness is of essence for 
policy makers seeking to understand the current state of the economy and the impact of 
their policies. Our approach can be used to monitor in real-time the extent of the disruption 
caused by the pandemic. It can also be used to assess the effectiveness of the monetary and 
fiscal stimuli that many countries have introduced in order to address the crisis. A further 
strength of our empirical strategy is that it is widely applicable. It only requires data on 
electricity load and temperature, and such information is publicly available for virtually all 
developed economies in the world.

We illustrated our methodology using daily information from the day-ahead Italian 
electricity market. Italy was the first European country to both experience the outbreak of 
COVID-19 and to implement a series of nation-wide restrictions on social and economic 
activities in an attempt to curb the spread of the infection. Aggregating our weekly results 
(robust to different specifications and to in-time placebo testing), we estimate that these 
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restrictions reduced Italian GDP by 5.1% during the 1st quarter of 2020, which is remark-
ably close to the preliminary figures published by Eurostat (2020a, b) and the OECD 
(2020). Of course, our approach produces estimates which are significantly more up-to-
date and disaggregated. We estimate that the most severe impacts were registered during 
the 3 weeks of March and April 2020 when all non-necessary economic activities were 
required to halt production. Our preferred modelling specification estimates a 30% GDP 
reduction during this period. We also detect a gradual recovery right after, such that, by 
the end of June, economic activity was “only” 8.5% lower than what it would have been 
had the pandemic not occurred. This remaining recession is hardly surprising given that 
social-distancing requirements are still constraining economic activities, particularly in the 
cultural, catering and hospitality sectors. Our model can be routinely updated over time in 
order to monitor GDP dynamics and to track the status of the economy well ahead of the 
official statistics.

A number of comments and caveats need to be made when interpreting our findings. 
First, our analysis concerns only short-run effects. Over time the impacts of different 
national policies tend to overlap with each other, and spillover effects from other coun-
tries become gradually more important. Economic shocks are not limited by frontiers but, 
rather, reverberate across countries almost like a further form of contagion. These have 
consequences for both real (e.g. Backus and Kehoe 1992) and financial markets (Forbes 
and Rigobon 2002). This issue is likely to be negligible for our estimated GDP impacts in 
the initial weeks of restrictions, since Italy was the first country in Europe to grapple with 
the pandemic and implement lockdown policies. However, as the pandemic subsequently 
spread internationally, so our findings should progressively be interpreted as the general 
effect of the pandemic, rather than solely the response to a specific national policy. Despite 
these confounding factors and knock-on effects, the validity of our approach for monitoring 
the real-time status of the economy still stands.

Second, while we believe that at the national level postulating a 1:1 relationship between 
electricity load change (excluding residential users) and GDP change is satisfactory in the 
very short-run, our approach does not disentangle the heterogeneous impacts of the pan-
demic across sectors. Some activities, such as wholesale and retail food supply, as well 
as e-commerce, are likely to have experienced an increase in turnover, while small and 
medium companies in the manufacturing, hospitality and personal services have been the 
most adversely affected.11

Finally, our approach does not take into account the possibility of adaptation strategies 
such as a switch to home working. As companies become more adept at such modes of 
working, so the effect of future lockdown restrictions may become less severe. This con-
sideration has to be balanced against the potential for long-term and repeated lockdowns 
exerting cumulative and progressively more adverse economic effects, including through 
the impacts on human wellbeing.
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