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Abstract
In this paper, various methods for the real-time estimation of multi-modal
frequencies are realized in real time and compared through numerical and
experimental tests. These parameter-based frequency estimation methods
can be applied to various engineering fields such as communications, radar
and adaptive vibration and noise control. Well-known frequency estimation
methods are introduced and explained. The Bairstow method is introduced
to find the roots of a characteristic equation for estimations of multi-modal
frequencies, and the computational efficiency of the Bairstow method is
shown quantitatively. For a simple numerical test, we consider two sinusoids
of the same amplitudes mixed with various amounts of white noise. The test
results show that the auto regressive (AR) and auto regressive and moving
average (ARMA) methods are unsuitable in noisy environments. The other
methods apart from the AR method have fast tracking capability. From the
point of view of computational efficiency, the results reveal that the ARMA
method is inefficient, while the cascade notch filter method is very effective.
The linearized adaptive notch filter and recursive maximum likelihood
methods have average performances. Experimental tests are devised to
confirm the feasibility of real-time computations and to impose the severe
conditions of drastically different amplitudes and of considerable changes of
natural frequencies. We have performed experiments to extract the natural
frequencies from the vibration signal of wing-like composite plates in real
time. The natural frequencies of the specimen are changed by added masses.
Especially, the AR method exhibits a remarkable performance in spite of the
severe conditions. This study will be helpful to anyone who needs a
frequency estimation algorithm for real-time applications.

Nomenclature

ANF adaptive notch filter
AR auto regressive
ARMA auto regressive and moving average
CNF cascade notch filter
EachCNF each error updated CNF
Fabc case with three added masses
FFT fast Fourier transform
FLOP floating-point operations

Fx case without added mass
LastCNF last error updated CNF
LinANF linearized adaptive notch filter
MA moving average
PLL phased locked loops
RLS recursive least squares
RML recursive maximum likelihood
SNR signal-to-noise ratio
σN variances of noise
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ξ (n) white noise
ε error between the measured and estimated

signals
λ forgetting factor
λi initial value of forgetting factor
λf final value of forgetting factor
ρ pole contraction factor
ρ i initial value of pole contraction factor
ρ f final value of pole contraction factor
φ(k) measured signal vector
θ (k) unknown parameter vector
σ S variances of signal
A(z−1) AR part, denominator of any transfer function,

i.e. characteristic equation
B(z−1) MA part, numerator of transfer function
Err discrepancy between the true and estimated

frequencies
H(z−1) arbitrary transfer function
k time index denoting the current state
N(z−1) transfer function of adaptive notch filter
p vibration mode number
P(k) covariance matrix
Pi ith pole
Ts sampling time
z−1 shifting operator
Zi ith zero

1. Introduction

The frequency estimation problem has been an interesting
issue since Fourier developed his transformation method in
1822. Since the 1970s, many algorithms have been developed
for the on-line estimation of multi-modal frequencies in the
fields of radar, communications and adaptive signal processing
[1–4]. The on-line information of natural frequencies can be
applied to adaptive noise controllers [5, 6], or to the adaptive
vibration controller of time-varying structures [7], such as
deployable space structures and the robot manipulator dealing
with time-varying payloads. Because the local failure and
delamination of composite structures tend to reduce natural
frequencies, the on-line detection of the natural frequencies
is also important in health monitoring. In addition, real-time
frequency estimation for smart materials and structures with
changing natural frequencies makes them smarter in view of
both control and monitoring.

In real-time frequency estimation, important topics are
computational burden, accuracy, frequency resolution and
robustness to random noise. A heavy computational burden
interrupts the finding of the root of a characteristic equation
or solving an eigenvalue problem in the subspace method.
Even though the digital signal processing technology has
improved the computational speed, the frequency estimation
within each time step is not so manageable. Therefore, fast
and reliable algorithms have been investigated for real-time
frequency estimations [5].

There are two main approaches for the frequency
estimation. Firstly, non-parametric methods are considered
to be more accurate, but these cause a heavy computational
burden and leakage, since the algorithms are based on the
fast Fourier transform. Secondly, parametric methods use
predetermined structures, then estimate the model parameters
of the system. These parametric methods are relatively fast
and have high resolution despite a short data record [2, 3].
Therefore, parametric methods have been investigated actively
for the fast system identification.

Chaplin and Smith [8] patented an electronic circuit
containing phased locked loops (PLL) for the frequency
estimation. For parametric methods, Nehorai [9] has sug-
gested and shown the advantages of the constrained-pole-zero
structure and used the recursive maximum likelihood (RML)
method for parameter estimations. Tranvassor-Romano and
Bellanger [10] developed the linearized adaptive notch filter
(LinANF) method. Kim and Park [5] have developed an
on-line multi-tonal noise estimation method applied for an
active noise control, called the cascade notch filer (CNF)
method, which is used for generating a reference signal. Rew
et al [7] have applied the auto regressive (AR) method to the
adaptive positive position feedback (PPF) vibration control.
Rhim and Book [12] have developed an adaptive input shaping
technique for robotics using the on-line frequency estimation
of a single mode, and the other methods [2, 3, 13] are now being
developed. Kay has compared several frequency estimation
methods well in his textbook [16]. We survey parameter-
based frequency estimation methods, through simulation and
experiments, which are useful for the on-line problem due to
a lower computational burden.

We adopt the Bairstow method to find the root, which
enhance the computational efficiency drastically, and we
compare several frequency estimation methods through simple
numerical and severe experimental tests. Various methods
are investigated as follows: AR, auto regressive and moving
average (ARMA), RML, LinANF, each-error-updated CNF
(EachCNF), and last-error-updated CNF (LastCNF). The
above methods are named after the predetermined structures
or parameter estimation method and the abbreviations are used
for the sake of simplicity.

2. Background to frequency estimation methods

2.1. Problem definition

Frequency estimation methods are based on the adaptive
signal processing theory [2, 3]. In general, the estimation of
multi-modal frequencies is defined as the problem of finding
frequencies, fi(n), of sinusoids buried in white noises, ξ (n) as
the following equation (1):

x(n) =
p∑
i=1

Ui sin(2πfi(n)nTs + φi) + ξ(n). (1)

Six frequency estimation methods are compared from the
point of view of computational burden, tracking capability and
robustness to environmental noise.
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Table 1. Computational burden of root-finding methods.

Order of characteristic equation Bairstow method (FLOP)a Eigenvalue method (FLOP) Bairstow/eigenvalue (%)

Fourth order (two modes) 516 1998 25.8
Sixth order (three modes) 2146 6863 31.3
Eighth order (four modes) 2930 14 848 19.7
Tenth order (five modes) 3170 24 273 13.1

a FLOP: Floating-point operations.

2.2. AR and ARMA methods

These methods are composed of two steps. Firstly, we estimate
the coefficients of a linear transfer function without inversing
matrices by the recursive least squares (RLS) method, which
gives good convergence from arbitrary initial estimations.
Secondly, we find the roots of the characteristic equation by
decoupling the characteristic equation into each mode using
the Bairstow method.

If a system is modeled to have p modes, the characteristic
equation of the system can be described as 2p order. A transfer
function of an arbitrary structure can be described in the even-
order discrete form as follows:

H(z−1) = B(z−1)

A(z−1)
= b1z

−1 + b2z
−2 + · · · + b2pz

−2p

1 + a1z−1 + a2z−2 + · · · + a2pz−2p

(2)
where p is the vibration mode number, z−1 is a shifting
operator, and A(z−1) and B(z−1) are the AR and MA parts,
respectively. The roots of A(z−1) and B(z−1) are poles and
zeros of the system. The AR and ARMA methods are named
after the structure of each model.

We are interested in the denominator, A(z−1), since the
natural frequencies are only related to A(z−1). Therefore,
the AR method estimates only AR coefficients, neglecting
MA. On the other hand, the ARMA method estimates both
MA and AR coefficients. Though the MA part is not used in
frequency detection, the ARMA method estimates frequencies
with robustness to noise, as is shown later.

The RLS method is used to obtain the coefficients of the
AR and ARMA models with the weighted cost function to
error squares as follows:

V =
k∑

j=0

λk−j ε2(j) (3)

where k is the current time index, ε is an error between the
measured and estimated signals and λ is a forgetting factor to
weigh relative importance between the past and present error
squares. Details of the procedure of the RLS method are given
in appendix A.

In order to obtain natural frequencies from the coupled
characteristic equation, A(z−1), the equation must be
factorized into second-order equations. Abel and Galois
have proven that algebraic polynomial equations higher than
the fourth order cannot have a closed-form solution, in
general. Therefore, only iterative algorithms can factorize
the characteristic equation that has more than two modes.

The Bairstow method [14] is a root-finding algorithm for
the even-order algebraic equation developed by Bairstow and

Hitchcock. With the Bairstow method, we can factorize the
AR part as the products of second-order equations as follows:

A(z−1) = z−2p
p∏
i=1

(
z2 + piz

1 + qi
) = 0. (4)

Then, the natural frequencies can be obtained from the
following equation, which is the result of z-transformation

f̂ i = 1

2πTs
angle

(
Zi |A(z−1) = 0

)

= 1

2πTs

[
cos−1(−pi/2

√
qi)

]
(5)

where Ts is the sampling time.
Finally, the obtained natural frequencies are sorted by

magnitudes using a simple straight insertion algorithm [14].
The detailed derivation of the Bairstow method is referred to
in [14, 15], and the procedure of the Bairstow algorithm is
explained in appendix B.

We adopted this Bairstow method in [7] to decouple
the characteristic equation in frequency estimation problems.
The eigenvalue method contained in the ‘roots’ function of
MATLAB R© has often been used in previous approaches.
Table 1 shows that the computational burden of the Bairstow
method is much less than that of the eigenvalue method.
It is neither feasible nor practical to count all computational
operations, but most of the important operations can be esti-
mated through the floating-point operation (FLOP). In table 1,
FLOP is closely proportional to the computational time. But,
when the computational burdens are compared in the FLOP
dimension, the computational burden of exponential, sin and
other transcendental functions is considered equally as the
burden of simple multiplications. Since the Bairstow method
uses only plus, minus, multiplication and division opera-
tions, this method is relatively much faster than the eigenvalue
method, as shown in table 1. Furthermore, it uses only real
variables to save memory and gives good convergence from
arbitrary initial parameters [14]. In the parametric methods,
the adoption of the Bairstow method has made a breakthrough
regarding computational efficiency.

2.3. RML method

The RML method using the constrained poles and zeros
structure has been suggested by Nehorai [9]. The structure
can be written as follows:

N(z−1) = A(z−1)

A(z−1)
= 1 + a1z

−1 + a2z
−2 + · · · + a2pz

−2p

1 + a1z−1 + 2a2z−2 + · · · + 2pa2pz−2p

a2p = 1 ai = a2p−i i = 1, . . . , p (6)
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(a) LinANF method
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(c) LastCNF method

N1(z
-1) Nk(z

-1) Np(z
-1). . .  .

^
( )d n εp(n)εp-1(n)εk(n)εk-1(n)ε1(n)

k-th section

N1(z-1) Nk(z-1) Np(z-1). . . .
( )d n εp(n)εp-1(n)εk(n)εk-1(n)ε1(n)

k-th section

x(n)
A(z-1)

ε(n)
1/A(ρz-1)

y(n)

Copy

^

Figure 1. Block diagram of each estimation method: (a) LinANF
method; (b) EachCNF method; (c) LastCNF method.

where ρ, called a pole contraction factor, is a positive real
number close to but smaller than 1.0 and is related to the
bandwidth of the notch. Note that the locations of zeros and
poles are directly related as follows:

Pi = ρ−1Zi i = 1, 2, . . . , p (7)

where Pi is the ith pole and Zi is the ith zero of N(z).
Then, the RML method uses the RLS scheme to estimate

the parameters. Nehorai has shown that the performance
of the RML method is better than the ARMA method for
pure sinusoidal signals. In addition, this RML method is
mathematically well established. The procedure for this
method is summarized in appendix C.

2.4. LinANF method

The LinANF method is famous for computational efficiency,
fast tracking capability and low threshold signal-to-noise
ration (SNR). Kim and Park [5] have compared the RML and
LinANF methods with respect to convergence speed and noise
robustness aspect, and concluded that the LinANF method is
more effective.

The LinANF method also adopts the structure of
constrained poles and zeros, but the estimation procedure is
slightly different. The basic concept of this algorithm is to
separate the numerator and the denominator of the adaptive
notch filter (ANF) and update only the numerator, then to
copy the coefficients to the denominator, as seen in figure 1(a).
The computational procedure of this algorithm is reduced by
8p + 7 additions and 21p + 10 multiplications, compared to
the RML method.

The detailed procedure for this method has been presented
in [5], and is given in appendix D.

2.5. CNF method

The CNF method for multi-tonal noise control has been
proposed in [5, 11, 17] to reduce the computational burden
significantly. This method originates from the following
simple idea. The second-order notch filter notches 1 sinusoid.
We connect the p second-order notch filters in series to notch
p sinusoids. If the parameters of notch filters are adapted
properly, then the notched signal will be nearly zero; otherwise
they are adapted iteratively until the notch filter deducts the
appropriate sinusoid. This repetition of adaptation makes the
parameters converge to true ones. Neither a matrix calculation
nor a root-finding algorithm is needed. This feature reduces
the computational burden significantly. The CNF method has
a similar structure to the LinANF method.

The CNF method is classified as the EachCNF and
LastCNF methods [11], according to error updating methods,
as illustrated in figures 1(b) and (c). The EachCNF method
has p sections that notch each tonal signal with each error as
equation (E.5a) in appendix E, though all the sections of the
LastCNF method are updated with the last error as equation
(E.5b). This last error update allows the LastCNF method to
avoid frequency conflicts. However, the computational burden
is slightly increased. The detailed procedure is presented in
appendix E.

2.6. Common techniques

The coefficients of A(z−1) amounting to 2p can be reduced to
p ones with mirror symmetry characteristics as follows:

a2p = 1 ai = a2p−i i = 1, . . . , p. (8)

This symmetric structure assumes that the signal is composed
of pure sinusoids, and this property also accelerates the
convergence. Aside from the AR and ARMA methods, this
mirror symmetry is applied to all methods.

For all the methods considered above, the smaller the
forgetting factor λ, the more adaptable the RLS method
becomes to the changes of system dynamics; but it also
becomes more sensitive to noise. As the pole contraction
factor ρ increases, the estimation does not fail but tends to be
accurate. Therefore, λ and ρ are exponentially increased for
a fast convergence and an accurate estimation from arbitrary
initial parameters is as follows:

ρ(n + 1) = ρf ρ(n) + (1 − ρf ) ρ(0) = ρi (9a)

λ(n + 1) = λf λ(n) + (1 − λf ) λ(0) = λi (9b)

where ρ i and λi are the initial values, and ρf and λf are the
final values, respectively. This increasing scheme is applied
to all algorithms where these values are used.

2.7. Other methods

There are several methods that have not been mentioned above,
such as the eigenspace method, the Pisarenko method, the
multiple signal classification (MUSIC) method, the estimation
of signal parameters via rotational invariance technique
(ESPRIT) method [2, 3], etc. Comparisons with other methods
are left for future study.
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Figure 2. Variance of estimation error with respect to the SNR: (a) AR method; (b) ARMA method; (c) RML method; (d) LinANF method;
(e) EachCNF method; ( f ) Last CNF method.

3. Numerical comparison of performances

We have compared the frequency estimation methods
mentioned above for multiple sinusoids buried in white noise.
A simple test is performed to compare various performance
indices. This case study reveals the performances of each
method.

3.1. Definitions of performance indices

A jargon of the SNR is expressed as follows:

SNR
�= 10Log10(σS/σN) (10)

where σ S and σN are the variances of signal and noise,
respectively. As the SNR increases linearly, the signal with
respect to noise increases exponentially. Err is defined as
a discrepancy between the real frequency and the estimated
frequency

Err
�= fi − f̂ i . (11)

The estimation of errors with respect to the SNR are given
in figure 2. As the noise increases, Err increases, and the
graph tends to move from the lower right to the upper left.
At this time, Err increases drastically at a certain point. The
x-axis value at this point is referred to as the threshold SNR.
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Table 2. Parameters for numerical test.

Frequencya (Hz) Amplitude

Mode First mode 200 → 300 1.0 → 1.0
Second mode 300 → 400 1.0 → 1.0

Forgetting factor Pole contraction factor
λi → λf ρi → ρf

AR 0.98 → 0.99 None
Estimation method ARMA 0.98 → 0.99 None

RML 0.98 → 0.99 0.85 → 0.999
LinANF 0.98 → 0.99 0.85 → 0.999
EachCNF 0.85 → 0.98 0.85 → 0.98
LastCNF 0.85 → 0.98 0.85 → 0.98

a Sampling frequency: 1000 Hz.

Table 3. Computational burden and threshold SNR for each method.

Estimation Computational Threshold Root finding
method burden (FLOP) SNR (dB) method

AR 516 15 Bairstow
ARMA 2313 15 Bairstow
RML 778 5 Bairstow
LinANF 657 0 Bairstow
EachCNF 78 0 None
LastCNF 101 0 None

The threshold SNR can be the performance index for frequency
estimation with noise. The small threshold SNR implies that
the application of some algorithms in a noisy environment is
valid.

3.2. Simple numerical test

For a typical performance test, six methods were simulated for
two sinusoids buried in a noise having equal amplitudes and
time-varying frequencies. The first and second frequencies
vary from 200, 300 Hz to 300, 400 Hz, respectively. The
forgetting factors and the pole contraction parameters increase
from the initial values λi, ρ i to the final values λf , ρf ,
respectively, as shown in equation (9). The frequencies and
the other parameters are introduced in table 2.

The SNR versus logarithmic variance of Err is illustrated
in figure 2 and the threshold SNR is given in table 3. The noise
robustness of the AR and ARMA methods is not as good as
that of the other methods, as shown in figure 2 and table 3.
This result implies that the AR and ARMA methods are not
suitable for noisy environments.

Figures 3–8 present frequency estimation results for
changing frequencies when the SNR is 15 dB. Figures 3–8
show that the Err variance of the first mode is greater than that
of the second mode. This is due to the fact that the second
sinusoid has a tendency to converge faster, and this results from
the fact that the higher frequency signal has more information
in the same length of record. The tracking capability is
determined based on the time domain results in figures 3–8.
The tracking capability is dependent on the tuning parameters,
λi, ρ i, λf and ρf . Five algorithms have fast tracking capability
except for the AR method. Therefore the AR method is not
selectable for the fast changing system.
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Figure 3. Frequency estimation using the AR method with a SNR
of 15 dB.

The computational burden is compared in table 3. When
the computational burden is critical, the ARMA method is
unsuitable, and the CNF methods are strongly recommended.
Note that the AR method needs approximately a quarter of
the burden of the ARMA method, because the number of
parameters needed for estimation is halved.

Other cases, such as two sinusoids of crossing frequencies,
were simulated but the results are omitted here. The omitted
results do not affect the tendency of performances.

4. Experimental comparison of performances

The frequency estimation algorithms must be applied not
only to a simple case as previous studies, but also to a
severe case, which is more realistic. Experimental tests are
devised to confirm the feasibility of real-time computations,
and to impose strict conditions considering drastically different
amplitudes and considerable changes of natural frequencies.
These conditions have not been considered seriously in the
previous researches.

4.1. Experimental procedure

A wing-like composite plate is manufactured, as shown in
figure 9. The stacking sequence of the specimen is [02/903]s,
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Figure 4. Frequency estimation using the ARMA method with a
SNR of 15 dB.
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Figure 5. Frequency estimation using the RML method with a SNR
of 15 dB.

and the sweep back angle is 9.36◦. PZT and PVDF denote
the piezo-ceramic actuator and piezo-film sensor, respectively.
The piezoelectric sensor and actuator are bonded near the
root of the specimen, where the strain is relatively large.
Magnetic masses are attached to the wing-like specimen at
the leading edge, as shown in figure 9. The added masses can
be considered as wing stores such as a fuel tank, a missile and
a sidewinder. Each of the added masses amounts to 1.62 g,
and the three added masses weigh approximately 12.0% of the
specimen. This experiment is devised to show the adaptation
ability with respect to the variations of natural frequencies. For
simplicity, the cases Fx and Fabc are named after the position
of the added masses where Fx represents the case without
added mass and Fabc represents the case with added masses
at Fa, Fb and Fc. Off-line frequency responses using a fast
Fourier transform (FFT) analyser, as seen in figure 10, show
that the amplitudes of the first three modes have the amplitude
ratio of 6.7:1.1:1.9 in the Fx case. The added masses make
the first three natural frequencies decrease by as much as 7.8,
13.5 and 10.1%, respectively.

The experimental setup has been prepared as shown in
figure 11. Each estimation algorithm is implemented in the
digital signal processing (DSP) board (dSPACE R© DS1102),

0 .0 0 .5 1 .0 1 .5 2 .0

0 .0

0 .1

0 .2

0 .3

0 .4

N
o

rm
a

liz
e

d
 F

re
q

u
e

n
cy

 e/(f
f) s

T im e  [s ec ]

 f
1

 f
2

Figure 6. Frequency estimation using the LinANF method with a
SNR of 15 dB.
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Figure 7. Frequency estimation using the EachCNF method with a
SNR of 15 dB.
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Figure 8. Frequency estimation using the LastCNF method with a
SNR of 15 dB.

in which the DSP chip (Texas Instrument R© TMS320-C31) is
used as the main processor. A charge amplifier converts the
generated charge signal due to the vibration in the piezoelectric
film sensor to the electric voltage signal, and the converted
signal is fed into the DSP controller. Then, the estimation
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signal is calculated using the above methods. The source
module of the FFT analyser generates an external disturbance
that is a banded white signal. This disturbance signal is
applied to the piezoelectric actuator after 500 times voltage

amplification. The sensor signal is captured in the DSP board
and monitored from the host PC during the experiments.

Since the frequency estimation algorithms used in this
paper extract modal information from the highest mode
they can catch, which is the third mode in this study, the
shortest sampling time is not always the best solution. As
a result of rough compromise between an aliasing effect and
an estimation of unintended higher mode, the time step of
frequency estimation, Ts, is selected as 5.0 ms. The frequencies
and the other parameters for the experimental test are shown
in table 4, in which the notation is the same as table 2.

4.2. Estimation results of multi-modal frequencies

Because the estimated signal depends on the three-mode
model, higher-order modes can spoil the estimations.
Nonetheless, the frequency estimation performance has a
reasonable performance, as shown in figure 12.

The estimation of the first and third modes is relatively
precise, but the second mode frequency is somewhat incorrect
because the second mode contributes a small amount in the
total vibration, as in figure 10. As noted in figure 12, the
third mode frequency converges quickly, whereas the first
mode converges slowly. This originates from the fact that the
vibration signal of a faster mode contains much information
in the same number of data. Added masses make the
natural frequencies decrease as mentioned above. Those
characteristics can be seen in figure 12(b). It can be observed
that the changes of the frequencies do not deteriorate the
estimation performance.

In figure 13, we observe that the ARMA method has a
relatively slow convergence compared to the AR method, and
this ARMA method exhibits a moderate performance in spite
of the frequency changing.

Regalia [3] pointed out through a numerical example
that the frequency estimation of three modes is much more
difficult than that of two modes. The estimated frequencies can
easily converge into one frequency repeatedly, or can fluctuate.
Mostly, it is more difficult to detect natural frequencies
from the vibration signal of structures having quite different
amplitudes, than to detect the frequency of pure two sinusoids
with similar amplitudes.

The other methods do not perform well under severe
experimental tests, as shown in figure 14. This is due to
the fact that the other methods assume pure sinusoids with
similar amplitudes as mentioned previously. Although the
other methods are faster, they can be misled in the severe
case. The frequency estimation results showing divergence
are omitted here.

5. Conclusions

In this paper, various real-time estimation methods of
multi-modal frequencies are realized and compared through
numerical and experimental tests. This paper will be helpful
to anyone who needs a frequency estimation algorithm to
implement in real time.

The following methods have been introduced and
examined: AR, ARMA, RML, LinANF, EachCNF and
LastCNF. We have introduced the Bairstow method to
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Table 4. Parameters for experimental test.

Frequencya(Hz) Amplitude
(Fx → Fabc) (Fx → Fabc)

Mode First mode 12.75 → 11.75 3.42 → 3.62
Second mode 48.0 → 41.5 1.46 → 1.67
Third mode 71.75 → 64.5 2.02 → 1.87

Forgetting factor Pole contraction factor
λi → λf ρi → ρf

AR 0.95 → 0.995 None
Estimation method ARMA 0.95 → 0.995 None

RML 0.98 → 0.99 0.85 → 0.999
LinANF 0.98 → 0.99 0.85 → 0.999
EachCNF 0.85 → 0.98 0.85 → 0.98
LastCNF 0.85 → 0.98 0.85 → 0.98

a Sampling frequency: 200 Hz.
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Figure 12. Frequency estimation using the AR method for each
case: (a) Fx case; (b) Fabc case.

decouple the characteristic equation during the frequency
estimation procedure and have revealed the computational
efficiency quantitatively.

A signal of two sinusoids mixed with white noise is
considered numerically on the basis of threshold SNRs,
tracking capability, and computational burden with FLOP
dimension. We concluded from the test results that the
AR and ARMA methods are not recommended in noisy
environments. Except for the AR method, the five methods
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Figure 13. Frequency estimation using the ARMA method for each
case: (a) Fx case; (b) Fabc case.

have fast tracking capability. Our results reveal that the
ARMA method is inefficient with regards to computational
efficiency; however, the EachCNF and LastCNF methods are
fairly effective. The LinANF and RML methods have average
performances.

We have performed experiments to extract natural
frequencies from the vibration signal of a wing-like composite
plate with a piezoelectric sensor and an actuator. The six
methods mentioned above are realized in real time using
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Figure 14. Frequency estimation using the RML method in the Fx
case.

the DSP board. By adding masses, we changed the natural
frequencies of the specimens. Experimental tests have been
devised to confirm the feasibility of real-time computations,
and to impose the severe conditions of drastically different
amplitudes and of considerable changes of natural frequencies
for three modes. The frequency estimation performance of the
AR method is better than that of the other methods in spite of
the frequency changes during the estimation of frequencies.

From these results, we recommend using the CNF
methods when the computational efficiency is critical and the
estimation condition is simple, whereas the AR method can
be used with the Bairstow method if the test environments are
not noisy and there are more than two modes with different
amplitudes.

We leave the comparison with other methods for a future
study. We expect that the frequency estimation methods will
be applied to the health monitoring of structures and adaptive
vibration controls in diverse engineering problems.
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Appendix A. RLS method

The procedure of the RLS method is summarized as follows.
Step 1: Let us define the measured vector as φ(k) and the
unknown vector as θ (k).

φ(k)
�= [−y(k − 1) −y(k − 2) · · · −y(k − 2p)]T

φ(k)
�= [−y(k − 1) −y(k − 2) · · · −y(k − n), (A.1a)

u(k − 1) u(k − 2) · · · (k − 2p)]T (A.1b)

θ(k)
�= [a1(k) a2(k) · · · a2p(k)]

T (A.2a)

θ(k)
�= [a1(k) a2(k) · · · a2p(k), b1(k) b2(k) · · · b2p(k)]

T

(A.2b)

where k is an index denoting the current state, and the equations
numbered (a) and (b) denote the AR and ARMA methods,
respectively.

Step 2: Then, the measured signal can be described as follows:

y(k) = −
2p∑
j=1

aj (k − j)y(k − j) + ε(k) = θ(k)Tφ(k) + ε(k)

(A.3a)

y(k) = −
2p∑
j=1

aj (k − j)y(k − j) +
2p∑
j=1

bj (k − j)u(k − j)

+ ε(k) = θ(k)Tφ(k) + ε(k) (A.3b)

where ε is an error between the measured and estimated
signals. The estimation of the characteristic equation means
that the square of error in equation (3) is to be minimized with
respect to the objective function using the RLS method

P(0) = δ−1I θ(0) = [arbitary vector] (A.4)

where P(k) is referred to as a covariance matrix of the input
vector. The initial estimation of P(k), denoted by P(0), is a
large diagonal matrix, 108I, in this study. Similarly, the initial
value of θ (k) is set to be [1, . . . , 1], which is an arbitrary initial
guess.
Step 3: We repeat the following calculation to estimate the
parameter vector, θ (k)

θ(k) = θ(k − 1)

+
P(k − 2)φ(k − 1){y(k) − φ(k − 1)Tθ(k − 1)}

λ(t){λ(t) + φ(k − 1)TP(k − 2)φ(k − 1)} (A.5)

P(k − 1) = P(k − 2)

+
P(k − 2)φ(k − 1)φ(k − 1)TP(k − 2)

λ(k){λ(k) + φ(k − 1)TP(k − 2)φ(k − 1)} . (A.6)

Appendix B. Bairstow method

The procedure of the Bairstow method is summarized as
follows.
Step 1: We calculate b̄0, b̄1, . . . , b̄k using the coefficients of
equation (A.2) and estimate the initial values of pi and qi as
follows:

b̄0 = a0 b̄1 = a1 − pib̄0

b̄k = ak − pib̄k−1 − qi b̄k−2 k = 2, 3, 4, . . . , n.
(B.1)

Step 2: We calculate c0, c1, . . . , ck using obtained b̄k, pi and qi

as follows:
c0 = b̄0 c1 = b̄1 − pic0

ck = b̄k − pick−1 − qick−2 k = 2, 3, 4, . . . , n − 1.
(B.2)

Step 3: We construct )p and )q using bn, bn−1, cn−1, cn−2

and cn−3 obtained from steps 1 and 2

)p =
∣∣∣∣bn−1 cn−3

bn cn−2

∣∣∣∣
/∣∣∣∣ cn−2 cn−3

cn−1 − bn−1 cn−2

∣∣∣∣
(B.3)

)q =
∣∣∣∣ cn−2 bn−1

cn−1 − bn−1 bn

∣∣∣∣
/∣∣∣∣ cn−2 cn−3

cn−1 − bn−1 cn−2

∣∣∣∣ .
Step 4: pi and qi are updated as follows:

pi+1 = pi + )p qi+1 = qi + )q. (B.4)

We check the convergence of pi+1 and qi+1 using the following
criterion

|pi+1 − pi |
|pi | < ε and

|qi+1 − qi |
|qi | < ε. (B.5)

We repeat processes 1– 4 until pi+1 and qi+1 are converged.
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Step 5: When pi+1 and qi+1 are converged, equation (3) can
be divided by a quadratic factor, x2 + pi+1x + qi+1. The
remaining product is a 2(p − 1)th-order polynomial, of which
the coefficients are b̄k . We iterate the above procedure for
further factorization after substitution as follows

ak → bk n → n − 2 K = 0, 1, 2, . . . , n − 2

f̂ i = 1

2πTs
angle

(
Zi |A(z−1) = 0

)
(B.6)

= 1

2πTs

[
cos−1(−pi/2

√
qi)

]
i = 1, 2, . . . , p (B.7)

where Ts is a sampling time. The updated f̂ i is discarded if
the value of (−pi/2

√
qi ) is out of the range [−1, 1] during the

real-time process. The obtained natural frequencies are sorted
by magnitudes using a simple straight insertion algorithm [14].

Appendix C. RML method

The RML algorithm is summarized as follows.
Step 1: We initialize the algorithm by setting

P(0) = δ−1I θ̂ = [a1 · · · ap]T θ̂(0) = 0.

(C.1)

Step 2: We formulate the error, the covariance matrix and the
parameter vector as follows

ε(t) = y(t) + y(t − 2) − ρ2pε(t − 2p) − ϕT(t)θ̂ (t − 1)

(C.2)

P(t) = P(t − 1) − P(t − 1)ψ(t)ψ(t − 1)TP(t − 1)

λ(t){λ(t) + ϕ(t)TP(t − 1)ϕ(t)} (C.3)

θ̂ (t) = θ̂ (t − 1) + P(t)ψ(t)ε(t). (C.4)

Step 3: We calculate the error, the filtered error, the filtered
signal, etc as follows

ε̄(t) = y(t) + y(t − 2) − ρ2pε̄(t − 2p) − φT(t)θ̂ (t) (C.5)

ε̄F (t) = ε̄(t) − ρ2nε̄F (t − 2p) − ρp(t)ε̄F (t − p)âp(t)

−
n−1∑
i=1

[
ρi(t)ε̄F (t − i) + ρ2p−i(t)ε̄F (t − 2p + i)

]
âi(t)

(C.6)

yF (t) = y(t) − ρ2pyF (t − 2p) − ρp(t)ε̄F (t − p)âp(t)

−
p−1∑
i=1

[
ρi(t)yF (t − i) + ρ2p−i(t)ε̄F (t − 2p + i)

]
âi (t)

(C.7)

ϕi(t) =



−y(t − i) − y(t − 2p + i) + ρi(t)ε̄(t − i)

+ ρ2p−i(t)ε̄(t − 2p + i) 1 � i � p − 1
−y(t − p) − ρp(t)ε̄(t − p) i = p

(C.8)

ψi(t) =



−yF (t − i) − yF (t − 2p + i) + ρi(t)ε̄F (t − i)

+ ρ2p−i(t)ε̄F (t − 2p + i) 1 � i � p − 1
−yF (t − p) − ρp(t)ε̄F (t − p) i = p

(C.9)

Step 4: We update the parameter vector and the direction
vector as follows
ϕ(t + 1) = [ϕ1(t + 1) . . . ϕp(t + 1)]T (C.10)

ψ(t + 1) = [ψ1(t + 1) · · · ψp(t + 1)]T (C.11)

f̂ i = 1

2πTs
angle

(
Zi |A(z−1) = 0

)
i = 1, 2, . . . , p.

(C.12)

Step 5: We repeat steps 2–4 at every time step.

Appendix D. LinANF method

The LinANF method is summarized as follows.
Step 1: We initialize the algorithm by setting

P(0) = δ−1I θ = [a1 · · · ap]T θ(0) = 0
(D.1)

where δ is a small positive constant.
Step 2: We formulate the error, the covariance matrix and the
parameter vector as follows

y(n) = 1

A(ρq−1)
x(n). (D.2)

Step 3: We compute for each instant of time

ψ(n − 1) = [ψ1(n − 1) · · · ψp(n − 1)]T (D.3)

ψi(n − 1) =
{
y(n − i) + y(n − 2p + i) 1 � i � p − 1
y(n − p) i = p

(D.4)

ε(n) = y(n) + y(n − 2p) + ψT(n − 1)θ(n − 1). (D.5)
Step 4: We update the parameter vector and the direction
vector as follows

g(n) = P(n − 1)ψ(n − 1)

λ + ψ(n − 1)TP(n − 1)ψ(n − 1)
(D.6)

P(n) = P(n − 1)/λ − g(n)ψ(n − 1)TP(n − 1)/λ (D.7)

θ(n) = θ(n − 1) − g(n)ε(n) (D.8)

f̂ i = 1

2πTs
angle

(
Zi |A(z−1) = 0

)
i = 1, 2, . . . , p.

(D.9)
Step 5: We iterate steps 3 and 4 at every time step.

Appendix E. CNF methods

The EachCNF and LastCNF algorithms are summarized as
follows.
Step 1: We initialize the algorithm by setting

θ = [a1 · · · ap]T θ(0) = 0 k = 1, 2, . . . , p.

(E.1)
Step 2: For each instant of time we compute

εk(n) = Nk(q
−1)εk−1(n) = Ak(q

−1)

Ak(ρq−1)
εk−1(n)

= 1 + ak(n)q
−1 + q−2

1 + ρak(n)q−1 + ρ2q−2
εk−1(n) (E.2)

ε0(n) = d̂(n) k = 1, . . . , p

ε̃k(n) = 1

Ak(ρq−1)
εk−1(n) = εk−1(n) − ρak(n − 1)ε̃k(n − 1)

−ρ2ε̃k(n − 2) (E.3)

1k(n) = λ1k(n − 1) + ε̃k(n − 1)2. (E.4)
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Step 3: For each time step we compute

Ek(n) = ε̃k(n) + ε̃k(n − 2) (E.5a)

Ek(n) =
p−1∑
1=k

{
al+1(n − 1)εl(n − 1) + εl(n − 2)

− ρal+1(n − 1)εl+1(n − 1) − ρ2εl+1(n − 2)
}

+ ε̃k(n) + ε̃k(n − 2) (E.5b)

where equations numbered (a) and (b) are applied to the
EachCNF and LastCNF methods, respectively.
Step 4: For each step we compute

zk(n) = λzk(n − 1) + ε̃k(n − 1)Ek(n) (E.6)

ak(n) = −1k(n)
1zk(n) (E.7)

f̂ i = 1

2πTs
cos−1

(
−ak(n)

2

)
i = 1, 2, . . . , p. (E.8)

Step 5 : We repeat steps 2– 4 at every time step.
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