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Abstract: Spurred by the problem of identifying, in real-time, the adhesion levels between the tyre and the road, a practical,
linear parameterisation (LP) model is proposed to represent the tyre friction. Towards that aim, results from the theory of
function approximation, together with optimisation techniques, are explored to approximate the non-linear Burckhardt model
with a new LP representation. It is shown that, compared with other approximations described in the literature, the proposed
LP model is more efficient, that is, it requires a smaller number of parameters, and provides better approximation capabilities.
Next, a modified version of the recursive least squares, subject to a set of equality constraints on parameters, is employed to
identify the LP in real time. The inclusion of these constraints, arising from the parametric relationships present when the tyre
is in free-rolling mode, reduces the variance of the parametric estimation and improves the convergence of the identification
algorithm, particularly in situations with low tyre slips. The simulation results obtained with the full-vehicle CarSim model
under different road adhesion conditions demonstrate the effectiveness of the proposed LP and the robustness of the friction
peak estimation method. Furthermore, the experimental tests, performed with an electric vehicle under low-grip roads, provide
further validation of the accuracy and potential of the estimation technique.

1 Introduction

In automotive applications, the adhesion conditions present
in the tyre–road interface have a strong influence in the
tyre’s ability to generate longitudinal and lateral forces and,
under reduced grip conditions, represent a potential menace
to the vehicle safety. With the recent proliferation of active
safety systems (such as anti-lock braking system [ABS],
traction control system [TCS], vehicle dynamics control
[VDC]) [1], the estimation of adhesion levels, characterised
by the friction coefficient, has attracted growing interest in
the research community, since knowledge of this variable
contributes significantly towards increasing the effectiveness
of these safety systems. In addition, intelligent vehicles, as
is the case with autonomous vehicles, currently at an early
stage of development, can also benefit from the friction
estimation, adapting the control strategies to the maximum
grip levels available on the road [2]. Unlike other easily
measurable variables, such as the vehicle acceleration, yaw
rate and wheel speeds, there is currently no economically
viable sensor that can be installed in the vehicle to measure
the friction coefficient. These difficulties have encouraged
the development of virtual sensors to estimate this variable
using easily measurable signals.
There are several approaches to tackle the friction

estimation problem. In this article, we focus on the so-called
slip-based techniques, that is, the use of tyre force models
based on the wheel slip to infer the adhesion levels [3],
and constrain our study to the friction estimators active

during longitudinal vehicle manoeuvres. These methods can
be divided into two categories: qualitative and quantitative
(see Fig. 1). In both cases, the main objective is to obtain
an estimation of the peak friction coefficient; however, the
outputs of the two mentioned methods are very different.
In the first case, qualitative, the output of the estimator
is based on a grading system, providing an indicator of
adhesion quality, for instance, qualifying the grip levels on a
scale from ‘A’ (high grip) to ‘E’ (very slippery); and in the
second case, quantitative, a numerical output is generated to
quantify the tyre–road adhesion in greater detail.
Examples of the qualitative methods can be found in

[3–8]. The main driving force behind these approaches is
the problem of persistence of excitation. To extract the
peak friction, we need to apply high levels of tyre slip,
which is not desirable from the safety point of view. To
avoid this problem, the qualitative methods identify the
tyre longitudinal stiffness, that is the friction slope for
low-slip values, and then infer the grip levels through a
classification process that correlates the slope value with the
peak friction (see Fig. 1). Although these approaches solve
the problem of persistence of excitation, they also introduce
a new issue: the classification stage. This classification is
very problematic to obtain in practice and, as pointed out
by [4, 8, 9], varies with the type of tyre, and the tyre
wear, pressure and temperature, among many other factors.
Therefore a significant experimental effort is required to
tune the classification process, which makes these qualitative
approaches very difficult to apply in practice.
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Fig. 1 Estimation methods for detecting the longitudinal peak

friction

On the other hand, the quantitative methods [10–14]
extract the peak friction using only online curve-fitting
techniques. Although the estimation is obtained at the
expense of applying high tyre slips, the estimation process
is more simple and robust and also offers the possibility
to identify the optimal slip reference λmax associated with
the maximum friction point. This last feature is very useful
in generating the reference signal used in some anti-lock
braking and traction control systems that rely on wheel
slip control [14, 15]. Furthermore, since the most common
tyre models, such as the magic tyre formula (MTF) [16]
or the Burckhardt representation [12], are non-linear, the
online identification of the model parameters tends to be
very difficult. As a result, most of the quantitative methods
use linear parameterisation (LP), that is, non-linear models
whose unknown parameters can be identified by linear
techniques. Polynomials [11], rational functions [12, 17],
exponentials [14], logistic sigmoids [18] and logarithmic
functions [13, 19] are the most common LPs found in the
literature.
In this article, we offer a contribution to the quantitative

methods by proposing a more rational approach for deriving
the LP. Unlike the aforementioned parameterisations, which
are built using heuristics considerations, we employed
optimal function approximation techniques to find an
equivalent, but linear identifiable, model to the non-linear
Burckhardt representation. The resulting LP yields a more
accurate approximation and, in some cases, requires a
smaller number of parameters, which gives some practical
advantages for online friction identification. A second
contribution to the quantitative framework is related to
the application of a new and more robust identification
technique to the peak friction estimation problem. Owing
to its numeric efficiency and simplicity, the unconstrained
recursive least squares (RLS) has become the most common
method for estimating the friction parameters in real time
[12, 14], but as shown in Section 4, under some parametric
configurations, it may also introduce significant fitting error
in the low-slip range and compromise the friction peak
detection. To overcome this issue, we modify the RLS
to comply with a set of (equality) constraints on the
parameters, arising from the parametric relationships present
when the tyre is in free-rolling mode. The inclusion of these
constraints, which can be seen as a form of prior information
on the system model, leads to a constrained RLS (CRLS)
formulation and provides parameter estimates with less
variance than the unconstrained version. Albeit the CRLS
has been previously employed in other research fields (e.g.
biomedical applications [20] and signal processing [21]),
to the best of the authors’ knowledge, no previous study
has applied this technique to the problem of estimating the

friction peak. Several simulations, performed with CarSim
under different road adhesion conditions, demonstrate the
higher accuracy and robustness of the CRLS against the
RLS, particularly for the λmax estimation. Finally, the
proposed optimal LP and CRLS were also experimentally
tested with an electric vehicle.

2 Longitudinal vehicle/tyre model

In this section, a brief introduction to the models related to
the friction estimation methodology is provided. Since the
longitudinal forces and slip are considered, the quarter car
model, widely used in the literature on this field [12, 14, 22],
is a sufficient mean for our study

J ω̇ = rFx − Tb (1a)

Mv̇ = −Fx (1b)

where ω represents the wheel angular speed, v the
longitudinal vehicle speed, Tb the braking torque applied to
the wheel, Fx the friction force between tyre and the road,
J the wheel and transmission inertia, M the equivalent mass
coupled to the wheel and r the wheel radius. For simplicity,
in this work we only consider braking manoeuvres, hence
v ≥ rω, but the obtained results can be effortlessly modified
for the acceleration case.
Modelling the longitudinal friction force Fx is the main

difficulty in (1). Generally, the friction force is proportional
to the normal force that the wheel supports (Fz) and
depends on a non-linear function μ(.), known as the friction
coefficient, which varies with the longitudinal tyre slip (λ),
road adhesion conditions, and tyre pressure, temperature,
and wear, among other factors, and can be grouped into a
parameter vector β ∈ R

d

Fx = Fzμ(λ,β) (2)

λ =
v − ωr

v
(3)

The most common approaches to represent the friction
coefficient μ(.) are based on two types of models: (i)
static and (ii) dynamic. The static models, such as the
Burckhardt [12] model

μ(λ,β) = β1(1 − e−β2λ) − β3λ (4)

and the MTF [16]

μ(λ,β) = β1 sin(β2atan((1 − β4)β3λ + β4atan(β3λ))) (5)

where the vector β = [β1 β2, . . . ,βd]
T represents the

model parameters, were developed by applying curve-
fitting techniques to the experimental tyre data. The
great advantage of the static models is their simplicity;
however, they are limited to steady-state conditions,
and the model parameters lack physical meaning. More
recently, dynamic models, such as the LuGre [22],
have been applied to represent the tyre–road friction,
presenting promising features to capture the friction transient
behaviour. A complete review of friction models is beyond
the scope of this work, but a detailed discussion about this
topic can be found in [22, 23] (and references therein).
It is worth stressing the fact that the present work is

only concerned with finding more effective LPs to improve
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the performance of the online regression stage depicted
in Fig. 1. For this reason, we considered some practical
assumptions, such as the access to the longitudinal and
vertical tyre forces, vehicle velocity and wheel angular
speed values (see Fig. 1), which is a common trend in the
literature [4, 6, 13, 14]. Of these variables, ω and Fz are
easily obtained. For example, the wheel speed is measurable
with low-cost sensors, whereas the tyre vertical load can be
extracted from well known weight transfer relations [12].
With regard to obtaining the longitudinal force information,
there are two main possibilities: (i) direct measurement
and (ii) observers. The former option can be accomplished
through bearing units with load sensing [24, 25] or by
putting accelerometers inside the tyre [26], but such sensors
are generally costly and, as far as our knowledge goes, still
remain largely in a prototype phase. To overcome the cost
issue, longitudinal force observers represent an attractive
prospect. For example, if the information about wheel torque
is available, a simple force observer can be built from
the model (1a), as discussed in [12, 27]. Alternatively, the
longitudinal vehicle dynamics (1b), together with the
acceleration measurement, are also commonly employed to
infer Fx [3, 6], whose performance can be further improved
by applying the extended Kalman filter [28, 29]. Similarly to
the longitudinal force information, the vehicle speed during
braking can also be measured with dedicated sensors (e.g.
with global positioning system (GPS) [3]) or estimated, for
instance, using Kalman filtering [28] or fuzzy logic [12].
The measurement/observation of Fx and v will be revisited
later in the article when we experimentally validate the
estimation algorithm.

3 Optimal LP

In this section, we present the derivation of an optimal LP,
in the sense that it provides the best fit of a non-linear
friction model over a given parametric region of interest,
as described in the next problem:

Problem 1 (linear approximation of μ): Consider a model
f (λ,β), typically non-linear (such as (4) or (5))

f : S × P → R (6)

describing the friction coefficient curve in the domain
(λ,β) ∈ S × P ⊂ [0, 1] × R

d . The slip variable λ is the
model input, and the β vector contains the model
internal parameters, which are unknown and possibly time-
varying. To approximate this non-linear model, consider the
parameterisation

f̂ (λ,w, θ) = [h1(λ,w), . . . , hn(λ,w)]θ (7a)

= H (λ,w)Tθ (7b)

where {w, θ} ∈ R
m × R

n is a vector of parameters, and
hi(λ,w), i = 1, . . . , n are the basis functions. Under this
setting, find the vector w∗ that minimises the modelling error
(a performance metric to express the notion of modelling

error will be presented shortly) between f̂ (λ,w∗, θ) and
f (λ,β) over a given domain of interest [0, λ] × D ⊂ S × P .

Among the parameters {w, θ} of the approximator
function, the θ are easier to estimate, because of their
linearity, whereas the w parameters have a non-linear effect

in the model and complicate the identification process.
Spurred by these difficulties, we investigate the possibility
of selecting, offline, the best vector w∗, in the sense that
the fitting error is minimised, whereas θ is estimated by
online estimation methods in order to capture the variations
of the unknown and time-varying internal parameters (β)
of (6). Notice that, after finding w∗, we can insert this
vector in (7) and transform the non-linear model into a LP,
that is the model remains non-linear, but it is linear in the
parameters θ. To keep the problem tractable, it is assumed
that the number (n) and type of basis functions are known
beforehand (later we can evaluate the fitting performance for
different numbers and types of basis functions).
At this stage, it is appropriate to discuss previous

efforts towards solving Problem 1. Fixed basis functions
(i.e. with m = 0), such as polynomials [11] and rational
functions [10], have been successfully employed for
approximating the non-linear friction curve and have
shown good performance in μmax peak friction estimation.
However, as pointed out by de Castro et al. [18], the
performance of these LPs deteriorates when λmax estimations
are needed. To overcome this difficulty, Tanelli et al. [14]
proposed the use of exponential adaptive basis functions,
which significantly boosts the μmax and λmax estimation.
Despite this, there is an important drawback with the LP
proposed in [14]: a heuristic approach was used to select
the coefficients w in the adaptive function, which does not
generate the most efficient LP, that is, with a minimum
number of basis functions. The present work extends
these previous contributions by providing a systematic
methodology to select the optimum value of the parameter
w, not only for exponentials but also for any type and
number of basis functions.
The methodology presented in this article can be applied

to various types of friction curves, but for simplicity, we
use the Burckhardt parameterisation as a reference model
and focus on finding an LP for the single non-linear term in
this representation

f (λ,β) = e−βλ (8)

where λ ∈ [0, λ] ⊂ R and β ∈ D = [β,β] ⊂ R. For now, the
offset and linear gain of (4) is omitted in the LP but will
be included in the final parameterisation. According to [12],
the parameter β shows a strong dependence on the road
conditions (e.g. dry tarmac, wet tarmac, snow etc.) and, to
represent the most common types of roads, varies between
β = 4 and β = 100 (see Fig. 2). In addition, since the LP
will be used to extract the friction peak, it is reasonable to
assume that the LP should minimise the fitting error in the
slip range between 0 and λ = 0.5 (note that it is uncommon
to have friction peaks for longitudinal slips higher than
0.5 [30]).
Before solving the above-mentioned approximation

problem, it is helpful to revisit a simplified dual
problem: of the two vectors {w, θ} that parameterise the
approximator (7), admit that w is known and consider the
problem of finding the best set of linear parameters θ.
If β is also known, we can then apply well-known results
from the theory of function approximation to transform this
problem into a minimum norm problem and extract θ (see
Appendix 1). The approach to solve Problem 1 proposed in
the next section, builds on these analytical results but drops
the assumption of known w (and β).

IET Control Theory Appl., 2012, Vol. 6, Iss. 14, pp. 2257–2268 2259

doi: 10.1049/iet-cta.2011.0424 © The Institution of Engineering and Technology 2012



www.ietdl.org

Fig. 2 Non-linear function e−βλ, plotted for different values of β

3.1 Optimal method for finding LP

To tackle Problem (1), we start by defining the fitting error
of the approximator (7) for a given fixed triplet (β,w, θ)

ε(β,w, θ) =

∫ λ

0

(f (λ,β) − H (λ,w)Tθ
︸ ︷︷ ︸

f̂ (λ,w,θ)

)2 dλ (9)

Considering fixed values of β and w, the vector θ that
minimises ε(β,w, θ) can be found by direct application of
Lemma 1, presented in Appendix 1

θ(β,w) = G−1(w)c(β,w) (10)

[G(w)]i,j = 〈hi(w), hj(w)〉 =

∫ λ

0

hi(λ,w)hj(λ,w) dλ (11)

[c(β,w)]i = 〈f (β), hi(w)〉

∫ λ

0

f (λ,β)hi(λ,w) dλ (12)

where i, j = 1, . . . , n. Replacing these relations in (9), the
dependence on θ can be eliminated and the fitting error
redefined as

ε(β,w) =

∫ λ

0

(f (λ,β) − H (λ,w)TG−1(w)c(β,w))2 dλ (13)

Given that β is known to belong to the set D, it is reasonable
to define a performance metric to sum all the fitting errors
in this domain, which is obtained by integrating ε(β,w)
over D. This new approximation metric, called total error,
is defined by

εT(w) =

∫
β∈D

ε(β,w) dβ (14)

and depends only on w. Thus, we can now pose an
optimisation problem to extract the w parameter that
minimises the total fitting error

min
w∈Rm

εT(w) = min
w∈Rm

∫
β∈D

ε(β,w) dβ

s.t. eq.(11), (12), (13)

(15)

This problem assumes that the non-linear function f (λ,β),
the domain [0, λ] × D, and the structure of the adaptive basis

Table 1 Total error εT for fitting (8) with different LPs

Basis type Number of basis (n)

1 2 3 4

polynomial (HP) – 0.6844 0.3857 0.2127

log. sigmoid (HL) 0.2849 0.0467 0.0212 0.0059

exponential (HE) 0.2870 0.0362 0.0046 0.0005

Tanelli et al. [14] – – – 0.0093

functions H (λ,w) are known, and delivers the parameter
w that minimises the total fitting error, offering an optimal
solution to Problem 1. Generally, the analytic treatment of
the above problem is difficult, particularly when many basis
functions are used. To overcome this issue, the integral (15)
was discretised with a trapesoidal approximation and a
numeric solver [31] employed to extract the optimal
solution.

3.2 LPs for approximating the Burckhardt model

After presenting the methodology for deriving optimum
LPs, we now evaluate the performance of different basis
functions for approximating the single non-linear term (8) in
the Burckhardt friction model. The approximating domain
[0, λ] × D of the LP is the same as that discussed
in the previous section, and the basis functions under
consideration are

1. Polynomials: H P(λ) = [1 λ λ2, . . . , λn−1]T

2. Exponentials: HE(λ,w) = [ew1λ, . . . , ewnλ]T

3. Logistic sigmoid: HL(λ,w) =
[

1

1+e−w1λ−w2
, . . .

]T

where w = [w1 w2, . . . ,wm]T ∈ R
m. Moreover, since we

have a practical interest in minimising the LP complexity,
different numbers of bases (n ∈ {1, 2, 3, 4}) were also
assessed.
A summary of the total error εT for the LPs under

consideration can be found in Table 1. It is apparent
from these results that the polynomial basis functions
generate the worst fitting performance, and increasing n
does not significantly reduce the error. On the contrary, the
approximation error decreases considerably by employing
adaptive functions, and among these, the exponentials gives
the best LP. For comparison purposes, the total fitting error
obtained with the parameterisation defined in [14] is also
provided: this LP produces a reasonable result, but it is clear
that the total error can be decreased by using exponential
basis functions, with optimum w. Actually, we can even
reduce the number of exponential functions to n = 3 and
still obtain total errors less than the ones produced by Tanelli
et al. [14].
To provide additional insight regarding the performance

of the LP, Fig. 3 shows the fitting error ε over
the approximating domain D. Inspecting the polynomial
performance reveals that the fitting errors increase, when
β gets higher; this was expected since, in this parametric
region, the non-linear curve (8) starts to approach an
impulse-like shape (see Fig. 2) and a high-order polynomial
is needed to capture this behaviour. Furthermore, although
the LP proposed in [14] is globally better than the
polynomial, it still presents some significant errors for low β.
These errors are further reduced with (optimal) exponential
basis functions, and using n = 4 basis generates the best LP
over the entire domain D.
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Fig. 3 Fitting error ε(β) evaluated for polynomials, exponentials

and the LP proposed in [14]

In summary, the optimal LP for approximating (8) was
found to be exponential-based, with n = 4 and n = 3

HE4(λ) = [e−4.28λ e−11.37λ e−32.34λ e−77.05λ]T (16)

HE3(λ) = [e−4.99λ e−18.43λ e−65.62λ]T (17)

Based on this result, we can now join the linear terms
of (4) with the LP of (8) and obtain the optimum LP
that better approximates the Burckhardt friction model:
μ̂(λ, θ) = [1 λ HE(λ)T]θ. Although the performance of
HE4 surpasses the other LPs, the basis HE3 is enough to
provide a good fitting of the original non-linear model;
on top of that, using HE3 enables us to eliminate one
basis function, which may facilitate the online identification
process. Accordingly, in the sequel, the LP

μ̂(λ, θ) = H (λ)Tθ = [1 λ e−4.99λ e−18.43λ e−65.62λ]θ (18)

is used to approximate the Burckhardt friction model.

3.3 Offline validation

With the goal of validating the proposed LP, two ‘offline’
tests were conducted. The first is presented in Fig. 4a, which
shows the performance of the LP defined in (18) against the
original non-linear Burckhardt parameterisation [cf. (4)] for
the most representative roads found in practice, as discussed
in [12]. It can be noted that the LP and the Burckhardt
curves are almost overlaid on each other, and little modelling
error is introduced, thus providing additional evidence of the
equivalence between both models.
An additional test was carried out to validate the LP

with experimental data. This test is illustrated in Fig. 4b,
which shows the LP curves after fitting with the classical
least squares (LS) method, the experimental longitudinal
force produced by a 205/55 R16 90 H tyre [32]. Once
again, the fitting performance obtained with the LP was very
satisfactory.

4 Online estimation method

After finding a suitable LP representation of the friction
model in the tyre–road interface, we will discuss in this
section a modified version of the RLS [33], capable
of handling equality constraints, to identify the friction
parameters. This method is known as the CRLS and is
particularly useful in the current work to improve the
accuracy and robustness of the friction estimation in the
low-slip range.

4.1 Motivation for CRLS

To illustrate the relevance of the CRLS, consider two sets of
input/output samples, Z = {(λ(1),μ(1)), . . . , (λ(N ),μ(N ))},
obtained from braking tests conducted in the CarSim
simulator; the first set was performed on dry asphalt and
the second on wet (see Fig. 5). The conditions under
which these experiments were undertaken are described
in the next section; for now, we merely discuss some
of the potential pitfalls of the RLS. Owing to the
recursive nature of the identification process, an initial

guess for θ̂0 needs to be defined, which, following the
initialisation procedure suggested in [14], was obtained by
applying the traditional (batch) LS to the first collected

a b

Fig. 4 Offline validation of the proposed LP

a Comparison of the Burckhardt model [cf. (4)] with the LP proposed in this article [cf. (18)] for the most representative types of roads found in practice [12]
b Fitting of longitudinal force produced by a 205/55 R16 90 H tyre (experimental data were retrieved from [32]) using the LP (18)
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a b c

d e f

Fig. 5 Identification of the friction curve during braking on dry asphalt with μmax = 1.0 (top figures) and on wet asphalt with μmax = 0.6

(bottom figures)

a and d Initial estimate for the friction curve, calculated from the samples with λ ≤ λ

b and e Final friction curve estimate obtained after processing all the samples (see Fig. 6) with the RLS

c and f Final friction curve estimate obtained after processing all the samples (see Fig. 6) with the CRLS

samples, Z0(λ) = {(λ(k),μ(k)) ∈ Z : λ(k) ≤ λ}, where λ is
the minimum threshold (0.06 in this work) to start the
identification. After this initialisation step (Figs. 5a and b),
the remaining data in Z were processed with the RLS; the
final fitting results are shown in Fig. 5b for dry asphalt and
in Fig. 5e for wet asphalt. In the case of dry asphalt, it is
clear that the RLS presents a very good fitting performance
for tyre slips above 0.08, but is prone to exhibit significant
fitting errors in the low-slip range. Although this issue does
not affect the detection of the friction peak in dry asphalt,
when the RLS is evaluated in wet asphalt manoeuvres
(Fig. 5e), the fitting error in the low-slip range increases
and compromises the estimation process: the peak of the

identified friction curve is located at zero slip, λ̂max = 0,
whereas the true peak is around 0.12. Accordingly, the peak
friction estimation in wet asphalt has a significant error in

the λ̂max, which makes its use impractical for safety systems,
such as the traction controller (TC) or the ABS. This
problem was also observed in other low-friction conditions,
but for the sake of brevity, these results were omitted in this
section.
The most natural choice to attenuate this problem is to

modify the RLS forgetting factor to increase the weight
of the initial samples. Note, however, that the forgetting
factor employed in these results is already relatively
high (ρ = 0.999), thus little improvement is observed
by modifying this parameter. Alternatively, if the initial

estimate θ̂0 is good, which is far from guaranteed, we may
try to reduce the parameter in the RLS associated with the
confidence in the initial guess (see [33] and P0 in (28d))
and, as a consequence, decrease the amount of parameter
variation during the recursive adaptation. Although they are
possible, these parametric changes in the RLS tend to slow
down the identification process, colliding with the need to
quickly produce accurate estimations of the friction peak,
which must be available before the vehicle safety systems
become enabled.

This set of difficulties urged us to find ways of improving
the RLS performance. A well-known possibility to increase
the estimation performance consists of the use of prior
information about the system model, for example, through
a set of (equality and/or inequality) constraints on the
model parameters [34–37]. In the current friction estimation
problem, the prior information comes from the fact that
the ideal friction curve must pass through the origin of
the coordinate system (λ,μ) or, equivalently, comply with
an equality constraint, H (0)Tθ = 0. In other words, this
constraint means that when the tyre is in free-rolling mode
(i.e. λ = 0), the friction force (and the instantaneous tyre–
road friction coefficient μ) should be zero. The remainder
of this section will be devoted to explain how this
equality constraint can be incorporated into the identification
algorithm, called CRLS, and to highlight some of its
theoretical and practical advantages.

4.2 Description of the CRLS

Just like the RLS, the starting point of the CRLS formulation
is a weighted LS problem, but subject to an additional set
of equality constraints

min
θ∈Rn

t
∑

k=1

α(t, k)(μ(k) − H
T(λ(k))θ)2

s.t. Cθ = d

(19)

where t is the number of samples being considered, α(.)
is the weight assigned to each sample and C ∈ R

p×n

and d ∈ R
p characterise the set of p linear constraints [it

is assumed that p < n and rank(C) = p]. Reformulating
the optimisation problem with the Lagrange multiplier,
and taking into consideration the quadratic nature of the
cost function, an analytical (batch) solution can be easily
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found [34, p. 225]

θ̂t = R−1
t f t + R−1

t CT(CR−1
t CT)−1(d − CR−1

t f t) (20)

Rt =

t
∑

k=1

α(t, k)H̃ (k)H̃
T
(k) (21)

ft =

t
∑

k=1

α(t, k)H̃ (k)μ(k) (22)

where H̃ (k) = H (λ(k)) is employed to simplify the
notation.

Remark 1: From a convergence point of view, it is worth
noting that, under some reasonable assumptions, the above
batch estimator is unbiased and provides more precise results
than the (unconstrained) LS. To prove these claims, we
consider the following stochastic framework

μ(k) = H̃
T
(k)θ + e(k) (23)

where e(k) is the white noise measurement error, with mean
E[e] = 0 and variance σ 2. Further, it is assumed that {H̃ (k)}
and {e(k)} are statistically independent, and, to simplify
the mathematical treatment, a unitary weight α(t, k) = 1 is
taken. Using the parameter estimation error

	θ = θ̂t − θ =

t
∑

k=1

(I − γtC)R−1
t H̃ (k)e(k) (24)

where γt = R−1
t CT(CR−1

t CT)−1, we can determine the bias
as

E[	θ] =

t
∑

k=1

E[(I − γtC)R−1
t H̃ (k)e(k)]

=

t
∑

k=1

E[(I − γtC)R−1
t H̃ (k)]E[e(k)] (25)

Thus, the estimator will be unbiased, that is, E[	θ] = 0, if,
besides the assumption of statistical independence, E[e(k)]
is zero, and Rt and (CR−1

t CT) are non-singular. These
last requirements represent the persistence of excitation
conditions for the system. Next, consider the covariance of
the parameter estimation error

cov(	θ) = E[	θ	θT] (26a)

=

t
∑

k=1

t
∑

j=1

E[(I − γtC)R−1
t H̃ (k)e(k)e(j)H̃ (j)T

× R
−1
t (I − γtC)T] (26b)

= σ 2E[R−1
t ] − σ 2E[γtCR

−1
t ] (26c)

and recall that the covariance matrix of the (unconstrained)
LS is given by cov(	θLS) = σ 2E[R−1

t ] [35, p. 236].
Replacing this relation in (26c), we obtain

cov(	θLS) − cov(	θ) = σ 2E[γtCR
−1
t ] ≥ 0 (27)

Therefore we can conclude that the constrained LS will
be more efficient that the unconstrained LS, producing
parameter estimates with smaller variance.

As this batch solution is of little use for online
applications, it is necessary to find a recursive alternative.
Following similar arguments to those in the RLS case, it is
assumed that the weight function α(t, k) has the following
properties [33]: (i) α(t, t) = 1 and (ii) α(t, k) = ρα(t − 1, k),
0 ≤ k ≤ t − 1. These two properties can be satisfied using,
for example, α(t, k) = ρ t−k , where ρ is the forgetting factor.
Based on these properties, and employing the well-known
matrix inversion lemma, a recursive solution to Rt and f t

can be derived, which, after some algebraic manipulation,
results in the following iterative solution of (20)

θ̂t = θ̂
RLS

t + γt(d − Cθ̂
RLS

t ) (28a)

θ̂
RLS

t = θ̂
RLS

t−1 + Lt[μ(t) − H̃
T
(t)θ̂

RLS

t−1 ] (28b)

Lt =
P t−1H̃ (t)

ρ + H̃
T
(t)P t−1H̃ (t)

(28c)

P t =
1

ρ

[

P t−1 −
P t−1H̃ (t)H̃

T
(t)P t−1

ρ + H̃
T
(t)P t−1H̃ (t)

]

(28d)

γ t = P tC
T(CP tC

T)−1 (28e)

It is interesting to note that the update equation (28a) of
the recursive solution, is composed of two terms. The first

(θ̂
RLS

t ) is in fact the solution to the unconstrained version
of the problem, that is the traditional RLS, and because
of this, (28b)–(28d) are the same as the RLS solution.
The second term is a correction factor that ensures that
the identified parameters respect the linear constraints in
the iterations. Hence, from the numerical complexity point
of view, the CRLS only demands an additional matrix
equation (28e) to be evaluated, which, given the reduced
number of unknown parameters (five) is not too penalising.
Nonetheless, the calculation of the γ t matrix involves
an undesirable operation for online implementation: the
inversion of the CP tC

T matrix. To avoid this inversion,
consider the gain γ t , rewritten as

γ t = Ŵtηt (29)

where Ŵt = P tC
T and ηt = (CŴt)

−1. Following the algebraic
manipulation suggested in [21], a recursive version of Ŵk

can be established by multiplying (28d) with CT, whereas
the matrix inversion lemma is again applied to calculate ηk

iteratively

Ŵt =
1

ρ
(Ŵt−1 − LtH̃

T
(k)Ŵt−1) (30a)

ηt = ρ

(

ηt−1 +
ηt−1CLtH̃

T
(k)Ŵt−1ηt−1

1 − H̃
T
(k)Ŵt−1ηt−1CLt

)

(30b)

Therefore the final, numeric efficient, CRLS algorithm used
in this work is described by (28a)–(28d), (29) and (30).
Similar to the RLS, the CRLS also needs an initial guess for

θ̂0 and P0, which are then used to initialise the remaining
recursive variables (Ŵ0 = P0C

T and η0 = (CŴ0)
−1).

4.3 CRLS fitting performance

Returning to the friction estimation, the CRLS was applied
taking into account the single restriction in the problem

H (0)Tθ = [1 0 1 1 1]
︸ ︷︷ ︸

C

θ = 0
︸︷︷︸

d

(31)
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The CRLS performance, presented in Figs. 5c and f,
shows, as expected, that the identified friction curve always
passes through the origin, which contributes to a much
better fitting in the low-slip range, both on dry and wet
asphalt. As will be shown in the next section, this CRLS
feature is key for improving the identification robustness
against the regression method parameters, for example,
the forgetting factor and the initial estimate, and extracts
a precise estimation of the peak friction, particularly in
low-grip conditions.

5 Simulation results

To evaluate the performance of the peak friction estimation
with the optimal LP and the CRLS identification method,
this section presents the simulation results obtained with the
CarSim simulator [38]. The estimation framework used is a
quantitative one and, as shown in Fig. 1, can be divided
into three steps: (i) collection of λ and μ samples, (ii)
fitting/regression and (iii) peak detector. These steps were
implemented as follows:

1. Regarding the first stage, it was assumed that the
estimation algorithm has access to the samples μ(k) and
λ(k), where k is the sampling instant. In simulation tests,
these variables are easily available.
2. For the regression step, the friction model adopted was
the LP proposed in Section 3 [cf. (18)], which was used to
evaluate two types of identification methods: the traditional
RLS and the CRLS. To make a fair comparison, the
algorithms had the same initial parameters, that is forgetting
factor (α = 0.999); P0 = δI , where δ = 100 and I is the

identity matrix; and initial guesses θ̂0 ∈ R
n (which were

obtained by the method suggested in [14] and described in
Section 4.1).
3. The final step in the algorithm was obtained by
computing the friction maximum point

μ̂max = max
λ

μ̂(λ, θ̂) (32a)

λ̂max = argmax
λ

μ̂(λ, θ̂) (32b)

The identification algorithm presented above was evaluated
using a typical A-class hatchback car, available in the
CarSim library, having 175/70 R13 tyres, modelled with
the MTF 5.2 [16]. The MTF 5.2 parameters are omitted here
because of their high number (more than 80); in any case, the
model reflects the steady-state behaviour of a real tyre and
takes into account some simple dynamic transients, such as
the relaxation length. The sampling time for the algorithm
was set to 2ms and, to contemplate the measuring errors
that normally appear in this application, the variable μ was
corrupted with Gaussian noise, with variance σ 2

μ = 0.0152.
Based on these settings, three types of braking

manoeuvres were performed in straight line, under different
grip conditions: dry asphalt, wet asphalt and snow. The input
data generated by these manoeuvres are shown on the left
part of Fig. 6, whereas the estimation results are on the right.

Analysing the estimations λ̂max and μ̂max for all the tests,
it can be observed that no value is generated in the first
∼0.1 s; during this period of time, the estimator is disabled
because the slip is below the threshold activation point λ,
and these initial samples are used to calculate an initial

guess for θ̂0. Inspecting the peak friction estimation for dry

a b

c d

e f

Fig. 6 Simulation results with the CarSim for different types of road adhesion

a and b Dry asphalt

c and d Wet asphalt

e and f Snow
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asphalt, shown in Fig. 6b, one can find that the RLS and the
CRLS present an almost equal performances and converge,
in less than 0.4 s, to the proximities of the true values of
μmax and λmax. This similar behaviour can be explained
by the fact that the true friction peak is moderately high
(λmax ≃ 0.2), whereas the fitting error introduced by the RLS
(see Fig. 5b) mainly affects the low-slip regime (λ ≤ 0.08).
On the other hand, when the manoeuvre is performed on

wet asphalt (Fig. 6d), the λ̂max estimation obtained with the
RLS shows a severe estimation error after 0.3 s, whereas the
CRLS maintains a very satisfactory performance. Unlike in
the previous case (dry), on wet asphalt the λmax is relatively
low (∼0.12), and the fitting error introduced by the RLS
(see Fig. 5e) is sufficiently high to compromise the peak
friction estimation. The snow test (Fig. 6f ) also shows a

significant estimation error in λ̂max, albeit less severe than
on wet asphalt. It is also worth mentioning that the μ̂max

estimation is less sensitive to the fitting errors in low slip,
and for that reason, both the RLS and the CRLS show
similar performances in μ̂max in all the adhesion conditions
under test.
In conclusion, these simulation results highlight the

robustness of the CRLS over the traditional RLS in the peak
friction estimation. Moreover, we can also conclude that by
employing the CRLS, the designer has more freedom to
select the forgetting factor (ρ) and decrease the confidence
(P0) in the initial guess without fear of the fitting problems

in the low-slip region that appear in the RLS and mainly
affects the λmax estimation in low-grip roads.

6 Experimental results

The peak friction estimator presented in the previous
sections was experimentally validated in a neighbourhood
electric vehicle, which belongs to a class of low-speed
vehicles suitable for urban mobility whose main feature is
a decoupled powertrain structure with two electric motors
individually connected to the front wheels (Fig. 7). The
field-programmable gate array (FPGA) XC3S1000 was used
to implement the main powertrain controller functions; it
has three important properties: multi-motor control [39],
minimisation of motor energy losses [40] and wheel slip
control [41]. The peak friction estimator is an additional
functionality fundamental for generating the ideal slip
reference for the wheel slip controller, which is currently
being incorporated into the powertrain controller (Fig. 7d).
Nevertheless, in this work we are only concerned with the
development and validation of the friction peak estimator,
and for this reason, we leave the integration issues with the
wheel slip control to future endeavours.
The implementation of the peak friction estimator again

followed the three steps described in the previous section
but with some important modifications. First, although in

a b

d

c

Fig. 7 Electric vehicle, powertrain, and control structure employed during the experimental validation of the peak friction estimator

a Vehicle

b Powertrain of each front wheel

c DC/AC power converter

d Block diagram of the powertrain control system
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the simulations the μ measures are easily obtained, in the
experimental validation, such information must be estimated.
Consequently, the μ samples were extracted from the quarter
car model (1a), (2)

μ =
Tb

rFz

−
J

rFz

(
s

τf s + 1

)

ω (33)

where s is the Laplace operator. The model parameters
are the wheel radius (r = 0.26m) and the wheel inertia
(J = 0.6 kgm2), which are assumed constant throughout
the experimental tests. To avoid the noise issues
with the differentiation, this operator was approximated
with a high-pass filter, having a time constant of
τf = 40ms (this approximation is also known as the
‘dirty differentiation’ [42]), and discretised with the
bilinear transformation. The vertical load supported by
the wheel (Fz) can be extracted from simple weight transfer
relations [12], whereas the braking torque is easily inferred
from the motor current measures. The wheel slip samples
λ were calculated using (3) and the vehicle speed was
obtained from the non-driven wheels (note that during the
experimental tests, only the electric vehicle (EV) front
wheels were driven).
A second factor to be taken in consideration is the initial

guess for the parameters θ̂0; two types of initial guesses were
assessed:

1. Initialisation A: the Burckhardt dry curve (cf. Fig. 4a) is

used as the initial guess of θ̂0

θ̂0 = [1.22 − 0.45 0.18 − 1.19 − 0.25]T (34)

2. Initialisation B: θ̂0 is obtained following the procedure
suggested in [14], used in the simulations and described in
Section 4.1.

Although the second option may give more accurate
(initial) estimates and contribute to faster convergence,
from the implementation point of view, it requires higher
computational effort since the batch LS must be executed
before the RLS. In the simulation and experimental tests
performed in this work, we noticed that, depending on
the manoeuvre, the size of the initial set of samples
that the LS must handle (see the set Z0 in Section 4.1)
can vary from 20 to 30 samples, which, for real-time
applications with limited computational resources, may
pose a serious computational burden. On the other hand,
initialisation A does not require any extra calculations, but
there are some doubts about the algorithm convergence
speed under low-grip conditions. To dissipate such doubts,
the performances of these two initialisations are assessed
in the experimental tests. Moreover, since the superiority
of the CRLS has been established in the simulations, only
this identification method is implemented (with the same
configurations and sampling time as the ones used in the
previous sections).
Fig. 8 shows the acquired data on the left wheel during a

braking operation performed on a low-grip surface, as well
as the peak friction estimation, obtained with the slip control
disabled. Before the driver applies a torque, both estimators
are disabled because the slip does not reach the minimum
threshold λ, and for these reasons, initialisation A outputs
a nominal dry estimate, whereas initialisation B does not
provide any estimate. At around 21 s, a significant braking

a

b

Fig. 8 Experimental results for the left wheel during a braking

manoeuvre on a low-grip surface

a Acquired data

b Peak friction estimation with CRLS

torque is applied, which enables the CRLS adaptation,
and after 0.3 s of iterations, both initialisations produce

satisfactory results in the μ̂max estimation. Regarding λ̂max, it
is interesting to point out the following: (i) during the initial
transient, initialisation A has a tendency to overestimate
the peak friction, whereas initialisation B is more prone to

underestimation, which are expected given the θ̂0 employed
in each case (this observation also applies to μ̂max);
and (ii) initialisation A provides a slightly more accurate

final estimation of λ̂max and, after 21.1 s, stays inside the
predefined tolerance band of ±10%, whereas initialisation B
shows a slightly larger estimation error. Hence, based on this
second observation, we can state that although initialisation
B provides a better initial fitting for the slip range below
λ, this is no guarantee that the (final) identified friction
curve will generate a better peak friction estimate. Moreover,
this challenging experimental test highlights that the most
computation-efficient initialisation (A), together with the
optimal LP and the CRLS, is sufficient to generate good
peak friction estimation without penalising the convergence
speed or final accuracy.

7 Conclusions

In this work, a systematic methodology to extract an optimal
LP to represent the tyre–road friction was developed.
Towards this aim, we exploited the fact that the structure
of the non-linear friction model is known beforehand, such
as the Burckhardt representation, and applied analytic, as
well as numeric, optimisation techniques to extract the LP
with minimum fitting error along a given parametric range
of interest. It was shown that the modelling error introduced
by the optimum LP is almost negligible and outperforms
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others LPs previously proposed in the literature. The linear
structure featured by the LP simplifies the real-time friction
identification process, since we can rely on linear regression
methods to accomplish this task. A constrained version
of the RLS was then employed to further increase the
robustness of the peak friction identification against initial
errors in the (linear) parameters and the RLS tuning
parameters, for example, the forgetting factor. Simulation
results, obtained with the CarSim simulator, showed that the
optimal LP identified with the CRLS provides a satisfactory

performance in the estimation of λ̂max and μ̂max under
different tyre–road adhesion levels. These results were
further validated with experimental tests, obtained with a
neighbourhood electric vehicle on a low-grip surface.
As future endeavours, we plan to extend the experimental

work to address different types of surfaces, and study further
extensions of the LP to handle situations with lateral and
combined tyre slip.
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10 Appendix 1. Classic approximation result

This section reviews a simple result from the theory of
function approximation, which is helpful in establishing
the optimal LP. For this purpose, consider the problem of
approximating (6) with (7), assuming that β and w are fixed
and known. Our intention is to find the linear parameters θ,
such that the fitting performance, defined as the integral of
the square fitting error (ε), is minimised

min
θ∈Rn

ε(θ) = min
θ∈Rn

∫ λ

0

(f (λ) − H (λ)Tθ
︸ ︷︷ ︸

f̂ (λ,θ)

)2 dλ (35)

Note that, to simplify the notation, the dependence of β
in f (and of w in H ) is omitted in this section, which is
reasonable as these parameters are assumed to be constant.
The previous optimisation problem can be formulated in
the vector space L2([0, λ],R]), that is, square-integrable
functions over the interval [0, λ], making use of the L2

norm

ε(θ) = ‖f − f̂ ‖2 =

∫ λ

0

(f (λ) − f̂ (λ, θ))2 dλ (36)

Since the vector f̂ is a linear combination of L2 vectors
[cf. (7)], the optimisation problem (35) can be reformulated
as a minimum norm problem in the L2 space, which has
a simple analytical solution, as described in the following
lemma.

Lemma 1: Consider the vector space L2([0, λ],R]), a vector
f ∈ L2 and a subspace M ⊂ L2 generated by the linear
combination of n basis functions hi ∈ L2

M =

{

f̂ ∈ L2 : f̂ =

n
∑

i=1

hiθi, hi ∈ L2, θi ∈ R

}

(37)

Then, the minimum norm problem

min
f̂ ∈M

‖f − f̂ ‖2 (38)

has the following solution

f̂o(λ) = [h1(λ), . . . , hn(λ)]θo, θo = G−1c (39a)

[G]i,j = 〈hi, hj〉 =

∫ λ

0

hi(λ)hj(λ) dλ (39b)

[c]i = 〈f , hi〉 =

∫ λ

0

f (λ)hi(λ) dλ (39c)

where i, j = 1, . . . , n, G ∈ R
n×n, c ∈ R

n, 〈, 〉 is the L2 inner
product, and [.]i,j refers to row i, column j of a given matrix.
Moreover, the solution is unique if the basis functions hi are
linearly independent.

Proof: Given the fact that L2 is a Hilbert space, we can
apply the projection theorem to solve this minimum norm
problem (see [43, Chapter 3.6] for details). �
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