
Real Time Fault Injection Using Logic Emulators

Reza Sedaghat-Maman Erich Barke

Institute of Microelectronic Systems
University of Hanover

Callinstr. 34, D-30167 Hanover, Germany
sedaghat@ims.uni-hannover.de

ABSTRACT
A hardware based approach to Fault Emulation

independent of the logic emulation system in use has been
developed and is presented in this paper. Fault injection
into a targetted circuit is made possible with the
introduction of additional logic. The stuck-at-fault model
is simulated with the method described here, which may
also be used for multiple faults and bridging faults [1].
This discussion will focus only on SSF. Using a
commercial emulator, speeds for combinational circuits of
several MHz were reached allowing for system testing at
real time speed.

requiring a specific logic emulator or additional
hardware.

This paper is organized as follows: In Section 2 an
overview of Fault Emulation with Fault Injectors is
presented. Section 3 defines the function of the Fault
Injectors for stuck-at-faults. Section 4 explains the
control of Fault Injectors and the Fault Activator. In
Section 5 the Fault Emulation Hardware is described.
Section 6 details the experimental results and discusses
Fault Emulation runtime. Section 7 concludes this
paper.

1. Introduction 2. Fault Emulation Overview

At present, fault simulation for large as well as
increasingly complex circuits is unrealistic due to
extremely long computing times. Various methods exist
which attempt to minimize simulation passes by
processing faults concurrently, such as parallel [2] and
concurrent [3]. However, these methods still do not
result in an acceptable reduction in computing time for
complex circuits [4,5]. Logic emulation is a new
approach to design verification involving the
development of a reprogrammable prototype of a digital
circuit. In many cases a "real-time" speed which is 103

to 106 faster than software simulation [6] can be
reached with logic emulators. In contrast to logic
simulators, a logic emulator can be connected to the
target system as a prototype of the digital circuit. With
"real-time" fault injection a system can be tested to
verify its function and its reaction to the inserted fault.
Three methods of fault simulation with logic emulators
i.e. Fault Emulation have recently been introduced and
are referred to as a new approach to Fault Emulation
[7], the Fault Grading Method [8] and Serial Fault
Emulation SFE [9]. In contrast to the two latter
methods, the technique discussed in this paper involves
no reprogramming of the logic blocks and allows a
faster fault injection into any node of the circuit without

As illustrated in Fig. 1, a circuit represented as a
netlist is expanded with Fault Injectors. The faultlist for
this circuit indicates the nodes where the Fault Injectors
should be inserted. Each Fault Injector has a
corresponding logical address and is controlled by the
Fault Activator.

After the expanded circuit has been mapped both the
faulty and the fault-free circuit are present in the
emulator. If the Fault Injectors are deactivated the
circuit is fault-free indicating a Good Emulation. A
Good Emulation (MUX=0) is performed for each test
pattern set T and the Good-results are stored. The actual
Fault Emulation (MUX=1) starts with setting the first
test pattern and injecting the first fault. Then, the same
test pattern activates the next fault. This process is
repeated until all faults are activated. Next step is the
setting of the second test pattern and activation of the
first Fault Injector. This procedure is repeated until all
test patterns have been set. The Fault Emulation results
are compared with the results of a Good Emulation. A
test pattern t will detect a fault when the results of a
Good Emulation G differ from those of Fault Emulation
F (G Ft t() ()≠) [1]. When G Ft t() ()⊕ = 1, the fault has
been detected and the fault detection counter is

incremented. Once the fault list has been processed
fault coverage can be calculated. In contrast to previous
Fault Emulation approach [7], this method requires no
additional hardware modules.

Activation/deactivation of the injectors is determined by
the EN (EN L Ci j= ⋅) signal.

In order to model both stuck-at faults (Fig. 2) an
additional variable F is needed. If F=1, then
N L C F N L Cout i j in i j= ⋅ ⋅ + ⋅ ⋅ =() () 1 and the Fault

Injector simulates the stuck-at-1 fault. When F=0, then
N L C F N L Cout i j in i j= ⋅ ⋅ + ⋅ ⋅ =() () 0 and the stuck-at-0

fault is modelled.A dd
Fau lt Injec to rs,
Fau lt A c tiva to r

N etlist

C omp ilation
(P artitioning

M app ing
Place and Ro u te)

Fau lt D e tection
C ounte r

Fau lt C overage

Fau ltlis t

F irs t
Test P a ttern

F irst F au lt

N o

N o

Last Fault

Fa ult Em u lation
M ux= 1

Good E m ula tion

G ood-R esu lts

M ux= 0

Las t
T es t P a ttern?

N ext
Test P a tte rn

N o
N ext F au lt

F irs t
Tes t P attern

Ass ignm ent of
C ircu it N odes

N ext
Test P a ttern

Las t
T es t Pa ttern?

Fau lt-R esu lts

G Ft t() ()⊕ = 1

M ux=0
N o

ENLi

Cj

Nin

outN
F

N EN F N ENout in= ⋅ + ⋅

Fig. 2: Stuck-at-0/1 Fault Injector

An example of fault injection is illustrated in Fig. 3
and 4. In order to model a Sa-0 fault in net F, the
corresponding Fault Injector is inserted. The circuit
displayed below has been mapped in a CLB with two
LUTs (Look-Up-Table) [11]. Gates G1 and G2 have
been mapped with four variables S A B C D1 = . . . in LUT
1 and G2 with two variables S F E2 = + in LUT2. As a
result of Fault Injection in net F the function of LUT2 is
affected such that net F is replaced by the function
F L Ci j⋅ ⋅ . In this case no additional resources are

required for the application of Fault Injectors.

A
B
C
D

E

F
S a -0

Y

&

>1G1

G2

-

A
B
C
D
E

Y
A .B.C .D

F

F + E

LUT 1 LUT 2

Fig. 1: Fault Emulation Flow Diagram

3. Fault Injectors Fig. 3: Example of a Circuit in a CLB

Three diferent Fault Injectors [7] are used for
modeling stuck-at-zero and stuck-at-one faults. The
injection of a fault into a net is done by cutting the net
and inserting a Fault Injector. Fault Injectors are
controlled by two signals, Li and Cj ; The data in/out

variables are Nin
 and Nout, representing the net in the

circuit into which the fault should be inserted.

A
B
C
D
E

Y

A.B .C .D

L U T 1 L U T 2

E+F.L .C
i j

L
i

jC

F

Fig. 4: Fault Injector S-a-0 in a CLB

4. Fault Activator 6. Experimental Results

Fault Injectors are controlled by a Fault Activator
[7] whose two-dimensional matrix form allows more
Fault Injectors to be addressed with fewer connections.
Fault Injectors are addressed and controlled by x- and y-
decoders. The matrix consists of a line decoder and a
column decoder which can be activated/deactivated with
an additional variable MUX thereby controlling Fault
and Good Emulation.

Fault Emulation results were evaluated using the
FPGA (4013 series) from XILINX and Quickturn´s
M250 emulation system. Table 1 describes the ISCAS
´85 benchmark circuits and a decoder (c32k) for which
a test evaluation was performed. When the circuits were
emulated with the M250 the maximum emulation speed
of the Logic Emulator (11.12 MHz) was reached.

Table 1: Data and Logic Emulation of Original Circuit

5. Fault Emulation Hardware Circuit # Gate # CLBs Freq [MHz]
c1908 880 387 11.12

The process of hardware-based Fault Emulation is
illustrated in Fig. 5.

c2670 1192 598 11.12
c3540 1669 732 11.12
c5315 2307 978 11.12

Workstation

Test Pattern,
Fault Coverage

Good and Fault Emulation

F au lt
A ctiva to r

Counter

P I x

P I
1

M UX

R E SET

C O C LK

L

C

i

j

D e sig n + F ault
I
n
j
e
c
t
o
r
s

(X/Y-Decoder)

PO 1

yP O

c6288 2416 1047 11.12
c7552 3512 1562 11.12
32k 32754 7423 11.12

Fault Emulation results are shown in Tables 2 and 3
with stuck-at-0 (Sa-0) and stuck-at-1 (Sa-1) Fault
Injectors. Using fault collapsing, Fault Injectors were
built into the circuits resulting in a reduction in the
number of faults [10].

Table 2: Fault Emulation with Stuck-at-0 Fault Injector

Circuit # S-a-0 # CLBs CLB
Overhead

Freq
[MHz]

c1908 288 539 1.39 11.12Fig. 5: Fault Emulation Hardware
c2670 705 954 1.59 11.12
c3540 980 3097 4.2 11.12The complete system consists of emulator hardware

and a workstation, which loads the test pattern in the
Emulator. After an emulation process the results of a
Good Emulation are compared with those of a Fault
Emulation for the calculation of fault coverage in the
workstation. In our previous approach [7] a fault was
activated and all test patterns were examined to
determine whether the fault had been detected. The
advantage of this method was that after n test patterns
the fault emulation process could be interrupted and the
next fault activated. In contrast to the previous
approach, the complete fault set must be calculated for a
single test pattern during the fault emulation process
with the logic emulator used for this research. This
results in an increase in runtime (see section 6).

c5315 1353 1982 2 11.12
c6288 5744 4754 4.5 11.12
c7552 1646 2907 1.86 11.12
32k 36569 23146 3.6 11.12

Average 2.71

Table 3: Fault Emulation with Stuck-at-1 Fault Injector

Circuit # S-a-1 # CLBs CLB
Overhead

Freq
[MHz]

c1908 1396 1309 3.38 11.12
c2670 1781 1667 2.78 11.12
c3540 2040 3234 4.4 11.12
c5315 3550 3435 3.51 11.12
c6288 560 1337 1.27 11.12
c7552 5149 6649 4.25 11.12

The Fault Activator requires three primary input
pins: MUX (Good/Fault Emulation), COCLK (Address
Counter Clock) and RESET (Address Counter Reset) as
shown in Fig. 5. COUNTER is a n+1-bit address
counter for the x/y decoder. The signal RESET is used
to reset the counter before the start of a Fault
Emulation.

32k 36555 22123 3.44 11.12
Average 3.29

The CLB-overhead of the expanded circuits is
illustrated by the ratio #CLB(Sa-0) / #CLB(original)
and depends on the number of Fault Injectors i.e. the

number of faults and the structure of the circuit. Further
examination is necessary to determine which structure
parameters influence CLB-overhead. The average
overhead for Stuck-at-0 is 2.7 and 3.3 for Stuck-at-1.
The emulation speed Freq [MHz] can vary depending
on the emulation system in use. Fig.6 portrays the
quasi-linear increase in the number of CLBs in the
FPGAs in relation to the number of faults in the
expanded circuits of Tables 2 and 3.

The fault simulator Comsim, a parallel pattern fault
simulator from the University of Hanover was also
tested with the listed circuits on a Sun workstation
(Sparc10 with 512 MByte RAM) using the SSF fault
model. Fault Emulation is performed with 20K test
patterns. Fig. 7 displays the runtime of fault simulation
and Fault Emulation. For Fault Emulation the runtimes
for S-a-0 and S-a-1 have been added together. The
speedup with the method described here when tested on
circuits with 800 to 33k gates varies from 15 to 70.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 10000 20000 30000 40000
Number of Faults

N
um

be
r

of
 a

dd
iti

on
al

 C
LB

s

c32k(S-a-1)

c7552(S-a-1)

c6288(S-a-0)
c5315(S-a-1)

c3540(S-a-1)

c2670(S-a-0)

Fig.6: Number of additional CLBs in the FPGAs

6.2 Theoretical Complexity

Hardware emulation runtime is independent of
circuit size, therefore the experimental results indicate a
linear increase in Fault Emulation runtime. The results
of fault simulation illustrate a linear to quadratic
increase in runtime. With an increase in the quantity of
gates, a higher speedup (Fig. 8) of Fault Emulation over
fault simulation can be expected.

0

1000

2000

3000

4000

5000

6000

7000

0 5000 10000 15000 20000 25000 30000 35000
Number of Node

R
un

tim
e

F
au

lt
S

im
ul

at
io

n[
se

c]

0

20

40

60

80

100

120

140

160

180

200

R
un

tim
e

F
au

lt
E

m
ul

at
io

n[
se

c]

 Fault Simulation

 Fault Emulation

c1
90

8
c2

67
0

c3
54

0
c5

31
5

c6
28

8
c7

55
2

c3
2k

Fig. 7: Runtime of Fault Emulation and Comsim

The random assignment of circuit nodes to Fault
Injectors results in high CLB-usage [11]. Fault Injectors
are connected by a two-dimensional array interconnect
structure, which reflects the matrix form of the Fault
Activator. An optimized assignment of nodes to Fault
Injectors is a crucial aspect of CLB-overhead and leads
to improved FPGA partitioning, mapping, placement
and routing. This is a topic of current research.

The Fault Activator with Fault Injectors is modelled
as a two-dimensional L x C array [7]. The circuit
nodes are assigned to all Fault Injectors where faults are
to be inserted such that the neighboring nodes are
always mapped to the neighboring Fault Injectors in the
Fault Activator.

0

10

20

30

40

50

60

70

c1908 c2670 c3540 c5315 c6288 c7552 c32k

S
pe

ed
up

6.1 Fault Emulation Runtime

With Fault Emulation runtime RT(F) determined by
the number of faults f and number of test patterns P,
and Good Emulation runtime RT(G) calculated from the
number of test pattern sets T and the emulation clock
speed Freq, the total runtime RT can be defined as
follows:

RT RT RT
P f T

FreqF G= + = ⋅ +
() ()

()

Fig. 8: Speedup of Fault Emulation over Comsim

7. Conclusions

[4] P. Bottorff, "Test Generation and Fault Simulation",
VLSI Testing, North Holland, 1985. p. 29

A new Fault Emulation method has been presented
in this paper which does not require additional
hardware and can be implemented with every logic
emulator available today. Fault injection with
additional logic affects CLB overhead. Design overhead
is not a matter of concern when considering the
capacity of present and future logic emulators. As
shown, Fault Injectors were easily mapped to FPGAs
and primary circuit inputs were minimally expanded by
three. The goal for a 1 million gate circuit is to reach a
Fault Emulation runtime of several hours. In addition
to already known applications of hardware emulators,
the technique described in this paper provides a new
approach to Fault Emulation and allows for "real-time"
fault injection.

[5] B. Krishnamurthy, D Harel, "Is There Hope for Linear
Time Fault Simulation?", Fault Tolerant Computing
Symposium, 1987, p. 30

[6] U. R. Khan, H. L. Owen, J. L. Hughes, "FPGA
Architectures for ASIC Hardware Emulator", Proc. 6.
IEEE ASIC Conference, 1993, p. 336

[7] R. Sedaghat-Maman, E. Barke, "A New Approach to
Fault Emulation", RSP'97 Proc. of the 8th International
Workshop of Rapid System Prototyping, 1997, p. 173-
179

[8] K. Cheng, S. Huang, W. Dai, "Fault Emulation: A new
Approach to Fault Grading", ICCAD, 1995, p. 681-686

References

[1] M. Abramovici, M. A. Breuer, A. D. Friedman "Digital
Systems Testing and Testable Design", New York,
W.H. Freeman and Company, 1990, p. 131

[9] L. Burgun, F. Reblewski, G. Fenelon, J. Barbier,
O.Lepapa, "Serial Fault Emulation", Proc. of the 33th
Design Automation Conference, 1996, p. 801-806

[2] S. Seshu, "On an Improved Diagnosis Program", IEEE
Transactions on Electronic Computers, Vol. EC

[10] B.R. Wilkins, "Testing Digital Circuits" London,
Chapman & Hall, 1994, p. 54

 14, No. 1, p. 76-79, 1965.

[11] XILINX data book, " The Programmable Logic", 1994
[3] E. Ulrich, T. Baker, "The Concurrent Simulation of

Nearly Identical Digital Networks", Proc. of the 10th
Design Automation Conference, 1973, p. 145-150.

