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Abstract

Objective: Several features of the surface electromyo-
graphy (sEMG) signal are related to muscle activity
and fatigue. However, the time-evolution of these fea-
tures are non-stationary and vary between subjects.
The aim of this study is to investigate the use of adap-
tive algorithms to forecast sMEG feature of the trunk
muscles. Methods: Shallow models and a deep convo-
lutional neural network (CNN) were used to simulta-
neously learn and forecast 5 common sEMG features
in real-time to provide tailored predictions. This was
investigated for: up to a 25 second horizon; for 14
different muscles in the trunk; across 13 healthy sub-
jects; while they were performing various exercises.
Results: The CNN was able to forecast 25 seconds
ahead of time, with 6.88% mean absolute percentage
error and 3.72% standard deviation of absolute per-
centage error, across all the features. Moreover, the
CNN outperforms the best shallow model in terms of
a figure of merit combining accuracy and precision by
at least 30% for all the 5 features. Conclusion: Even
though the sEMG features are non-stationary and
vary between subjects, adaptive learning and fore-
casting, especially using CNNs, can provide accurate
and precise forecasts across a range of physical ac-
tivities. Significance: The proposed models provide
the groundwork for a wearable device which can fore-
cast muscle fatigue in the trunk, so as to potentially
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prevent low back pain. Additionally, the explicit real-
time forecasting of sEMG features provides a general
model which can be applied to many applications of
muscle activity monitoring, which helps practitioners
and physiotherapists improve therapy.

1 Introduction

Low Back Pain (LBP) is one of the leading causes of
disability around the world, affecting over 500 mil-
lion people at any one time [1–3]. There is evi-
dence that control of the trunk muscles is altered in
LBP [4–10]. In particular, changes in various mus-
cle fatigue-related features of the electrical activity
produced by skeletal muscles has been shown to be
a significant factor in developing LBP [11, 12]. How-
ever, the time-course and development varies between
subjects, making the identification of a global char-
acterization of muscle fatigue very difficult [13–15].

Surface Electromyography (sEMG) is a well-
established electrophysiological technique that en-
ables the extraction of characteristics such as mus-
cle activity which can be used to investigate fatigue.
These sensors are cheap, portable and non-invasive,
thus, enabling a wide range of “wearable” applica-
tions [16–18]. However, they are inherently noisy and
their quality is affected by various sources [19–24].
Therefore, it is necessary to extract features to reli-
ably characterize muscle activity [25].

Typically, these features are used as the input to an
‘offline’ machine learning (ML) model to find the as-
sociation between the features and a given outcome,
such as: muscle contraction force [26], hand mo-
tion detection [27, 28] or forehead bio-signals detec-
tion (i.e. electromyography, electrooculography and
electroencephalography) [29]. However, these appli-
cations do not require the model to adapt over time
in order to reflect changes in the association due to
physiological variations. Given this assumption, pre-
diction accuracy may be compromised if the data sets
are not large enough to generalize across time and
subjects. In order to relax this assumption and pro-
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Figure 1: General workflow for forecasting features of the sEMG. First, sEMG sensors are placed on the
subject which continuously record the sEMG for 14 different muscles in the lower back. These are bilaterally
placed on the: latissimus dorsi, longissimus, illiocostalis, multifidus, rectus abdominis, internal and external
obliques. The raw data is extracted and stored in a first-in first-out memory. Second, five features of the
sEMG, namely the mean frequency (MNF), median frequency (MDF), root mean square (RMS), integrated
EMG (iEMG) and zero crossings (ZC), are extracted from historical data. At every time instance, the model
updates its parameters based on historical data (i.e. insample learning or training) and also uses the latest
data to forecast future values of the features (outsample forecasting or testing).

vide a model which can adapt to individual subjects
over time, ‘online’ methods are necessary.

There are many algorithms for data-driven real-
time forecasting of time-series using machine learn-
ing which fall under the field of ‘online learning’, also
referred to as ‘incremental learning’ or adaptive sig-
nal processing (ASP) [30]. The idea behind ASP is
to update the parameters of the model through time
as data is streamed such that the model naturally
adapts to the latest observations. This class of mod-
els can be split into two categories: shallow learn-
ing and deep learning. The shallow models boast
a low computational complexity which is ideal for
wearable applications. However, their lack of com-
putational complexity results in a lack of expressive
power (i.e. inability to capture complex non-linear
patterns between the inputs). This issue can be cir-
cumvented by using deep learning [31]. For exam-
ple, convolutional neural networks (CNN), which are
based on a stack of causal dilated convolutional lay-
ers, as in the WaveNet, have been shown to provide
state-of-the-art performance in a range of tasks such
as glucose time-series prediction and audio generation
[32,33]. Traditionally, deep learning is not considered
as a low-power solution, however, coupled with re-
cent advances in both quantized/compressed neural
networks [34,35] and AI hardware [36,37], deep solu-
tions are expected to overcome significant challenges
associated with wearable devices.

Real-time forecasting is particularly relevant for
applications such as identifying the onset of muscle
fatigue (between no fatigue and fatigue), where the
user needs to be warned before the fatigue state, so
as to potentially prevent injury. Some work has been
undertaken to implicitly forecast fatigue in the biceps
muscle by introducing a new state labelled as tran-
sition to fatigue [25, 38, 39]. Unfortunately, since the
features are not explicitly modelled, other application
areas which use the same (or similar) features cannot
exploit this approach. This motivates the need for
a general approach, which can be applied to many
sEMG applications, that directly model and forecast
the time-evolution of the well-known sEMG features
in real-time.

In this work, we demonstrate accurate and precise
real-time learning and forecasting for common fea-
tures of the sMEG signal from a number of trunk
muscles; such that it can be used for predicting mus-
cle fatigue and preventing low back pain. In partic-
ular, this is achieved by using 5 sEMG features from
14 muscles in the trunk for 13 subjects, as depicted
in Figure 1. We investigate both shallow and deep
models using adaptive algorithms, which adapt to
each individual subject over time; providing ‘tailored’
forecasts. Moreover, forecasts are investigated up to
25 seconds ahead of time which could be relevant for
a wide range of applications, such as preventing in-
jury in high intensity sports, human motor control,
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physiotherapy, and exoskeletons. Once these algo-
rithms are coupled with application specific models,
and embedded into a wearable device, practitioners
and physiotherapists will have access to a new tool,
potentially improving therapy for subjects with LBP.

2 Data Collection

2.1 Participant Details and Tasks

Thirteen healthy male subjects participated in this
study (ethics granted, ICREC ref: 19IC4970). The
participants were (mean ± std): age 28.45 ± 7.92
years, height 181.1± 6.52 cm and weight 78.4± 12.3
kg. Subjects undertook a specific sequence of exer-
cises lasting a total of approximately 70 minutes. The
exercises were conducted as follows: static standing
position, Maximum Voluntary Contraction (MVC) of
the back & abdominal muscles, a modified Biering-
Sorensen (BS) test [40], a 30 min walk, MVC of the
back & abdominal muscles, the modified BS test and
a plank (i.e. an isometric core strength exercise). For
the MVC, participants performed 3 brief (3 s) MVC
of the trunk muscles, with consistent verbal encour-
agement during every MVC. For the back muscles,
subjects lay supine on a couch, with Velcro straps
around the shoulders, hips and ankles and extended
the trunk as hard as possible against the straps. For
the abdominal muscles, subjects lay with the hips and
knees flexed in a sit-up position. For the BS test, it
involved subjects lying prone on a couch with their
torso hanging off the end of the bench (with straps
around the hips and ankles) and producing an iso-
metric contraction to keep the torso parallel to the
floor during 30 s [40].

2.2 Sensor Locations

Wireless sEMG sensors (Myon 320) were placed bilat-
erally on 7 muscles (total of 14 muscles): latissimus
dorsi, longissimus, illiocostalis, multifidus, rectus ab-
dominis, internal and external obliques, as shown in
Fig. 2. Before placing the electrodes, the skin was
cleaned with alcohol to get rid of skin impurities.
Pairs of sEMG pre-gelled Ag-AgCl electrodes were
placed according to SENIAM indications [41]. For
multifidus, they were located 1 cm medially to the
line joining the posterior superior iliac spine (PSIS)
and the L1-L2 intervertebral space [42]. For illio-
costalis, electrodes were placed 1 cm lateral to a line
between the PSIS and the 12th rib at the L2 verte-

Latissimus dorsi muscle

Longissimus muscle

Myon 320 sensor

Multifidus muscle

Illiocostalis muscle

Figure 2: Position of the surface EMG sensors for the
trunk muscles. Note: only the sensors placed on the
back muscles (latissimus dorsi, longissimus and illio-
costalis, multifidus) are displayed. Similar sensors are
placed on the abdominal muscles (rectus abdominis,
internal and external obliques).

bral level [42]. For longissimus, they were located at
the L1 level, whereas latissimus dorsi was located at
the T12 level along a line joining posterior axillary
fold and the S2 spinous process [43, 44]. For rectus
abdominis, they were placed 2 cm laterally from the
umbilicus. For internal oblique, they were placed 1
cm inferiorly and medially to the anterior superior
illiac spine [45]. Finally, for external oblique, they
were positioned halfway between the inferior surface
of the 12th rib and the illiac crest at the level of the
umbilicus. All pairs of electrodes were placed in the
direction of the muscle fibres.

3 Data Analysis

In this work, the general workflow for the real-time
forecasting of muscle fatigue-related features is as
follows: (i) extract raw sEMG signals from all 14
muscles; (ii) extract 5 muscle fatigue-related features
from each muscle (i.e. 70 features in total); (iii) use
an online algorithm to update its parameters based
on the most recent observations (i.e. insample learn-
ing); (iv) and forecast all features x-steps ahead (i.e.
outsample forecasting) [46].

The raw sEMG signal obtained from each sensor
was sampled at 1kHz and followed the same feature
extraction protocol. The features are computed us-
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ing a rolling window with N = 500 samples. Before
feature extraction, the raw sEMG signal was filtered
between 20 and 450 Hz by applying a 4th order But-
terworth band-pass filter [47].

3.1 Feature Extraction

There are various features of the sEMG signal re-
ported in the literature which are related to mus-
cle activity [48]. These features can be divided into
2 categories: time-domain and frequency-domain.
The time-domain features used in this work in-
clude the Root Mean Square (RMS) amplitude, inte-
grated EMG (iEMG) and Zero-Crossings (ZC). The
frequency-domain features include mean frequency
(MNF) and median frequency (MDF).

3.1.1 Time-domain Features

The definition of the time-domain features, RMS am-
plitude, iEMG and ZC are shown in equation (1), (2)
and (3) respectively. The RMS amplitude and the
iEMG are related to muscle contraction strength and
the motor-unit recruitment [25, 49]. From an imple-
mentation perspective, the ZC is a very attractive
feature since it is trivial to implement using a simple
threshold detector. Note: although the ZC is com-
puted in the time-domain, it carries frequency infor-
mation [50].
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∣ (3)

Where yn refers to the filtered EMG signal at sample
n.

3.1.2 Frequency-domain Features

Regarding the frequency-domain features, the de-
crease in mean and median frequency of the spectro-
gram has been shown to be related to muscle fatigue
through a decrease in pH and therefore a decrease in
muscle fibre conduction velocity [51, 52].
In order to compute the features, first, the Short-

Time Fourier Transform (STFT) with a Gaussian
window of 500 samples is applied to the filtered sEMG
signals. The MNF, as defined in (4), corresponds

to the mean frequency of the power spectral den-
sity while the MDF is defined as the frequency which
splits the power spectrum in half, as in (5).

MNF =

∑

N

n=1
fn · P (fn)

∑

N

n=1
P (fn)

(4)

MDF
∑

n=1

P (fn) =

N
∑

n=MDF

P (fn) =
1

2

N
∑

n=1

P (fn) (5)

Where fn corresponds to the nth frequency bin of the
STFT and P (fn) refers to the power at fn.

3.2 Forecasting Models

In this study, two classes of ASP models are ex-
plored based on: shallow learning and deep learn-
ing. The shallow models are variations of the Least
Mean Squares (LMS) algorithm [53]. It is important
to stress that this model learns in real-time. More
specifically, only a single parameter update is per-
formed at every time instant. This process is depicted
in Fig 3. Moreover, the goal of this work is to evalu-
ate the role of ASP to forecast each feature indepen-
dently, therefore the joint estimation of the features
and further classification is outside the scope of this
paper.

Feature Extraction

ASP or DL model

Feature Extraction

ASP or DL model

Forecasting

horizon

Outsample 

Forecast

Insample 

Prediction

Time

Figure 3: Forecasting procedure. At every time in-
stance, T , a single weight update is performed based
on the model learning how to predict the features at
time T . Subsequently, the model, which is learning
to predict X-steps ahead, uses the latest historical
data in order to forecast future values.

The vanilla LMS algorithm is described in Algo-
rithm 1. The downside of the LMS is that it is sen-
sitive to the scaling of the input. Therefore, it is
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very difficult (or perhaps impossible in certain cir-
cumstances) to choose a learning rate which guar-
antees stability of the algorithm [53]. To this end,
many improvements to the LMS algorithm have been
proposed to improve convergence and steady-state
accuracy. The variations explored in this work in-
clude: Normalized LMS (NLMS), Generalized Nor-
malized Gradient Descent (GNGD) and Affine Pro-
jection (AP) [54,55].

Algorithm 1 Forecasting Features using LMS

1: Inputs:

2: Feature - y, Training window size - m, Fore-
casting

3: horizon - l, Learning rate - µ
4: Output:

5: Estimate of forecasted feature - ŷ
6: Initialize w← zeros (m, 1)
7: while n > m+ l

8: x = y[n−m− l : n− l]
9: ŷ[n] = wTx

10: e = y[n]− ŷ[n]
11: w = w + µ · e · x
12: ŷ[n+ l] = wTy[n−m : n]
13: end while

The shallow methods mentioned above boast a very
low computational complexity which is ideal for wear-
able or hearable applications. However, their lack of
complexity means they are unable to capture complex
(non-linear) patterns between the inputs.
This motivates the use of deep learning, especially

since the field has seen a surge of developments in
recent years; both in terms of algorithms and hard-
ware implementation. One particular neural network
architecture, which has seen state-of-the-art perfor-
mance in time-series forecasting is the convolutional
neural network (CNN) consisting of a stack of dilated
causal convolutional layers, as depicted in Fig. 4.
Therefore, the waveform, y =

[

y1, y2, . . . , yT
]

, is di-
rectly modelled as a factorized product of conditional
probabilities, as in (6).

y =

T
∏

t=1

p(yt|y1, y2, . . . , yT ) (6)

The dilations allow the output to have a large re-
ceptive field, e.g. a network with 3 hidden layers and
dilations {1, 2, 4, 8} has a receptive field of 16. The
causal structure mean that the network can learn true
causal relations between the inputs. The stacked con-
volutional architecture learns temporal patterns with
better computational complexity than recurrent ar-
chitectures (because of the potential for paralleliza-

tion). In this study, the number of layers depends on
the train window size, nl, more specifically, the num-
ber of layers is log2(nl). For a train window of size 64,
we used a stack of 6 dilated convolutional layers with
dilation factor of 1, 2, 4, 8, 16 and 32 with 2 filters
of length 4 in each layer. The stack of dilated layers
was followed by a fully connected layer to form a pre-
diction. The learning algorithm used is the Adaptive
Moment Estimation (ADAM) [56] optimizer and the
convolutional layers adopted “He” initialization [57].

Figure 4: Visualization of a stack of dilated causal
convolutional layers [33].

3.3 Performance Evaluation

The performance of the methods is evaluated using
the percentage relative error, as defined in (7). This
measure is applied to every data point, therefore, for
every subject and feature, we can measure the accu-
racy by observing the mean absolute percentage error
(MAPE) over time, as in (8). Similarly, we can mea-
sure the precision by computing the standard devia-
tion of the absolute percentage error (SDAPE) over
time, as in (9). Although the MAPE/SDAPE can
be used to assess the relative performance between
forecasting models to choose the best model, the ab-
solute performance of a model for a given task or
application requires a comprehensive study (outside
the scope of this manuscript) to define an acceptable
range of performance metrics.

E(yn, ŷn) = 100×

∣

∣yn − ŷn
∣

∣

yn
(7)

MAPE =
1

N

N
∑

n=1

E(yn, ŷn) (8)

SDAPE =

√

√

√

√

1

N−1

N
∑

n=1

∣

∣E(yn, ŷn)−
1

N

N
∑

m=1

E(ym, ŷm)
∣

∣

2

(9)

In order to quantify the performance of the meth-
ods relative to each other, we can define a figure of
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merit which combines the accuracy and precision into
a single number. Ideally, the metric needs to cap-
ture both, the average accuracy/precision, but also
the variation of accuracy and precision across sub-
jects and muscles (since we would like a model that
performs well for every feature, muscle and subject).
Therefore, the figure of merit in this study is defined
as the 4-product between the mean & standard devi-
ation of the MAPE & SDAPE. Consequently, the fig-
ure of merit can be used to heuristically compare the
overall performance of the models. Note: a smaller
figure of merit, corresponds to a better model.

4 Results

After extracting the features for all 13 subjects, the
mean length of each signal for evaluation was 8334
samples (SD: 533), with a maximum sample length of
9136 and a minimum sample length of 7593, yielding
a total number of 108342 samples. For illustrative
purposes, Fig. 5 (upper panel) shows an example
of forecasting the MNF feature for a given subject
25 seconds ahead of time (with the LMS algorithm).
Note: the outsample forecast has been shifted by 25
seconds in order to align with the value it was at-
tempting to forecast. As expected, the insample pre-
diction is closer to the true value than the outsample
forecast. Furthermore, since the algorithm learns in
real-time, there is a transient period, such that the
algorithm converges to a meaningful forecast. Fig.
5 (lower panel) shows the absolute percentage er-
ror over time and depicts the measure of accuracy
(MAPE) and precision (SDAPE) used in this study.

It is important to understand that each subject-
muscle-feature has a value for MAPE and SDAPE.
Since the distribution of errors for the 5 features are
different, and it is the goal of this work to forecast
individual features, it is not appropriate to aggre-
gate their statistics. Therefore, the following results
aggregate across the subjects and muscles in order
to assess the performance of the models for different
subjects and muscles.

Fig. 6 shows the distribution of the MAPE for
all the models and features. We can clearly observe
that all of the models converged to reasonable val-
ues. However, as expected, this was not the case
for the naive LMS in certain circumstances, given
the constant learning rate and sensitivity to scal-
ing of the input. The mean and standard devia-
tion of the MAPE, which is a measure of accuracy, is
summarized in Table 1. In terms of average MAPE
(and standard deviation of MAPE), the CNN out-
performed the next best model by 7.1% (32.0%), -

Transient

MAPE

SDAPE

Figure 5: Example of forecasting mean frequency
25 seconds ahead using the LMS algorithm. (Up-
per panel) The time-series for the true realization,
insample prediction and the outsample forecast. The
shaded region indicates the transient period. (Lower
panel) The absolute percentage error (APE) over
time, along with illustrations of the MAPE and
SDAPE.

3.3% (13.3%), 6.0% (3.0%), 9.0% (1.4%) and 11.1%
(20.0%) for MNF, MDF, RMS, iEMG and ZC re-
spectively. The statistical significance was confirmed
using a Wilcoxon signed-rank test with Bonferroni
correction (p < 0.01).

Table 1: Accuracy - Measured through the MAPE.

Models

Feature LMS NLMS GNGD AP CNN

MNF 5.3 (2.5) 6.1 (5.9) 7.0 (10.3) 4.2 (2.6) 3.9 (1.7)
MDF 7.5 (3.0) 7.2 (4.0) 7.9 (7.3) 6.0 (3.0) 6.2 (2.6)
RMS 32.2 (22.8) 12.3 (7.0) 11.7 (7.1) 11.7 (6.7) 11.0 (6.5)
iEMG 31.9 (23.5) 12.2 (9.0) 11.1 (7.1) 11.2 (7.0) 10.1 (6.9)
ZC 4.4 (2.0) 5.7 (6.1) 6.2 (8.1) 3.6 (2.3) 3.2 (1.6)

Values are indicated as mean (standard deviation) over the muscles.

Table 2 shows the SDAPE for each method-feature
pair. Once again, the CNN outperformed the shal-
low models in every case. In terms of average SDAPE
(and standard deviation of SDAPE), the CNN out-
performed the next best model by 14.8% (57.9%),
13.2% (28.6%), 18.2% (5.7%), 34.2% (47.1%) and
17.4% (57.1%) for MNF, MDF, RMS, iEMG and ZC
respectively. The statistical significance of this result
was confirmed using a Wilcoxon signed-rank test with
Bonferroni correction (p < 0.01).

In order heuristically quantify the improvement of
the deep model relative to the shallow models, Table
3 shows the figure of merit described in Section 3.3 for
each of the feature-model pairs. It can be observed
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Figure 6: Violin plots showing the mean absolute percentage error (MAPE) for each model-feature pair.
Every plot contains data from all 14 muscles and 13 subjects. For example, the top left plot indicates the
MAPE across all muscles/patients for the mean frequency feature using the LMS algorithm. Violin plots
feature a kernel density estimation of the underlying distributions. The mean and standard deviation are
shown on the respective plots.
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(a) LMS (b) NLMS

(c) GNGD (d) AP

(e) CNN

Figure 7: Visualization of the MAPE as a function of the train window and forecasting horizon for all models
and features.
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Table 2: Precision - Measured through the SDAPE.

Models

Feature LMS NLMS GNGD AP CNN

MNF 3.3 (1.9) 3.9 (3.9) 4.4 (6.6) 2.7 (2.2) 2.3 (0.8)
MDF 4.7 (2.1) 4.5 (2.8) 4.9 (4.6) 3.8 (2.4) 3.3 (1.5)
RMS 11.1 (7.8) 8.3 (5.6) 7.7 (5.5) 7.7 (5.3) 6.3 (5.0)
iEMG 10.3 (7.2) 8.1 (6.4) 7.6 (6.9) 7.3 (5.1) 4.8 (2.7)
ZC 2.7 (1.4) 3.5 (3.7) 3.8 (4.9) 2.3 (1.8) 1.9 (0.6)

Values are indicated as mean (standard deviation) over the mus-
cles.

that the CNN improves the overall performance by
79.8%, 51.5%, 30.0%, 68.8% and 82.3% with respect
to the best performing shallow model for MNF, MDF,
RMS, iEMG and ZC respectively.

Table 3: Figure of Merit

Models

Feature LMS NLMS GNGD AP CNN % Imp.

MNF 83 543 2101 64 13 +79.8
MDF 222 355 1299 161 81 +51.5
RMS 63765 3982 3532 3199 1995 +30.0
iEMG 56174 5725 4125 2893 460 +68.8
ZC 34 450 926 33 4 +82.3

% Imp. = Percentage improvement of the WaveNet over the best
shallow model.

The performance of the various methods is, in
fact, a function of the train window size and the
forecasting horizon. This relationship is shown in
Fig 7 for the MAPE. Aside from the improved ac-
curacy of the CNN, this visualization highlights 3
interesting observations: (i) For all of the models,
the features which contain frequency information (i.e.
MNF, MDF and ZC) had significantly smaller er-
rors than the purely time-domain features, suggest-
ing that the time-domain features are more difficult to
forecast. (ii) The CNN reduces the disparity between
the frequency-domain and time-domain features, cor-
roborating the fact that the CNN has greater expres-
sive power. (iii) Aside from the basic LMS, increasing
the training window size improved the performance.

5 Discussion

In this work we show, for the first time, that it is pos-
sible to forecast 5 widely used features of the sEMG
up to 25 seconds ahead of time across 14 different
muscles in the trunk in 13 healthy subjects. We
compared the performance of shallow models (LMS,
NLMS, GNGD and AP) and a deep convolutional
neural network. The results show that the CNN im-
proves performance significantly in terms of both ac-
curacy and precision. In fact, in terms of a figure
of merit combining the accuracy and precision over
all of the subjects and muscles, the CNN improves
the overall forecasting performance by 79.8%, 51.5%,

30.0%, 68.8% and 82.8% for MNF, MDF, RMS am-
plitude, iEMG and ZC respectively. In order to fully
understand the significance of the changes in these
values during muscle fatigue, the expected change in
the feature is required. However, there is currently
no consensus in the literature regarding these values
since it is highly related to each individual and task,
and is the subject of future work [58–60].

Although the CNN has better performance over the
other models, for contexts such as wearable devices,
it is also important to consider the space and com-
putational complexity. These are both intimately re-
lated to the number of parameters of the model. For
a train window with 128 samples, the shallow mod-
els have exactly 128 parameters, whereas the CNN
(with a single filter per layer) has 254. If we increase
the number of filters per layer to 4, then we can ex-
pect the CNN to have around 10× the number of
parameters than the shallow models. Fortunately,
these numbers are not significant, and with recent
developments in both quantized/compressed neural
networks [34, 35] and AI hardware, they pose little
challenge [36,37].

In this study, time horizons up to 25 seconds were
investigated, showing an average of 6.88% MAPE and
3.72% SDAPE across all features using the CNN.
These results demonstrate forecasts which could be
relevant for a wide range of applications. For exam-
ple, as muscle fatigue develops over time, there are
alterations in human motor control commands, com-
pared to the normal (non-fatigued) state [61], result-
ing in a different biomechanical output. Anticipatory
postural adjustments occur within tens of millisec-
onds and fatigue tends to affect these feed-forward
mechanisms [62]. Therefore, from a clinical perspec-
tive, forecasting seconds would be appropriate to as-
sess the subject’s musculoskeletal functioning. More-
over, for many sport applications that last a few sec-
onds or minutes and require a strenuous muscle activ-
ity, such as High Intensity Interval Training (HIIT),
it is not the main interest to forecast too far in the fu-
ture due to the short length of the exercise. Therefore
exploring long time horizons was outside the remit of
this paper.

In terms of future directions, there are many re-
search paths that can be explored. The results pre-
sented in this paper raise a number of questions: what
is the impact of the presented forecasts on subse-
quent classification tasks such as detecting muscle
fatigue? Would the joint estimation of features im-
prove performance? Would adding spatial informa-
tion (in the form of sEMG images), in order to take
advantage of spatio-temporal patterns increase the
predictive performance? Can we further improve the
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forecasting with different neural architectures? What
is the furthest time horizon the models can accu-
rately/precisely forecast?

In particular, increasing the dimensionality of the
input via incorporating spatial information is ex-
pected to improve the performance of forecasts and
enable new insights concerning muscle activity. This
is because: (a) from an algorithmic perspective, there
have been several recent developments in neural ar-
chitectures for this type of data [63, 64]; (b) from a
physiological perspective, being able to spatially lo-
calize muscle activity has significant benefits for re-
habilitation and strengthening of the trunk muscles
[65, 66]. For example, physiotherapists can use this
information to identify weaknesses in the lower back
and provide tailored therapy.

6 Conclusion

We have shown that it is possible to directly model
the time evolution of the most common sEMG fea-
tures related to muscle fatigue in real-time and fore-
cast accurately and precisely up to 25 seconds ahead
of time. The model with the superior performance
is the deep neural network, consisting of a stack of
causal dilated convolutional layers. Combined with
recent advances in AI hardware, the presented mod-
els offer a low power solution for a wearable device
which would be useful for practitioners, physiothera-
pists and the wider community for tackling the chal-
lenges of low back pain.
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S. Ostojić, “Surface emg based muscle fatigue
evaluation in biomechanics,” Clinical Biome-
chanics, vol. 24, no. 4, pp. 327 – 340, 2009.
[Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0268003309000254

[25] M. R. Al-Mulla, F. Sepulveda, and M. Colley,
“A review of non-invasive techniques to detect
and predict localised muscle fatigue,” Sensors,
vol. 11, no. 4, pp. 3545–3594, 2011.

[26] S. P. Arjunan, D. K. Kumar, and G. Naik,
“Computation and evaluation of features of sur-
face electromyogram to identify the force of mus-
cle contraction and muscle fatigue,” BioMed re-
search international, 2014.

[27] M. R. Ahsan, M. I. Ibrahimy, and O. O. Khal-
ifa, “Emg motion pattern classification through
design and optimization of neural network,” in
2012 International Conference on Biomedical
Engineering (ICoBE). IEEE, 2012, pp. 175–
179.

[28] G. R. Naik, D. K. Kumar, and M. Palaniswami,
“Multi run ica and surface emg based signal pro-
cessing system for recognising hand gestures,”
in 2008 8th IEEE International Conference on
Computer and Information Technology. IEEE,
2008, pp. 700–705.

[29] L. Wei, H. Hu, and K. Yuan, “Use of fore-
head bio-signals for controlling an intelligent
wheelchair,” in 2008 IEEE International Con-
ference on Robotics and Biomimetics. IEEE,
2009, pp. 108–113.

[30] A. H. Sayed, Fundamentals of adaptive filtering.
John Wiley & Sons, 2003.

11

http://www.sciencedirect.com/science/article/pii/S0268003309000254
http://www.sciencedirect.com/science/article/pii/S0268003309000254


[31] Y. LeCun, Y. Bengio, and G. Hinton, “Deep
learning,” nature, vol. 521, no. 7553, p. 436,
2015.

[32] A. v. d. Oord, S. Dieleman, H. Zen, K. Si-
monyan, O. Vinyals, A. Graves, N. Kalchbren-
ner, A. Senior, and K. Kavukcuoglu, “Wavenet:
A generative model for raw audio,” arXiv
preprint arXiv:1609.03499, 2016.

[33] K. Li, C. Liu, T. Zhu, P. Herrero, and P. Geor-
giou, “Glunet: A deep learning framework for
accurate glucose forecasting,” IEEE journal of
biomedical and health informatics, 2019.

[34] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang,
and D. Shin, “Compression of deep convolutional
neural networks for fast and low power mobile
applications,” arXiv preprint arXiv:1511.06530,
2015.

[35] H. Li, S. De, Z. Xu, C. Studer, H. Samet,
and T. Goldstein, “Training quantized nets: A
deeper understanding,” in Advances in Neural
Information Processing Systems, 2017, pp. 5811–
5821.

[36] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fow-
ers, K. Strauss, and E. S. Chung, “Accelerating
deep convolutional neural networks using spe-
cialized hardware,” Microsoft Research Whitepa-
per, vol. 2, no. 11, pp. 1–4, 2015.

[37] M. Douthwaite, F. Garcia Redondo, P. Geor-
giou, and S. Das, “A time-domain current-mode
MAC engine for analogue neural networks in
flexible electronics,” in IEEE Biomedical Cir-
cuits and Systems Conference (BioCAS), 2019.

[38] M. Al-Mulla, F. Sepulveda, M. Colley, and
A. Kattan, “Classification of localized muscle fa-
tigue with genetic programming on semg during
isometric contraction,” in 2009 Annual Interna-
tional Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE, 2009, pp.
2633–2638.

[39] M. Al-Mulla, F. Sepulveda, M. Colley, and F. Al-
Mulla, “Statistical class separation using semg
features towards automated muscle fatigue de-
tection and prediction,” in 2009 2nd Interna-
tional Congress on Image and Signal Processing.
IEEE, 2009, pp. 1–5.

[40] F. Biering-Sørensen, “Physical measurements as
risk indicators for low-back trouble over a one-
year period.” Spine, vol. 9, no. 2, pp. 106–119,
1984.

[41] H. J. Hermens, B. Freriks, C. Disselhorst-Klug,
and G. Rau, “Development of recommendations
for SEMG sensors and sensor placement proce-
dures,” Journal of Electromyography and Kine-
siology, vol. 10, no. 5, pp. 361–374, 2000.

[42] J. L. De Foa, W. Forrest, and H. Bieder-
mann, “Muscle fibre direction of longissimus, il-
iocostalis and multifidus: landmark-derived ref-
erence lines.” Journal of anatomy, vol. 163, p.
243, 1989.
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