
Real-Time Eye Tracking Using a Smart Camera

Mehrube Mehrubeoglu
*
, Linh Manh Pham, Hung Thieu Le, Ramchander Muddu, and Dongseok Ryu

Texas A&M University-Corpus Christi, School of Engineering and Computing Sciences

Corpus Christi, Texas, USA
*
Ruby.Mehrubeoglu@tamucc.edu

Abstract—Real-time eye and iris tracking is important for hands-

off gaze-based password entry, instrument control by paraplegic

patients, Internet user studies, as well as homeland security

applications. In this project, a smart camera, LabVIEW and

vision software tools are utilized to generate eye detection and

tracking algorithms. The algorithms are uploaded to the smart

camera for on-board image processing. Eye detection refers to

finding eye features in a single frame. Eye tracking is achieved by

detecting the same eye features across multiple image frames and

correlating them to a particular eye. The algorithms are tested

for eye detection and tracking under different conditions

including different angles of the face, head motion speed, and eye

occlusions to determine their usability for the proposed

applications. This paper presents the implemented algorithms

and performance results of these algorithms on the smart

camera.

Keywords- real-time eye detection, real-time eye tracking, smart

camera, LabVIEW, NI Vision Builder

I. INTRODUCTION

Eye tracking is the process of detecting the eye location

across video frames to determine the direction of gaze. The

motion of the eye relative to the head may also be of interest.

Eye tracking is important for research and development areas

such as visual systems, psychological analysis, cognitive

science and product design. An eye tracking system is an

integration of a set of devices and associated programs for

measuring eye positions and eye movement, and correlating

the results to the same eye across images acquired sequentially

over time.

Many existing systems require PCs for vision processing

[1], [2]. However, the PC is not adequate to withstand

environmental factors in the actual field. In addition, a smart

camera with its on-board data processing capabilities allows

the execution of fast algorithms well suited for real-time

tracking applications. Similar to industrial vision systems,

DSP-based standalone vision equipment can provide

optimized and rugged solutions specialized for individual

applications in law enforcement, homeland security, medicine,

and many other areas that require a compact system to work

under a variety of conditions.

In this paper, a real-time standalone eye tracking system

using a National Instruments Smart Camera is presented with

new algorithms, building on our prior work [3]. A tracking

algorithm optimized for the smart camera, and its

implementation using LabVIEW 8.5.1 and NI Vision Builder

AI 3.6 are discussed. The experimental evaluation of the

algorithm is also described for eye detection and tracking

under different conditions including different angles of the

face, head motion, and eye occlusions to determine the

usability of the system for real-time applications.

The remainder of this paper covers applications and related

work. In Section II, the eye tracking methodologies and

algorithms are described. Section III summarizes the smart

camera implementation of the eye tracking system. Results are

presented in Section IV. The conclusions can be found in

Section V.

A. Applications

A real-time eye tracking system must be robust under a

various conditions including motion speed, occlusions and

face angles to be useful for specific applications. One such

application involves an input device for paraplegic patients to

help use computers [4], [5]. Eye tracking can serve military

purposes by tracking a pilot’s eye and developing appropriate

digital visual interfaces for use in the cockpit [6]. Other

applications include reader behavior testing when viewing

websites [7], [8]. The results are important to determine gaze

or reading patterns of the user. Personal preferences can be

tested during shopping or reading brochures for interest

groups to make more targeted products or advertisements

based on the collected consumer data. Based on the analysis of

the eye movement, physical state of a driver can be assessed to

warn drowsy drivers [9]-[11]. Not only can the physical state

of the human body but also the intent of a person can be

examined [12]. Mental state or emotions of an individual such

as anxiety, deceit, or hostility can be revealed by eye tracking,

[13]-[15] which can then be used in homeland security

applications. Although multiple approaches to building an eye

tracking system exists, most work under the same principles,

namely, detecting the same eye features across multiple image

frames and correlating the results to a particular eye.

B. Related Work

Many eye tracking systems are proposed in the literature

and implemented in practice. Zhu and Ji describe a computer

vision system based on active IR illumination for real-time

gaze tracking and interactive graphic display [16]. Typical

gaze tracking systems require a static head to work well, and

require a complicated calibration process. In the system

described by Zhu and Ji, the gaze tracker provides accurate

gaze estimations without calibration and even with head-

movements. A gaze calibration procedure is implemented that

identifies the mapping from pupil parameters to screen

coordinates using the generalized regression neural networks

(GRNNs). The authors use pupil glint detection and tracking,

gaze calibration and gaze mapping to accomplish eye tracking.

In our system, we are interested in detecting the center of the

eye. Calibration can be achieved by asking the user to gaze at

two or three corners of the viewed screen to match camera

view coordinates to screen coordinates. Villanuev et al.

describe an eye tracking system whose objective is to identify

user gaze direction [17]. Video-oculography (VOG) is used to

provide the gaze position with high precision. VOG involves

illumination and data acquisition to determine the point the

subject is looking at through the captured images. One of

VOG’s advantages is as a solution for building nonintrusive

systems which avoid the use of extra devices such as helmets

and special glasses holding small cameras. Chen et al.

describe an auto-stereoscopic display system for stereo

visualization without the discomfort and inconvenience of

wearing stereo glasses or head-mounted displays. In their

project, the authors implement real-time tracking techniques

which can efficiently provide user’s eye position in images.

These techniques include face detection using multiple Eigen

spaces under various lighting conditions and fast block

matching for tracking four motion parameters (X translation,

Y translation, scaling, and rotation) from the user’s face and

eye regions. Although eye tracking is accomplished, the main

purpose of the project is to provide auto-stereoscopic display

for a stereo visualization system. The authors perform face

detection first before eye tracking to increase the accuracy of

the eye tracking algorithm [18]. Similarly in our application,

no wearable devices are necessary. Eye tracking is achieved

through eye detection algorithms implemented on the NI smart

camera which has fast processing times suitable for real-time

applications. Tracking is achieved by storing the location of

previous matches in successive image frames. Fleck et al.

describe the implementation of a particle filter for

probabilistic real-time tracking in a smart camera using FPGA

[19]. We use LabVIEW for the implementation of image

processing algorithms for real-time eye detection that include

pattern matching, edge detection, and computation and

recording of eye center location for tracking. Garg et al.

describe the implementation of PC-based iris detection

algorithms in LabVIEW. In this paper, we use LabVIEW to

implement eye detection algorithms on a smart camera.

II. METHODOLOGY

In this project, real-time eye detection and tracking are

achieved with LabVIEW-based algorithms uploaded to a

smart camera.

A. Real-time Eye Tracking with a Smart Camera

Real-time eye tracking algorithms were implemented in a

smart camera (National Instruments) using LabVIEW 8.5.1

and NI Vision Builder AI 3.6 programming tools. Multiple

methods exist for building real-time eye-tracking systems;

typically webcams have been used as image sensors along

with language tools such as OpenCV and Visual C as

affordable solutions. However, the smart camera offers more

flexibility and advantages in terms of hardware specification

than a typical webcam; the smart camera has features of an

independent computer; zooming can be adjusted with a variety

of interchangeable lenses to match the requirements of an

application. A smart camera contains a processor with one or

multiple cores for processing algorithms faster. It also has

internal memory such as ROM or RAM as well as an image

sensor with an electronic shutter. In order to program for the

smart camera, the software tools serving as the integrated

development environment (IDE) for programming is required.

The eye tracking system described in this work requires image

processing pattern recognition algorithms. LabVIEW, a high-

level graphical programming environment was chosen for

programming and interfacing. Interfaces called virtual

instruments (VIs) can be designed and controlled via GPIB,

RS232, VXI or regular Ethernet interfaces. The eye tracking

algorithm and testing process was developed. A built-in FTP

server is used to connect to the internal storage of the NI smart

camera directly. The TCP connection library from LabVIEW

allows the smart camera to run on a local network similar to a

regular computer.

B. Real-time Eye Tracking Algorithm

The camera is programmed to track the eye motion

continuously until stopped by the user. Figure 1 shows the

flowchart for the real-time eye tracking algorithm.

Figure 1. Flowchart of the Real-time Eye Tracking Algorithm

The flowchart of Figure 1 is explained bel

• Step 1 - Image Acquisition: Th

acquired automatically by the smart

• Step 2 – Image Pre-processing: T

image is converted to a gray-s

automatically by the smart camera.

• Step 3 - Eye Detection: Initially

detected using template matchi

matching, a template from the S is c

given image using a matching met

metric provides a measure of simil

two templates. This similarity is

numerical value as a score of the t

score of 1000 means an exact mat

template. Since, the images are

different test conditions, the mi

score is set around 600.

• Step 4 - Edge Detection: If the eye

Region of interest (ROI) which cov

extracted to reduce the processin

detection technique is applied to the

points around the ellipse or circle of

• Step 5 - If at least 3 points (for circl

ellipse) are found, the circle or the

will be drawn. Otherwise, the

skipped over with no match.

• Step 6 - If the ellipse/circle of the e

the coordinates of the center of

calculated in the camera’s process

spreadsheet for future reference. T

are computed as the center of the re

the detected eye.

This algorithm can be applied to any kin

with any programming language.

implementation of the experiment for this pa

Section IV.

III. IMPLEMENTATION

A. System Hardware

The NI smart camera is directly conne

computer through an Ethernet cable in a lo

data and control signal are sent back and for

full-duplex form. The full-duplex form allow

in both directions, which results in faster

computer has a Pentium 4 2.26GHz processo

MB graphics card and 1.25 GB RAM. L

interface is used to communicate with the s

experimental eye tracking system is shown in

The Main component of the eye trackin

1762 smart camera with a Computar 12

low:

he raw image is

t camera

The acquired raw

cale image, also

the user’s eye is

ing. In template

compared with the

tric. The matching

larity between the

converted into a

template match. A

ch with the tested

e obtained under

inimum threshold

e is detected, new

vers only the eye is

ng area. An edge

e new ROI to find

f the eye.

le) or 4 points (for

ellipse of the eye

current frame is

eye is drawn, then

the eye will be

or and saved to a

These coordinates

ectangle bounding

nd of smart camera

The particular

aper is discussed in

ected to a regular

ocal network. The

rth in this cable in

ws communication

transmission. The

or, an on-board 64

LabVIEW desktop

smart camera. The

n Figure 2.

ng system is a NI

mm lens and the

Figure 2. NI Smart Camer

Gigabit Ethernet interface.

processors. One is a 533 MHz

The other is a 720MHz DSP (

processors permit the smart ca

times faster when applying

matching, optical character rec

reading. The camera has a 1/3

state image sensor with squar

gray-scale images. In addition

units exist on board the camera

for the system and the oth

(data/program/spreadsheet) sto

is equipped with a temperatu

temperatures greater than 70
o

operation when a suitable op

again. The lens is attached to

and allows high resolution ima

camera’s sensor. Through the

control, the amount of light and

B. Software and Design

Figure 3 shows the algorith

in Vision Builder AI 3.6 that is

In Figure 3, the first step corres

1. The edge detection an

representing the location of the

& Track” module.

Figure 3. Eye Detectio

ra and Eye Tracking System

The smart camera has dual

PowerPC processor (Freescale).

(Texas Instruments). These dual

amera to process data up to four

 algorithms such as pattern

cognition, and data matrix code

3 inch Sony ICX 424 AL solid-

re pixels for the acquisition of

two separate 128 MB memory

a. One memory block is utilized

her is for firmware and job

orage. Finally, the smart camera

ure sensor which shuts off at
o
C automatically, and resumes

perating temperature is reached

the camera through a C mount

ages to be formed on the smart

use of the lens and the aperture

d zoom can be adjusted.

hms developed and implemented

s supported by the smart camera.

sponds to Step 1 and 2 in Figure

nd drawing the ellipse/circle

e eye is performed in “Draw Eye

on and Tracking Process

The following describes the eye detection and tracking

process in detail:

• Step 1: A real-time eye image is captured using a

smart camera interfaced to LabVIEW.

• Step 2: The eye is matched with a pre-stored eye

pattern (only the best match is reported).

• Step 3: The coordinate system and origin are aligned

with the captured eye image.

• Step 4: The Region of Interest is set to the matching

eye area to reduce the area that is processed.

• Step 5: The image is calibrated to convert pixel

coordinates to real-world coordinates.

• Step 6: An ellipse or circle is drawn based on the

points extracted from the Region of Interest. Also the

tracking line is drawn from a list of points that

represent the center of the eye from successive

frames.

• Step 7: The coordinates of the center of the eye are

stored in a spreadsheet.

• Step 8: The inspection status is shown through pass

(green) or fail (red) indicators.

In Figure 4, the block diagram of the real-time eye

tracking algorithm in LabVIEW 8.5.1 is depicted. The block

diagrams constitute the main graphical programming

environment for the LabVIEW applications. Connections

between virtual instruments (VIs) and analog input/output

devices are created under LabVIEW 8.5.1 using the G

programming language. In general, each block diagram is

divided into modules corresponding to various program steps.

Each module is called the appropriate subVIs serving as sub-

functions. For example, in Figure 3, the module named “Eye

Match Pattern,” which applies the pattern matching algorithm

to the gray-scale images with a given template, must call the

subVIs “IVB Match Pattern Setup.vi,” ”IVB Match Pattern

Exec.vi” and other related subVIs from the LabVIEW library

called “IVB Match Pattern Code”. In the figures, only the

main modules are shown. Each subVI, in turn, can call its own

subVIs. For example, module “Draw Eye and Track” calls

“Edge Detection” and “Read the Eye Central Point from

Spreadsheet” subVIs, respectively. The pseudocode for the

“Read the Eye Central Point from Spreadsheet” subVI is

described below:

WHILE eye is detected in the frame based on set criteria

 Calculate Center of eye in x

 Calculate Center of eye in y

 IF best eye match

 PUT (x,y) in Trajectory list

 END IF

END WHILE

IF the size of Trajectory list > Number of frames to track

 POP the last data point (x,y) from Trajectory

END IF

FOR Number of frames to track

 DRAW line for the Trajectory

END FOR

Figure 5 demonstrates the above pseudocode’s

implementation in LabVIEW. The eye center coordinates are

stored in a list that is loaded into the smart camera’s buffer for

faster eye tracking. Then these points are written to a

spreadsheet file in the internal disk of the camera for future

reference. This file is retrieved from camera using FTP.

IV. RESULTS AND ANALYSIS

A. The Accuracy of the Eye Tracking Algorithm

The results in Table I are obtained with real-time face data

acquired over two minutes. The detection rate decreases as

frame rate increases for all four test cases under ideal

conditions, with head motion, with head angle to the camera

and with partial occlusion of the eye region.

Figure 4. LabVIEW Block Diagram of Eye Detection & Tracking Process

Figure 5. Block Diagram of “Read the Eye Central Point from Spreadsheet” subVI

Formula for average detection rate is given as

Average detection rate =
frames of # total

detected is eye frames of #

Table I shows the correct eye detection rates reported for

each case corresponding to increasing frame rates. The results

are retrieved from the last step in “Set inspection Status” and

user-defined variables of LabVIEW block diagram shown in

Figure 3. Under ideal conditions with the face directly in front

of the camera, eye detection rates are above 93% even at the

highest frame rates. When the face is moved, the detection

performance is reduced but is still above 87%. The detection

rate decreases significantly (down to 70.21% for the same

frame rate) if the face is at an angle of about 45
o
 to or looking

away from the camera. Partial occlusions further reduce

detection rates (worst tested case 66.49%), and therefore,

require more elaborate algorithms than what have been

implemented.

TABLE I. AVERAGE % DETECTION RATES IN DIFFERENT CASES FOR DATA

COLLECTED OVER TWO MINUTES

Test Case

Frame Rate

Ideal

Conditions

Moving

Face

Eye at an

Angle

Partial

Occlusion

30 fps 97.57 92.06 78.23 74.21

35 fps 96.88 91.64 76.54 72.58

40 fps 95.89 90.83 75.41 72.31

45 fps 95.21 90.14 73.39 70.67

50 fps 94.39 89.89 71.7 68.25

55 fps 94.21 88.95 70.98 67.34

60 fps 93.93 87.37 70.21 66.49

Average 95.44 90.13 73.78 70.26

Figure 6 shows the result of the real-time eye detection

algorithm under varying real-time input image conditions.

Each case is explained as follows: 1. (top left) Detection of the

eye in the ideal case, with face directly in front of the camera,

no motion, no occlusion. The user is staring at the camera

lens, and the red colored circle is the location of detected eye;

2. (bottom left) Detection of the eye when the face is moved

(tilted); 3. (top right) Detection of the eye when the face is

turned away from the camera lens and is at an angle;

4. (bottom right) Detection of the eye when an occlusion (in

this case, eye glasses) exists around the eye region.

Figure 6. Real-time Eye Detection with Images Captured by Smart Camera

B. Speed of Eye Tracking Algorithm

The testing for the speed of the algorithm involves

positioning the tester (user) in front of the mounted camera

with a fixed distance. The distance between the mounted smart

camera and the tester is about 1.8 to 2 feet. The algorithm is

limited to up to 45
o
 of rotation of the head to the left or right.

The smart camera then acquires the tester’s face image for

processing.

Figure 7 shows the time needed to process each image

processing step by the smart camera for the first frame. Based

on these results, processing steps that need optimization can

be determined and addressed. The entire process takes an

average of 94.811 ms. The longest time for an image frame

processing step is “Write Eye Location to the Spreadsheet

File” (Figure 3) with an average of 45.090 ms. The actual

processing time of the algorithm without writing to the

spreadsheet file is 94.811 - 45.090 = 49.721 ms. The

performance is expected to increase with the use of a faster

computer which will result in faster data transfer times

between the computer and the smart camera.

Figure 7. Time per Inspection Step Using Benchmark Tool of NI Vision Builder AI 3.6

Figure 8 depicts the result of real-time eye tracking

algorithm implemented in NI Vision Builder AI 3.6. The red

lines keep track of eye movement. Only the data for the last 30

frames are shown in the figure. The end points of each line

segment are retrieved from the list which was originally

populated directly from the camera memory. The tracking

algorithm still works well when an occlusion such as a pair of

glasses exists around the eye region.

Figure 8. Real-time Eye Tracking

V. CONCLUSION

Real-time eye detection and tracking have been developed

not for a PC but for use in a standalone smart camera with

DSP capabilities. The tracking algorithm is optimized and

simplified for the NI Smart Camera. The eye has been

detected at varying real-time input conditions, and the

developed GUI interface is used to visualize the trajectory by

connecting the eye center coordinates through red line

segments across frames. The experimental results revealed

that eye tracking accuracy decreases with increasing frame

rates. Especially, eye at an angle and occlusion showed a drop

in successful detection rates that were notably lower than the

ideal input conditions. The limiting factor that affects the

speed of the algorithm is the transfer time for the detected eye

center coordinates from the smart camera to a spreadsheet file

on the PC which is the protocol used for the testing stage. A

faster PC is expected to significantly reduce the data transfer

time. Alternatively, transferring the data after each session

instead of after each data point can be considered. Data

transfer is for historic data collection only; all the data

processing is performed on the smart camera. Future work

involves more robust algorithms to improve the performance

of the system under varying conditions.

ACKNOWLEDGMENT

The authors thank Mr. John Gonzalez for the customized

camera mount, and the Office of Graduate Studies for their

sponsorship of student participation in this conference. This

project was partially supported by Texas Research and

Development Fund.

REFERENCES

[1] R. Garg, V. Gupta, and V. Agrawal, “Efficient iris recognition method
for identification,” in Proc. ICUMT, pp.1-6, 2009.

[2] C. A. Perez, V. A. Lazcano, P. A. Estévez, and C.M. Held, “Real-time
iris detection on faces with coronal axis rotation,” in Proc. SMC (7) ,
pp.6389-94, 2004.

[3] M. Mehrubeoglu, H. T. Bui, and L. McLauchlan, “Real-time iris
tracking with a smart camera,” Proceedings of SPIE, vol. 7871, Real-
Time Image and Video Processing, 2011, N. Kehtarnavaz and M. F.
Carlsohn, Eds., 787104, Feb. 2011.

[4] Frangeskides and A. Lanitis, “A Hands-Free Non-Invasive Human
Compuer Interation System,” Advances in Systems, Computing Sciences
and Software Engineering, pp. 235-242, 2006.

(DOI: 10.1007/1-4020-5263-4_38)

[5] C. Mauri and T. Granollers, “Computer vision Interaction for People
with Severe Movemtn Restrictions,” Human Technology, 2(1), pp. 38-
54, April 2006.

[6] W. Haibo, X. Chengqi, L. Qing, “The Eye Movement Experiment and
the Usability Evaluation of the Fighter Cockpit Digital Interface,” 2nd
International Conf. Information Engineering and Computer Science
(ICIECS) 2010, pp. 1-4, 2010. (10.1109/ICIECS.2010.5678205)

[7] Q. Li, L. Sun and J. Duan, “Web Page Viewing Behaviorof Users: An
Eye-Tracking Study,” Proc. of ICSSSM '05, International Conf. on
Services Systems and Services Management, pp. 244-249, 2005.

[8] W. Lu, M. Li, S. Lu, Y. Song, J. Yin, and N. Zhong , “Impact of
Information Overload for Visual Search on Web Pages: An Eye-tracking
Study,” Proc. 2010 IEEE/ICME International Conference on Complex
Medical Engineering, July 13-15, 2010, Gold Coast, Australia.

[9] R. Garg, V. Gupta and V. Agrawal, “A Drowsy Driver Detection and
security system,” in Proc. ICUMT, pp.1-8, 2009.

[10] M. J. Flores, J. M. Armingol, and A. D. L. Escalera, “Real-Time

Warning System for Driver Drowsiness Detection Using Visual
Information,” presented at Journal of Intelligent and Robotic Systems,
pp.103-125, 2010.

[11] Q. Ji and X. Yang, “Real-Time Eye, Gaze, and Face Pose Tracking for
Monitoring Driver Vigilance,” Real-Time Imaging, Vol. 8, Elsevier
Science Ltd., pp. 357–377, 2002.

[12] S. Milekic, “The more you look the more you get: Intention-based
interface using gaze-tracking,” in Trant, J.(Des.) Museums and the
Web2002: Selected Papers from an Int. Conf., Archives and Museum
Informatics, 2002, pp. 1–27.

[13] J. Orozco, F. X. Roca, and J. Gonzàlez, “Real-time gaze tracking with
appearance-based models,” Machine Vision and Applications, 20(6):
353-364, 2009.

[14] J. C. Kircher, A. E. Cook and D. J. Hacker, “Deception Detection using
Oculomotor Movements,” United States Patent Application Publication,
Pub. No.: US 2010/0324454 A1,Pub. Date: Dec. 23, 2010.

[15] I. Cohen, N. Sebe, L. Chen, A. Garg, T. S. Huang, “ Facial
expression recognition from video sequences: temporal and static
modeling,” Comput. Vision Image Understand 91(1–2), pp. 160–
187, 2003.

[16] Z. Zhu, and Q. Ji, “Eye and gaze tracking for interactive graphic
display,” Machine Vision and Applications, pp. 139-148, July 2004.

[17] A. Villanuev, R. Cabeza, and S. Porta, “Gaze tracking system model
based on physical parameters,” International Journal of Pattern
Recognition and Artificial Intelligence, 21(5), 2007.

[18] Y. Chen, C. Su, C., Chen, Y. Hung, and C. Fuh, “Video-based Eye
1.Tracking for Autostereoscopic Displays,” Opt.. Eng., 40, pp. 2726 -
2734 , 2001.

[19] S. Fleck, S. Lanwer, and W. Straßer, “A smart camera approach to real-
time tracking,” 13th European Signal Processing Conference (EUSIPCO
2005).

