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a b s t r a c t 

The coronavirus disease 2019 (COVID-19) has become a public health emergency of international concern 

affecting 201 countries and territories around the globe. As of April 4, 2020, it has caused a pandemic 

outbreak with more than 11,16,643 confirmed infections and more than 59,170 reported deaths world- 

wide. The main focus of this paper is two-fold: (a) generating short term (real-time) forecasts of the 

future COVID-19 cases for multiple countries; (b) risk assessment (in terms of case fatality rate) of the 

novel COVID-19 for some profoundly affected countries by finding various important demographic char- 

acteristics of the countries along with some disease characteristics. To solve the first problem, we pre- 

sented a hybrid approach based on autoregressive integrated moving average model and Wavelet-based 

forecasting model that can generate short-term (ten days ahead) forecasts of the number of daily con- 

firmed cases for Canada, France, India, South Korea, and the UK. The predictions of the future outbreak 

for different countries will be useful for the effective allocation of health care resources and will act as 

an early-warning system for government policymakers. In the second problem, we applied an optimal 

regression tree algorithm to find essential causal variables that significantly affect the case fatality rates 

for different countries. This data-driven analysis will necessarily provide deep insights into the study of 

early risk assessments for 50 immensely affected countries. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

In December 2019, Wuhan city of China became the centre of 

an outbreak of pneumonia of unknown cause, latter named as 

coronavirus disease 2019 (COVID-19), which raised intense atten- 

tion not only within China but internationally [13,32] . The COVID- 

19 pandemic is the most significant global crisis since the World 

War-II that affected almost all the Countries of our planet [4] . As 

of April 4, 2020, an outbreak of COVID-19 has resulted in 11,16,643 

confirmed cases with reported deaths of 59,170 worldwide [22] . On 

March 11, WHO publicly characterized COVID-19 as a “global pan- 

demic”, and shortly after that, the United States declared COVID- 

19 outbreaks a national emergency. The COVID-19 has caused a 

great threat to the health and safety of people all over the world 

due to its widespread and potential harm. Thus, the studies of 

the novel COVID-19 epidemics and its future development trend 

has become a cutting-edge research topic at this moment. We are 

therefore motivated to ask: (a) Can we generate real-time forecasts 
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of daily new COVID-19 cases for countries like Canada, France, In- 

dia, South Korea, and the UK? (b) What are the probable causal 

variables that have significant impacts on the case fatality rates for 

the profoundly affected countries? 

To answer the first question, we study classical and modern 

forecasting techniques for which the prediction accuracy largely 

depend on the availability of data [28] . In outbreaks of COVID- 

19 epidemics, there are limited data available, making predictions 

widely uncertain. From previous studies, it was evident that the 

timing and location of the outbreak facilitated the rapid trans- 

mission of the virus within a highly mobile population [29] . In 

most of the affected countries, the governments implemented a 

strict lockdown in subsequent days of initial transmission of the 

virus and within hospitals, patients who fulfill clinical and epi- 

demiological characteristics of COVID-19 are immediately isolated. 

The constant increase in the global number of COVID-19 cases is 

putting a substantial burden on the health care system for Canada, 

France, India, South Korea, and the UK. To anticipate additional re- 

sources to combat the epidemic, various mathematical and statisti- 

cal forecasting tools [21,34] and outside China [10,20,36] were ap- 

plied to generate short-term and long-term forecasts of reported 

cases. These model predictions have shown a wide range of vari- 
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ations. Since the time series datasets of COVID-19 contain both 

nonlinear and nonstationary patterns, therefore, making decisions 

based on an individual model would be critical. In this study, we 

propose a hybrid modeling approach to generate short-term fore- 

casts for multiple countries. In traditional time series forecasting, 

the autoregressive integrated moving average (ARIMA) model is 

used predominantly for forecasting linear time series [6] . But in re- 

cent literature, the wavelet transformation based forecasting model 

has shown excellent performance in nonstationary time series data 

modeling [27] . Thus, combining both models may accurately model 

such complex autocorrelation structures in the COVID-19 time- 

series datasets and reduce the bias and variances of the predic- 

tion error of the component models. In the absence of vaccines 

or antiviral drugs for COVID-19, these estimates will provide an 

insight into the resource allocations for the exceedingly affected 

countries to keep this epidemic under control. Besides shedding 

light on the dynamics of COVID-19 spreading, the practical in- 

tent of this data-driven analysis is to provide government offi- 

cials with realistic estimates for the magnitude of the epidemic for 

policy-making. 

The second problem is connected with the global concern of 

health and mortality due to the significant COVID-19 outbreaks. 

Mortality is crudely estimated using a statistic, the case fatality 

rate (CFR), which divides the number of known deaths by the to- 

tal number of identified cases [5,18,30] . During the current phase 

of this global pandemic, it is critically important to obtain reliable 

estimates of the overall CFR. The estimates of CFR are highly de- 

pendent on several country-specific demographic parameters and 

various disease characteristics. A key differentiation among the CFR 

of different countries can be found by determining an exhaustive 

list of causal variables that significantly affect CFR. In this work, we 

put an effort to identify critical parameters that may help to assess 

the risk (in terms of CFR) using an optimal regression tree model 

[7] . The regression tree has a built-in variable selection mecha- 

nism from high dimensional variable space and can model arbi- 

trary decision boundaries. The regression tree combines case es- 

timates, epidemiological characteristics of the disease, and heath- 

care facilities to assess the risks of major outbreaks for profoundly 

affected countries. Such assessments will help to anticipate the ex- 

pected morbidity and mortality due to COVID-19 and provide some 

critical information for the planning of health care systems in var- 

ious countries facing this epidemic. 

The rest of the paper is organized as follows. In Section 2 , we 

discuss the data, development of the hybrid model, and experi- 

mental results for short-term forecasts of COVID-19 for Canada, 

France, India, South Korea, and the UK. In Section 3 , country-wise 

CFR datasets, method, and results for finding critical parameters 

are presented. We discuss the assumptions and limitations of our 

findings in Section 4 . Finally, the discussions about the results and 

policy recommendations are given in Section 5 . 

2. Real-time forecasting of COVID-19 cases 

We focus on the daily figures of confirmed cases for five differ- 

ent countries, namely Canada, France, India, South Korea, and the 

UK. The datasets are retrieved by the Global Change Data Lab 1 ). 

All these datasets are collected from the starting date of the dis- 

ease for the respective countries to April 4, 2020. In this section, 

we first briefly discuss these datasets, followed by the develop- 

ment of the proposed hybrid model, and finally, the application 

of the proposed model to generate short-term forecasts of the fu- 

ture COVID-19 cases for five different countries. All these datasets 

and codes to be used in this section are made publicly available at 

1 https://ourworldindata.org/coronavirus 

https://github.com/indrajitg-r/COVID for the reproducibility of this 

work. 

2.1. Datasets 

Five univariate time-series datasets are collected for the real- 

time prediction purpose of COVID-19 cases for India, Canada, 

France, South Korea, and the UK. Several previous studies have 

forecasted future COVID cases for China and a few other countries 

using mathematical and traditional time series forecasting mod- 

els, for details see [20,21,29,34,36] . We try to nowcast the COVID- 

19 cases of five different countries based on their past cases. For 

India and UK, we consider the daily laboratory-confirmed cases 

from January 30, 2020, through April 4, 2020 and from January 31, 

2020 through April 4, 2020, respectively, for model building. Daily 

COVID-19 cases data for Canada, France, and South Korea are taken 

for the time period January 20, 2020 through April 4, 2020, Jan- 

uary 25, 2020 through April 4, 2020, and January 26, through April 

4, 2020, respectively. 

The dataset for India contains a total of 64 observations, 65 

observations for the UK, 70 observations for Canada, 71 observa- 

tions for France, and 76 for South Korea. For these five countries 

the outbreaks of COVID-19 started almost from the same timeline 

and the epidemic curves still not showing the sharp diminishing 

nature, just like China. We limit our attention to trended and non- 

seasonal models, given the patterns, observed in Table 1 . Note that 

we follow a pragmatic approach in that we assume that the trend 

will continue indefinitely in the future in contradiction with other 

S-curve or deterministic SIR modeling approaches which assume 

convergence. 

2.2. Proposed model 

To forecast confirmed cases of COVID-19, we adopt hybrid time 

series forecasting approaches combining ARIMA and wavelet-based 

forecasting techniques. The proposed hybrid model overcome the 

deficiencies of the single time series models. Before describing the 

proposed methodology, we give a brief description of the individ- 

ual models to be used in the hybridization. 

2.2.1. ARIMA model 

ARIMA is a classical time series model, used for tracking linear 

tendencies in stationary time series data. ARIMA model is denoted 

by ARIMA( p, d, q ). The parameters p and q are the order of the 

AR model and the MA model respectively, and d is the level of 

differencing [9] . ARIMA model can be mathematically expressed as 

follows: 

y t = θ0 + φ1 y t−1 + φ2 y t−2 + · · · + φp y t−p + ε t − θ1 ε t−1 

−θ2 ε t−2 − · · · − θq ε t−q , 

where y t denotes the actual value of the variable under considera- 

tion at time t , εt is the random error at time t . The φi and θ j are 

the coefficients of the ARIMA model. The basic assumption made 

by the ARIMA model is that the error series follows zero mean 

with constant variance, and satisfies the i.i.d condition. Building an 

ARIMA model for any given time series dataset can be described 

in three iterative steps: model identification (achieving stationar- 

ity), parameter estimation (the autocorrelation function (ACF) and 

the partial autocorrelation function (PACF) plots are used to select 

the values of parameters p and q ), and model diagnostics checking 

(finding the ‘best’ fitted forecasting model using Akaike Informa- 

tion Criterion (AIC) and the Bayesian Information Criterion (BIC)) 

[15] . 

https://ourworldindata.org/coronavirus
https://github.com/indrajitg-r/COVID
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Table 1 

Training datasests and corresponding ACF, PACF plots for Canada, France, India, South Korea, and the UK. 

2.2.2. Wavelet-based Forecasting (WBF) model 

Wavelet analysis is a mathematical tool that can reveal informa- 

tion within the signals in both the time and scale (frequency) do- 

mains [27] . This property overcomes the basic drawback of Fourier 

analysis and wavelet transforms the original signal data (especially 

in the time domain) into a different domain for data analysis and 

processing. Wavelet-based models are most suitable for nonsta- 

tionary data, unlike ARIMA [23] . Most epidemic and climatic time- 

series datasets are nonstationary; therefore, wavelet transforms are 

used as a forecasting model for these datasets [2,11] . When con- 

ducting wavelet analysis in the context of time series analysis, the 

selection of the optimal number of decomposition levels is vital 

to determine the performance of the model in the wavelet do- 

main. The following formula for the number of decomposition lev- 

els, W L = int[ log(n )] is used to select the number of decomposition 

levels, where n is the time-series length. The wavelet-based fore- 

casting (WBF) model transforms the time series data by using a 

hybrid maximal overlap discrete wavelet transform (MODWT) al- 

gorithm with a ‘haar’ filter. Daubechies wavelets can produce iden- 

tical events across the observed time series in so many fashions 

that most other time series prediction models cannot recognize 

[3] . The necessary steps of a wavelet-based forecasting model, de- 

fined by [2] , are as follows. Firstly, the Daubechies wavelet trans- 

formation and a decomposition level are applied to the nonstation- 

ary time series data. Secondly, the series is reconstructed by re- 

moving the high-frequency component, using the wavelet denois- 

ing method. And, lastly, an appropriate ARIMA model is applied to 

the reconstructed series to generate out-of-sample forecasts of the 

given time series data. 

2.2.3. Hybrid ARIMA-WBF model 

For the COVID-19 datasets, we propose a hybridization of sta- 

tionary ARIMA and nonstationary WBF model to reduce the indi- 

vidual biases of the component models [24] . The COVID-19 cases 

datasets for five different countries are complex in nature. Thus, 

the ARIMA model fails to produce random errors or even station- 

ary residual series, evident from Fig. 1 . The behavior of the resid- 

ual series generated by ARIMA is mostly oscillatory and periodic; 

thus, we choose the wavelet function to model the remaining se- 

ries. Several hybrid models based on ARIMA and neural networks 

are available in the field of time series forecasting; see for example 

[1,8,12,19,25,35] . 
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Fig. 1. Plots of ARIMA residuals for different countries: (a) Canada; (b) France; (c) India; (d) South Korea; and (e) the UK. 

Motivated by the above discussion, we propose a novel hybrid 

ARIMA-WBF model which is a two-step pipeline approach. In the 

first step of the proposed hybrid approach, an ARIMA model is 

built to model the linear components of the epidemic time se- 

ries, and a set of out-of-sample forecasts are generated. In the sec- 

ond phase, the ARIMA residuals (oscillatory residual series) are re- 

modeled using a mathematically-grounded WBF model. Here, WBF 

models the left-over autocorrelations (in this case, the oscillatory 

series in Fig. 1 ) in the residuals which ARIMA could not model. The 

algorithmic presentation of the proposed hybrid model is given in 

Algorithm 1 . 

Algorithm 1 Proposed Hybrid ARIMA-WBF Model. 

1 Given a time series of length n , input the in-sample (train- 

ing) COVID-19 daily cases data.2 Determine the best ARIMA (p, d, q ) 

model using the in-sample (training) data. 

• ARIMA parameters p, d, and q values are selected using the pro- 

cedures described in Section 2.2.1. 
• Obtain the predictions using the selected ARIMA (p, d, q ) model 

for the in-sample data and generate required number of out-of- 

sample forecasts. 
• Obtain the residual series (ε t ) by subtracting ARIMA predicted 

values from the original training series. 

3 Train the residual series (ε t ) generated by ARIMA by the WBF 

model, as described in Section 2.2.2. 

• Select the number of decomposition level using the formulae 

W L = int[ log(n )] and boundary is chosen to be ‘periodic’. 
• Obtain in-sample predictions ( ̂  ε t ) using the WBF model and 

generate required number of out-of-sample forecasts. 

4 Final predictions ( ̂  Y t ) are obtained by combining thenARIMA pre- 

dictions with WBF predictions ( ̂  ε t ) for both the training series as 

well as the out-of-sample forecasts. 

The proposed model can be looked upon as an error remodeling 

approach in which we use ARIMA as the base model and remodel 

its error series by wavelet-based time series forecasting technique 

to generate more accurate forecasts. This is in relevance to model 

misspecification in which disturbances in the nonlinear time series 

of COVID-19 cases cannot be correctly modeled with the ARIMA 

model. Therefore, if the error series generated by ARIMA is ad- 

equately modeled and incorporated with the forecasts, the per- 

formance of the out-of-sample estimates can be improved, even 

though marginally at times. 

Remark. The proposed hybrid approach contradicts other math- 

ematical and traditional forecasting modeling approaches applied 

to COVID-19 data. We choose two completely diverse models for 

hybridization, one from classical forecasting literature and another 

from modern forecasting approaches. 

2.3. Results 

Five time series COVID-19 datasets for Canada, France, India, 

South Korea, and the UK are considered for training the pro- 

posed model and the component models. The datasets are nonlin- 

ear, nonstationary, and non-gaussian in nature. We have used root 

mean square error (RMSE), mean absolute error (MAE), to evalu- 

ate the predictive performance of the models used in this study 

[17] . Since the number of data points in both the datasets is lim- 

ited thus going for advanced deep learning techniques will simply 

over-fit the datasets [14] . 

We start the experimental evaluation for all the five datasets 

with the classical ARIMA(p,d,q) using ‘ forecast ’ [16] statistical pack- 

age in R software. To fit an ARIMA model, we first specify the 

parameters of the model. Using ACF plot and PACF plot (See 

Table 1 ), we can decide the value of the parameters of the model. 

We have also performed unit root tests for stationarity check 

and all the datasets were found nonstationary. The ‘best’ fitted 

ARIMA model is chosen using AIC and BIC values for each train- 

ing dataset. The fitted ARIMA models for five datasets are as fol- 

lows: ARIMA(1,2,1) for India, ARIMA(1,1,2) for Canada, ARIMA(0,1,1) 
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Fig. 2. Figures of (a) Actual Vs. predicted (Hybrid ARIMA-WBF Model) values for Canada COVID-19 data; (b) Real-time forecasts (10 days) of the number of cases for Canada. 

Fig. 3. Figures of (a) Actual Vs. predicted (Hybrid ARIMA-WBF Model) values for France COVID-19 data; (b) Real-time forecasts (10 days) of the number of cases for France. 

for France, ARIMA(2,1,0) for South Korea, and ARIMA(2,2,2) for the 

UK. We employ a pre-defined Box-Cox transformation set to λ = 0 

to ensure the forecast values stay positive. As the ARIMA model is 

fitted, forecasts are generated for 10-time steps (5 April 2020 to 

14 April 2020) for all the five datasets. We also compute training 

data predicted values and calculate the residual errors. Plots for the 

residual series are given in Fig. 1 . 

It is interesting to see that the error series (residuals) gen- 

erated by ARIMA are oscillating and nonstationary for all the 

datasets. These seasonal oscillations can be captured through the 

wavelet transform, which can decompose a time series into a lin- 

ear combination of different frequencies. These residual series as 

in Fig. 1 ) satisfy the admissibility condition (zero mean) that forces 

wavelet functions to wiggle (oscillate between positive and nega- 

tive), a typical property of wavelets. Thus, we remodel the residu- 

als obtained using the ARIMA model with that of the WBF model. 

The value of Wavelet levels is obtained by using the formula, as 

mentioned in Algorithm 1 . WBF model was implemented using 

‘ WaveletArima ’ [26] package in R software with ‘periodic’ bound- 

ary and all the other parameters were kept as default. As the WBF 

model is fitted on the residual time series, predictions are gener- 

ated for the next ten time steps (5 April 2020 to 14 April 2020). 

Further, both the ARIMA forecasts and WBF residual forecasts are 

added together to get the final out-of-sample forecasts for the next 

ten days (5 April 2020 to 14 April 2020). The hybrid model fittings 

(training data) for five countries, namely Canada, France, India, 

South Korea and the UK are displayed in Figs. 2 (a), 3 (a), 4 (a), 5 (a) 

and 6 (a) respectively. The real-time (short-term) forecasts using 

ARIMA, WBF, and hybrid ARIMA-WBF model for Canada, France, In- 

dia, South Korea, and the UK are displayed in Figs. 2 (b), 3 (b), 4 (b), 

5 (b) and 6 (b) respectively. 

The predicted values for the training COVID-19 cases datasets 

of the proposed hybrid model for five countries are further used 

for model adequacy checking and based on actual and predicted 

test outputs, we computed RMSE and MAE for all the datasets and 

reported them in Table 2 . The performances of the proposed hy- 

brid ARIMA-WBF model are superior as compared to the individ- 

ual models for Canada, France, and the UK, whereas, for India and 

South Korea, our results are competitive with ARIMA. It is often 

true that no model can be universally employed in all circum- 

stances, and this is in relevance with “no free lunch theorem” [33] . 

Even if in a very few cases hybrid ARIMA-WBF model gave lower 

information criteria values (in terms of RMSE and MAE for training 

data), we still can opt for the hybrid model given the asymmet- 

ric risks involved as we believe that it is better to take decisions 

based on a hybrid model rather than depending on a single one at 

least for this pandemic. We produced ten days ahead point fore- 

casts based on all the three models discussed in this chapter and 

reported then in Figs. 2–6 . Our model can easily be updated on a 

daily or periodic basis once the actual values are received for the 

country-wise COVID-19 cases. 

Remark. Please note that this is not an ex-post analysis, but a real, 

live forecasting exercise. Thus, these real-time short-term fore- 

casts based on the proposed hybrid ARIMA-WBF model for Canada, 

France, India, South Korea, and the UK will be helpful for govern- 

ment officials and policymakers to allocate adequate health care 

resources for the coming days. 

3. Risk assessment of COVID-19 cases 

At the outset of the COVID-19 outbreak, data on country-wise 

case fatality rates due to COVID-19 were obtained for 50 affected 
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Fig. 4. Figures of (a) Actual Vs. predicted (Hybrid ARIMA-WBF Model) values for India COVID-19 data; (b) Real-time forecasts (10 days) of the number of cases for India. 

Fig. 5. Figures of (a) Actual Vs. predicted (Hybrid ARIMA-WBF Model) values for South Korea COVID-19 data; (b) Real-time forecasts (10 days) of the number of cases for 

South Korea. 

Fig. 6. Figures of (a) Actual Vs. predicted (Hybrid ARIMA-WBF Model) values for the UK COVID-19 data; (b) Real-time forecasts (10 days) of the number of cases for the UK. 

Table 2 

RMSE and MAE values for different forecasting models on five time series (training data only) data sets. 

Model Performance Metrics ARIMA WBF Hybrid ARIMA-WBF Model 

Canada RMSE 150.05 202.64 149.60 

MAE 41.68 89.21 40.05 

France RMSE 710.46 740.06 631.91 

MAE 358.87 441.97 306.78 

India RMSE 50.83 68.38 55.25 

MAE 16.07 31.78 24.00 

South 

Korea 

RMSE 81.81 82.78 90.29 

MAE 44.71 47.81 54.06 

UK RMSE 209.36 405.87 180.66 

MAE 104.28 248.83 100.68 
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Table 3 

Descriptive statistics of possible causal variables and the response variable of CFR dataset for 50 countries. 

Input and Output variables Notation Variable Type Mean Variance Min. Value Max. Value 

Total cases (in thousands) x.x1 Numerical 20.89 2187.92 0.25 277.96 

population (in millions) x.x2 Numerical 110.62 73658.12 0.03 1402.01 

population density per km 2 x.x3 Numerical 139.78 20371.56 3.00 568 

% people > 65 years age x.x4 Numerical 13.58 38.59 3.20 27 

lockdown days count x.x5 Numerical 20.20 95.96 0 73 

time period (in days) x.x6 Numerical 48.72 309.23 25 84 

doctors per 1000 people x.x7 Numerical 2.71 1.98 0.20 6.36 

Hospital beds per 1000 persons x.x8 Numerical 3.92 8.24 0.10 13.70 

Income standards x.x9 Categorical - - 0 1 

Climate zones x.x10 Categorical - - −1 1 

CFR (response variable) Y Numerical 0.041 0.001 0.005 0.127 

countries. The case fatality rate can be crudely defined as the num- 

ber of deaths in persons who tested positive for COVID-19 divided 

by the confirmed number of COVID-19 cases. In this section, we 

are going to find out a list of essential causal variables that have 

strong influences on the CFR. The datasets and codes of this section 

are made publicly available at https://github.com/indrajitg-r/COVID 

for the reproducibility of this work. 

3.1. Data 

In the face of rapidly changing data for COVID-19, we calcu- 

lated the case fatality ratio estimates for 50 countries from the 

day of starting the outbreak to 4 April 2020 from the following 

website. 2 A lot of preliminary analysis is done to determine a set 

of possible variables, some of which are expected to be critical 

causal variables for risk assessments of COVID-19 in these affected 

countries. Previous studies [5,18,22,30] have suggested that the to- 

tal number of cases, age distributions, and shutdown period have 

high impacts on the CFR values for some of the countries. Along 

with these three variables, we also considered seven more demo- 

graphic structures and disease characteristics for these countries as 

input variables that are likely to have a potential impact on the CFR 

estimates. Therefore, the CFR modeling dataset consists of 50 ob- 

servations having ten possible causal variables and one numerical 

output variable (viz. CFR), as reported in Table 3 . 

The possible causal variables considered in this study are the 

followings: the total number of COVID-19 cases (in thousands) in 

the country till 4 April, 2020, population density per km 2 for the 

country, total population (in millions) of the country (approx.), per- 

centage of people in the age group of greater than 65 years, lock- 

down days count (from the starting day of lockdown till April 4, 

2020), time-period (in days) of COVID-19 cases for the country 

(starting date to April 4, 2020), doctors per 10 0 0 people in the 

country, hospital beds per 10 0 0 people in the country, income 

standard (e.g., high or lower) of the country and climate zones 

(e.g., tropical, subtropical or moderate) of the country. The dataset 

contains a total of 8 numerical input variables and two categorical 

input variables. 

3.2. Method: Regression Tree 

For the risk assessment with the CFR dataset for 50 countries, 

we apply the regression tree (RT) [7] that has built-in feature se- 

lection mechanism, easy interpretability, and provides better visu- 

alization. RT, as a widely used simple machine learning algorithm, 

can model arbitrary decision boundaries. The methodology out- 

lined in [7] can be summarized into three stages. The first stage 

involves growing the tree using a recursive partitioning technique 

to select essential variables from a set of possible causal variables 

2 https://www.worldometers.info/coronavirus/ 

and split points using a splitting criterion. The standard splitting 

criteria for RT is the mean squared error (MSE). After a large tree is 

identified, the second stage of RT methodology uses a pruning pro- 

cedure that gives a nested subset of trees starting from the largest 

tree grown and continuing the process until only one node of the 

tree remains. The cross-validation technique is popularly used to 

provide estimates of future prediction errors for each subtree. The 

last stage of the RT methodology selects the optimal tree that cor- 

responds to a tree yielding the lowest cross-validated or testing 

set error rate. To avoid instability of trees in this stage, trees with 

smaller sizes, but comparable in terms of accuracy, are chosen as 

an alternative. This process can be tuned to obtain trees of vary- 

ing sizes and complexity. A measure of variable importance can 

be achieved by observing the drop in the error rate when another 

variable is used instead of the primary split. In general, the more 

frequent a variable appears as a primary split, the higher the im- 

portance score assigned. A detailed description of the tree building 

process is available at [17] . 

3.3. Results 

The rationale behind the choice of RT as a potential model to 

find the important casual variables out of 10 input variables for 

the CFR estimates is the simplicity, easy interpretability, and high 

accuracy of the RT algorithm. We apply an optimal RT model to the 

dataset consisting of 50 different country samples and try to find 

out potential casual variables from the set of available variables 

that are related to the case-fatality rates. RT is implemented using 

‘ rpart ’ [31] package in R with “minsplit” equals to 10% of the data 

as a control parameter. We have used RMSE, co-efficient of mul- 

tiple determination ( R 2 ), and adjusted R 2 ( AdjR 2 ) to evaluate the 

predictive performance of the tree model used in this study [17] . 

An optimal regression tree is built with 7 variables with ‘minsplit’ 

= 5 with equal costs for each variable. The estimates of the per- 

formance metrics for the fitted tree are as follows: RMSE = 0.013, 

R 2 = 0 . 896 , and AdjR 2 = 0 . 769 . A variable importance list from the 

RT is given in Fig. 7 and the fitted tree is provided in Fig. 8 . 

From the variable importance plot based on the complexity pa- 

rameter of the RT model (also see Fig. 7 ), seven causal variables 

are obtained out of 10 potential input variables having higher im- 

portance. These seven causal variables that significantly affect the 

CFR for 50 most affected countries are the followings: total num- 

ber of COVID-19 cases in the country (in thousands), percentage 

of people in the age group of greater than 65 years, total popula- 

tion (in millions) of the country, doctors per 10 0 0 people in the 

country, lockdown period (in days) for the country, time-period 

(in days) of COVID-19 cases for the country, and hospital beds per 

10 0 0 people in the country. Our results are consistent with previ- 

ous results obtained by [5,18,30] , where the authors suggested that 

the total number of cases, age distributions, and shutdown period 

have high impacts on the CFR estimates. But interestingly, we ob- 

https://github.com/indrajitg-r/COVID
https://www.worldometers.info/coronavirus/
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Fig. 7. Variable Importance Percentages affecting the CFR based on a complexity parameter in RT. 

Fig. 8. Optimal tree representing the relationships between the causal variables and CFR. 

tained four more essential causal variables that will provide some 

new insights into the study of risk assessments for COVID-19 af- 

fected countries. Out of these 7 numerical input variables, there 

are four control variables (number of cases, people of age group 

> 65 years, lockdown period, and hospital beds per 10 0 0 people) 

present that can be managed to fight against this deadly disease. 

Once these variables are taken care of, the respective country may 

reduce their case fatality rate at a significant rate. 

Fig. 8 shows the relationship between the important causal 

variables and CFR. In Fig. 8 , the tree starts with the total number 

of COVID-19 cases as the most crucial causal variable in the parent 

node. In each box, the top most numerical values suggest the aver- 

age CFR estimates based on the tree. One of the key findings of the 

tree is the following rule: When the number of cases of a country 

is greater than 14,0 0 0 having a population between 14 and 75 mil- 

lion are having second highest case fatality rate, viz., 10%. Similarly, 

one can see all the rules generated by RT to get additional informa- 

tion about the relationships between control parameters and the 

response CFR variable. 

4. Limitations of our findings 

We made some simplifying assumptions to carry out the anal- 

ysis of COVID-19 datasets. The assumptions are listed as follows: 

(a) the virus mutation rates are comparable for different coun- 

tries; (b) the recovered persons will achieve permanent immunity 

against COVID-19; (c) we ignore the effect of climate change (also 
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spatial data structures) during the short-term predictions. Along 

in this line, we presented two different approaches to deal with 

two inter-connected problems on COVID-19. In the first problem of 

short-term predictions for COVID-19 outbreak in five countries, we 

proposed a hybrid methodology combining ARIMA and WBF mod- 

els. In the second problem of risk assessment, we found some im- 

portant factors affecting case fatality rates of COVID for 50 highly 

affected nations. However, there may exist a few more controllable 

factor(s), and some disease-based characteristics that can also have 

an impact on the value of CFR for different countries, can be re- 

garded as future scope of the study. 

5. Discussions 

The COVID-19 outbreaks globally present a significant chal- 

lenge for modelers, as there are limited data available on the early 

growth trajectory, and epidemiological characteristics of the novel 

coronavirus have not been fully elucidated. In this study, we con- 

sidered two alarmingly important problems relevant to ongoing 

COVID-19 pandemic. The first problem deals with the real-time 

forecasts of the daily COVID-19 cases in five different countries. We 

proposed a hybrid ARIMA-WBF model that can explain the non- 

linear and nonstationary behavior present in the univariate time 

series datasets of COVID-19 cases. Ten days ahead forecasts are 

provided for Canada, France, India, South Korea, and the UK. The 

proposed model can be used as an early warning system to fight 

against the COVID-19 pandemic. Below we present a list of sugges- 

tions based on the results of the real-time forecasts. 

1. Since we presented a real-time forecast system unlike an ex- 

post analysis, thus one can regularly update the actual con- 

firmed cases and update the predictions, just like it happens 

in weather forecasting. 

2. The forecasts mostly show oscillating behavior for the next 10 

days and reflect the impact of the broad spectrum of social 

distancing measures implemented by the governments, which 

likely helped stabilize the epidemic. 

3. The short-term forecasts don’t necessarily show any stiff decay 

sooner; also, these five countries are not going to face any un- 

like uplifts in the number of cases too. 

4. Guided by the short-term forecasts reported in this paper, the 

lockdown period can be adjusted accordingly. 

Secondly, we assessed the risk of COVID-19 by finding seven 

key parameters that are expected to have powerful associations 

with that of case fatality rates. This is done by designing an opti- 

mal regression tree model, a simplified machine learning approach. 

The model is very flexible, easily interpretable, and the more data 

will come, one can just incorporate the new data sets and rebuild 

the trees to get the updated estimates. RT provides a better vi- 

sual representation and is easily interpretable to be understood by 

a broader audience. Quantification of the outbreak risks and their 

dependencies on the key parameters will support the governments 

and policymakers for the planning of health care systems in differ- 

ent countries that faced this epidemic. Experimental results sug- 

gest four control variables out of seven highly influential variables 

that will have a significant impact on controlling CFR. Below we 

present a point by point discussion of the control variables affect- 

ing CFR and preventive actions to be taken by the governments. 

1. The number of covid cases of the country can be reduced by 

enforcing social distancing strategies. 

2. Number of people of age group > 65 years should be specially 

taken care of and isolated. 

3. Lockdown time period can be extended if the country faces a 

sharp increase in the number of cases and or deaths. 

4. The number of hospital beds should be increased by making 

special health care arrangements in other places to deal with 

this emergency due to COVID-19. 
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