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Real-Time Forecasting of Hand-
Foot-and-Mouth Disease Outbreaks 
using the Integrating Compartment 
Model and Assimilation Filtering
Zhicheng Zhan1, Weihua Dong1, Yongmei Lu2, Peng Yang3, Quanyi Wang3 & Peng Jia4,5

Hand-foot-and-mouth disease (HFMD) is a highly contagious viral infection, and real-time predicting 

of HFMD outbreaks will facilitate the timely implementation of appropriate control measures. By 

integrating a susceptible-exposed-infectious-recovered (SEIR) model and an ensemble Kalman filter 
(EnKF) assimilation method, we developed an integrated compartment model and assimilation filtering 
forecast model for real-time forecasting of HFMD. When applied to HFMD outbreak data collected for 

2008–11 in Beijing, China, our model successfully predicted the peak week of an outbreak three weeks 
before the actual arrival of the peak, with a predicted maximum infection rate of 85% or greater than 
the observed rate. Moreover, dominant virus types enterovirus 71 (EV-71) and coxsackievirus A16 (CV-
A16) may account for the different patterns of HFMD transmission and recovery observed. The results 
of this study can be used to inform agencies responsible for public health management of tailored 

strategies for disease control efforts during HFMD outbreak seasons.

Hand-foot-and-mouth disease (HFMD) is an infectious disease caused by enteroviruses. Coxsackievirus A16 
(CV-A16) and enterovirus 71 (EV-71) are the two viruses responsible for most HFMD cases1; EV-71 tends to 
cause more severe and fatal cases, whereas CV-A16 has a milder outcome. HFMD mostly a�ects young children 
under the age of 10 and is characterized by symptoms of fever and vesicular sores with blisters on palms of the 
hands, soles of the feet, and buttocks. Moreover, HFMD has caused death in some serious cases2. HFMD is 
transmitted from person to person through direct contact with the saliva, faeces, or vesicular �uid of an infected 
person; it can also be transmitted indirectly through contact with contaminated items3. HFMD is commonly 
detected in areas along the west of the Paci�c Ocean during spring, summer and fall. For example, multiple out-
breaks have occurred in countries such as China4, Singapore5, and Japan6 since the 1990s but have also occurred 
in western countries such as Germany7 and Spain8. During 2008–2014, more than 1 million HFMD cases each 
year were reported in China9. An e�ective treatment for HFMD is not available10. �erefore, a good understand-
ing of the distribution and transmission of HFMD and an accurate real-time forecasting model of HFMD out-
breaks are critically needed for the timely control and prevention of HFMD.

Although previous studies have examined the factors in�uencing HFMD11–16, the characteristics and trans-
mission patterns of HFMD vary across di�erent regions and seasons, and thus the prediction of HFMD out-
breaks remains a daunting task. Compartment models such as susceptible-infected-recovered (SIR) model and 
susceptible-exposed-infectious-recovered (SEIR) are two typical dynamic models that attempt to re�ect changes 
in real world or simulation environment and take into account that the model components are constantly chang-
ing as a result of previous conditions and current in�uences17. �ese models are commonly used to predict 
infectious diseases18,19 and have been used to simulate the dynamics of the HFMD outbreak20–24. However, the 
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traditional compartment model relies on a set of static conditions and model parameters that are di�cult to 
estimate for forecasting the HFMD outbreak due to the interactions of many uncertain factors, such as weather 
conditions and measures to control for social interaction. Moreover, conditions contributing to an HFMD out-
break are usually dynamic, which rarely meets the presumption of a traditional compartment model. Adding to 
the complexity, although one virus may predominate, multiple viruses can co-contribute to HFMD outbreaks. 
Furthermore, previous HFMD outbreaks in China have shown two peaks during a single year25–27, and predicting 
the timing and magnitude of the second peak tends to be more complex.

Recent literature has described a new approach for forecasting infectious diseases by integrating dynamic 
models and the assimilation technology, which has been used for performing dynamic and real-time adjustments 
of a forecasting model28,29. In this case, preliminary predictions from a compartment model are dynamically 
adjusted by incorporating real-time observations through the assimilation �lter to improve model prediction. 
�is Integrated Compartment Model Assimilation Filtering approach has been used in recent years to forecast 
outbreaks of several infectious diseases, such as in�uenza30–32, Ebola33 and West Nile virus34. However, the predic-
tion of HFMD outbreaks has not been yet bene�ted from this innovative approach.

�is study used the Integrated Compartment Model and Assimilation Filtering model for real-time forecast-
ing of HFMD outbreaks in Beijing using reported HFMD cases during 2008–2011. In particular, we (1) simulated 
disease occurrences over time, (2) estimated model parameters by incorporating real-time observation data, and 
(3) evaluated the model by comparing the weekly forecasts of HFMD to the reported data. Moreover, we exam-
ined potential associations between the dominant virus type responsible for the outbreak and the transmission 
pattern of HFMD, which are used as additional information for forecasting HFMD outbreaks. �is approach of 
real-time HFMD forecasting will potentially help researchers design e�ective interventions for the control and 
prevention of HFMD.

Results
Descriptive Statistics. The weekly rate of HFMD infections in Beijing between January 1, 2008 and 
December 31, 2011 is shown in Fig. 1. HFMD cases occurred throughout the year, but the rate was very low in 
the �rst 10 weeks, corresponding to the period from January to March. �e high-incidence period occurred from 
May to July. �e peak week in 2010 and 2011 was week 26, and the peak weeks in 2008 and 2009 were more than 
one month earlier than in 2010 and 2011, week 20 in 2008 and week 21 in 2009. �e peak magnitude of infection 
varied from year to year. �e highest peak magnitude occurred in 2010, followed by 2008 and 2011. A clear sec-
ond peak of infection appeared in 2008 and 2011, and the time for the second peak di�ered across di�erent years. 
�e second peak week in 2008 occurred at almost the same time as the peak in 2010 and the �rst peak in 2011.

Prior Forecast and Posterior Analysis. Prior forecasting employs the SEIR model and the current week’s 
variable measurements to forecast the infection rate of the next week, while the posterior analysis produces assim-
ilation results by adjusting prior forecasts for observed data. �e graphs in Fig. 2 show the observation data, 
prior forecast, and posterior analysis for the study period using our model. �e posterior analysis successfully 
captured the trend of infection rates in all four years, including the second peak during the 2008 HFMD outbreak. 
Moreover, the results of the posterior analysis appeared to be less impacted by the outliers in the observation data. 
We conducted regression analyses between the observed data and the data predicted from both the prior forecast 
and the posterior analysis to further evaluate the di�erence between the results obtained from the posterior anal-
ysis and the prior forecast (see Supplementary Fig. 1); the results of this analysis also showed a better �t between 
the observed data and posterior analyses.

Accuracy Assessment. We performed real-time forecasting of HFMD for 2008–2011 (Supplementary 
Fig. 2) and assessed the accuracy of the forecast of the peak magnitude by comparing the forecast peak mag-
nitude and the observed peak magnitude (Fig. 3). HFMD data were available for this study 12 weeks before the 
peak week in 2010 and 11 weeks before the peaks in 2009 and 2011, but only 5 weeks before the peak in 2008. 
Correspondingly, the peak week magnitude forecast was the most accurate for 2010 and least accurate for 2008. 

Figure 1. �e weekly rate of HFMD infections in Beijing from 2008–11.
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Figure 2. �e relationships among the observed data, prior forecast outcomes, and posterior analysis outcomes 
in 2008 (a), 2009 (b), 2010 (c), and 2011 (d). Light green dots are the observed data for the weekly infection 
rate. Blue dots represent the prior forecast from the SEIR model. Red dots represent the posterior infection rate 
predicted using EnKF.

Figure 3. �e forecast accuracy of the HFMD peak magnitudes from 2008–2011. Negative numbers on the 
horizontal axis represent numbers of weeks before the arrival of a peak week. �e vertical axis measures the 
proximity of a forecasted peak infection rate is to the observed peak infection rate. A magnitude of 1 indicates a 
perfect forecast of the peak infection rate. �e o�set of the peak magnitude is de�ned as 1 − (Mpre − Mobs)/Mobs, 
where Mobs is the observed peak magnitude and Mpre is the predicted peak magnitude.
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Without su�cient observation data, the predicted peak magnitude deviated far from its observed counterpart 
for the early weeks of each of the four years. As more observed data were fed into the model, the ensemble of 
variables and parameters were updated, and the peak magnitude accuracy continued to improve and approached 
100% (i.e., zero o�set). However, for 2008, as only �ve weeks of observation data were available for training the 
model, the forecast of the peak magnitude prediction was not comparable to the other three years. Notably, since 
the initial states for the ensembles and variables were set to establish the model, the forecast accuracy for the �rst 
week is not interpretable. Nevertheless, the time required for the peak magnitude prediction to converge is related 
to the initial states. Compared with 2009, the forecast accuracy of 2010 was high in the initial week, and the model 
only required �ve weeks to achieve a very accurate and stable prediction; conversely, nine weeks were required to 
achieve a similar level of accuracy for the forecasting of 2009.

When evaluating the prediction accuracy of the peak week time, we excluded the year 2008 due to its shorter 
pre-peak data period. �e accuracy of peak week forecasting was evaluated using the number of weeks of o�set 
between the predicted peak week and the observed peak week (Fig. 4). As more observation data are used for 
peak week forecasting, the o�set becomes smaller, showing a monotonic decreasing trend. For 2009, the o�set 
was narrowed to one week as early as �ve weeks prior to the actual peak week. For 2011, the o�set was narrowed 
to two weeks as early as six weeks before the actual peak week; additionally, no o�set between the predicted peak 
week and the observed peak week was observed up to three weeks before the peak week. For 2010, the prediction 
o�set was three weeks when forecast six weeks before the actual peak week, and it was within two weeks of o�set 
when forecast two weeks before the actual peak.

�e root-mean-square error (RMSE) between forecast data and observed data for the early weeks of fore-
casting appeared to be large and di�ered substantially across the four years (Fig. 5). �ese errors do not actually 
re�ect the forecast quality because the forecast of the initial week was calculated using a randomly set initial state 
to run the SEIR- ensemble Kalman �lter (EnKF) system. As the forecast was extended further into an outbreak 
season, more observation data were entered into the model, and the RMSE decreased sharply. Notably, the RMSE 
tended to remain low and relatively stable for all four years a�er a few weeks, suggesting that the performance 

Figure 4. �e forecast accuracy of the peak week arrival times for 2009, 2010, and 2011. �e forecast result for 
2008 is not included because of the lack of available training data before the peak week.

Figure 5. RMSE calculated for the forecast data and the observed data for 2008–2011.
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of the model improves as more observation data are applied, thereby becoming more stable and reliable. �is 
pattern also indicates that SEIR-EnKF forecasting is not very sensitive to the initial state, suggesting a minimum 
requirement of our forecasting model for additional or excessive data. Instead, as continuous observation data are 
entered into the forecasting system, the output converges to a reliable result. For 2009 and 2010, approximately 
10 to 12 observation data points were needed before the RMSE decreased to a low and stable level. Importantly, 
10–12 weeks is approximately the time frame for which data were available during these two years from the begin-
ning of an outbreak to the peak week.

Estimation of Transmission and Recovery Rates. Estimates of the transmission and recovery rates for 
selected weeks using SEIR-EnKF are illustrated in Fig. 6. �e transmission rate showed di�erent trends across the 
four years. �e transmission rates for 2009 and 2011 showed a monotonic increasing trend. However, in 2008 and 
2010, the transmission rates �rst decreased until they reached their lowest point at approximately week 35, a�er 
which the rates increased. �e recovery rates remained at the same level between the 15th and 20th weeks, a�er 
which they showed slight increasing trends in 2008 and 2010 and clear decreasing trends in 2009 and 2011. In 
summary, the HFMD transmission and recovery rates in 2008 and 2010 shared similar patterns that were clearly 
di�erent from the patterns observed in 2009 and 2011.

�e two distinct patterns of the HFMD transmission and recovery rates during 2008–11 may be related to 
multiple factors. First, the estimates of the transmission and recovery rates are related to the initial settings of 
the variables. Second, disease transmission and recovery rates are closely related to the social and environmental 
context of an outbreak, including factors such as weather conditions and the implementation of disease control 
measures. For HFMD outbreaks in Beijing, the dominant virus shi�s between EV-71 and CV-A16. As shown in 
Supplementary Fig. 3, EV-71 was the dominant virus in 2008 and 2010, whereas in 2009 and 2011, it was CV-A16. 
Viruses may respond di�erently to changes in climatic factors, leading to the di�erent patterns in the transmis-
sion and recovery rates observed across the four outbreak seasons investigated in this study.

Discussion
HFMD is a high-risk childhood disease for East Asian countries, but its prediction is di�cult due to complex 
in�uencing factors. In this study, we developed a real-time forecasting model for HFMD outbreaks by integrating 
SEIR and EnKF. �e integrated SEIR-EnKF forecasting system assimilated real-time observation data into fore-
casts in a dynamic manner and exhibited good performance for the real-time forecasting of HFMD by predicting 
the peak time and magnitude with acceptable accuracy.

Based on empirical testing, the SEIR-EnKF system is reliable for real-time forecasting of HFMD. In 2008, the 
lack of pre-peak observation data for assimilation resulted in a relatively weak forecast. �e forecasts of the mag-
nitude of the infection rate and the time of the �rst peak were unclear. From 2009 to 2011, the system performed 

Figure 6. Estimation of the HFMD transmission and recovery rates during the indicated weeks in each of the 
four years using the SEIR-EnKF model. �e thick horizontal line is the median, the edges of the boxes are the 
25th and 75th percentiles, and the whiskers span the full range.
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well in forecasting both the peak week timing and peak magnitude. �e forecast accuracy was also assessed 
using RMSE, which showed a decreasing trend over time. �erefore, the integrated SEIR-EnKF system deliv-
ered real-time forecasts with short time intervals (e.g., weekly), and the forecast continuously improved as more 
observation data became available for assimilation. Our SEIR-EnKF forecasting system is a promising tool that 
may serve as an essential component in a warning system to assist public health agencies and the public in disease 
management and control measures in response to an HFMD epidemic.

Transmission and recovery rates are essential parameters for understanding an infectious disease. To a large 
extent, their values determine the status of an on-going epidemic. �e size of the population infected with HFMD 
is largely decided by the transmission rate21. Compared with incubation and recovery rates, transmission dynam-
ics are a�ected by many factors, such as geolocation, climate, the activities of susceptible populations, and gov-
ernment control measures. �erefore, it has the greatest uncertainty in the model, and the basic reproductive 
number35, which is de�ned as the transmission rate divided by the recovery rate, re�ects whether an outbreak 
is spreading or controlled. However, a few previous studies have discussed transmission dynamics in detail. In 
2008 and 2010, the transmission rate initially decreased and then increased throughout the year, whereas the 
transmission rate exhibited relatively small change during the seasons in 2009 and 2011. �e recovery rates for 
2008 and 2010 increased, whereas the recovery rate exhibited a continuous decrease throughout 2009 and 2011. 
�e four-year estimated parameters provide a model-level explanation for the dynamic changes in the infection 
rate. It is showed that the combination of changes in the transmission rate and recovery rate contribute to the 
trend in the infection rate. According to the available four-year data analysed in our study, the di�erent patterns 
in the years investigated might be associated with the virus type and corresponding features. �us, the discovered 
patterns may be helpful for preparing a more accurate forecast. However, the changes in parameters at each step 
are di�cult to explain due to the contributions of multiple, complex factors mentioned by other studies, such as 
control strategies 22 and cultural practices 33. In fact, these factors are uncertain and not easy to study quantita-
tively. Continuous monitoring of the parameters and the use of observed data will help establish a more accurate 
forecast in the future.

Our study has several limitations. First, the speed of forecast error convergence is not su�cient, as it decreased 
to a low level a�er the peak time in our study. �is parameter might be improved by employing other assimila-
tion technologies, such as the Particle �lter. Second, we did not accurately predict the second peak in this study. 
Although the second peak in 2008 was forecast, its accuracy was not satisfying. In addition, we only used limited 
observation data to assimilate all parameters in the model, which may increase model uncertainty. Although we 
adjusted for this uncertainty by discussing the initial parameters and prior information of model parameters, 
more types of observed data would be better. �ese data directly related to HFMD, such as search engine data and 
weather data, would be helpful for the forecast and improve the speed of forecast error convergence.

In our study, we simpli�ed the discussion of the possible association between virus types and transmission 
patterns. Further research is warranted to obtain a better understanding of this association. Long-term data for 
virus types and infection rates will be obtained and analysed using the SEIR-EnKF to discover and quantitatively 
describe the deterministic association. Once the connections are clearly identi�ed, virus types will be incorpo-
rated into the SEIR-EnKF system for more accurate predictions. In addition, other factors, such as population 
structure, public health literacy, and weather conditions, may also impact the outbreak patterns. Future investi-
gations should seek to determine the quantitative descriptive relationships with HFMD and incorporate these 
factors into the SEIR-EnKF system as well for more accurate forecasting of HFMD outbreaks.

Methods
Ethics statement. �is study was based on HFMD data in Beijing. All records were anonymized and no individual 
information can be identi�ed. �e research study protocol was approved by the Institutional Review Board at 
the Beijing CDC. All methods were performed in accordance with the principles of the Declaration of Helsinki.

SEIR Model. �e SEIR model is a dynamic model that considers the incubation period of a disease. It consid-
ers four groups of people: the susceptible (S), the exposed (E), the infected (I) and the recovered (R). �e model 
is expressed using the following equations:
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where t denotes time, S(t) is the number of susceptible people in the overall population at time t, E(t) is the num-
ber of exposed people, I(t) is the number of infected people, and R(t) is the number of recovered people who are 
no longer included in the transmission cycle. β(t) is the transmission rate from infectious people at time t, σ(t) is 
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the incubation rate at time t, which is the inverse of the incubation period, γ(t) is the case recovery rate at time t, 
and N is the population size. �e model does not consider deceased people because the death rate in the data used 
in this study was extremely low compared with the infection rate.

EnKF Method. EnKF uses an ensemble to calculate error covariance based on stochastic theories. The 
median of ensemble states is assumed to be an optimal estimate of the true state. �e forecast generates the pre-
diction at time k + 1 based on data analysed at time k using a mechanical model, SEIR in this study. �is step is 
o�en performed using a dynamic model. �e following formula is used:

X M X (6)k
f

k k
a

1 =+

where Xk
a is the status at time k and Xk

f
1+
 is the forecast at time k + 1. Mk is the model system (SEIR model in this 

study) at time k.
A set of forecasts are generated, and the error terms of the forecasts are analysed as follows:
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where H is the observation operator. �e observation operator is a matrix which plays a role in linking the model 
variable vector and observations in the assimilation system (EnKF in this study). A�er converting the model 
variable vector to the form of observations by the observation operator, the variable vector and observed data 
could be in the same form for further analysis. N is the size of ensemble, Xi k

f
, 1+

 is the variable vector at time k + 1, 

+
Xk

f
1
 is the mean of the variables vectors at time k + 1, and 

+
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f
1

is state error. �e results obtained from Eqs (7) 
and (8) are used to calculate the Kalman gain matrix, as denoted by Kk+1 (see Eq. 9 below), which is further used 
for balancing observation data and modelling results.
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where R is the error covariance of the observation. Finally, K is used to forecast the variables at the next time 
point:
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where zk+1 is the observation data at time k + 1. We used the results of this analysis as the updated variable to 
forecast the model parameters and variables at the next time point.

Initiation of the SEIR-EnKF Framework. �e beginning week of an outbreak season is de�ned as the �rst 
week when the HFMD weekly infection rate reaches 2e-06, and it increases at a rate of 50% or more per week. 
�e incubation period is generally 3–7 days36. �e incubation period of HFMD among schoolchildren increases 
as they age37, and the mean incubation period for kindergarten students who are approximately 2–5 years of age 
is 4.4 days. In our data, the majority of the infected population was children younger than 5 years, corresponding 
to an incubation rate of (0.2, 0.3). Approximately 7 days are generally required to recover from HFMD38. �e 
recovery period of HFMD caused by EV-71 is 4–6 days39 and 5–7 days for HFMD caused by a CV-A16 infection40. 
�erefore, we concluded that (0.1, 0.4) is a meaningful range for the recovery rate from HFMD compared with 
the incubation and recovery rates.

In addition, we de�ned the initial susceptible population S(0) to range from (0.8 N, N), where N is the propor-
tion of the susceptible population, and the initial exposed population E(0) was in the range (5e-4N ± 10%). �e 
range of the initial infected population I(0) was calculated by adding a 10% disturbance based on the observed 
infected population.

We conducted a series of parameter sensitivity analyses to assist in the selection of the initial parameters for 
the transmission and recovery rates in the HFMD forecast (Fig. 7). We calculated the model error by running the 
SEIR-EnKF framework with di�erent combinations of transmission and recovery rates. �e transmission and 
recovery rates ranged between 0.1 and 2.0, and each parameter value was divided into 19 equal-length segments. 
As shown in Fig. 7(a), the cumulative error of the infection rate was high when the recovery rate was (0.1, 0.2); the 
error decreased as the recovery rate increased to 0.5, beyond which the error and recovery rate showed a positive 
relationship. However, model errors are generally not sensitive to changes in the transmission rate. Overall, when 
the recovery rate was (0.2, 0.6), and the transmission rate was (0.1, 1.5), the lowest error of the infection rate was 
observed. �e error of the peak magnitude forecast was low when the recovery rate ranged from 0.2 to 0.8, and 
the error was not sensitive to the transmission rate (Fig. 7(b)). In Fig. 7(c), when the recovery rate was (0.1, 0.3), 
the cumulative error of the peak time was relatively low; but as the recovery rate increased from 0.3 to 0.8 and the 
transmission rate was less than 1.5, the error generally remained high. �erefore, we set the initial transmission 
rate to (1.0, 1.2) and the initial recovery rate to (0.2, 0.3) to keep the three aforementioned types of error low in 
our forecasting model.
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Data Availability
We obtained data from 72,266 HFMD cases reported in Beijing during 2008–2011 from the Beijing Center for 
Disease Control and Prevention. For each case, the incidence date and diagnosis date were recorded. �e number 
of individuals in the overall population and children in Beijing were obtained from the Beijing Bureau of Statis-
tics.
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