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Abstract

We present a real-time algorithm for foreground–background segmentation. Sample background values at each pixel are

quantized into codebooks which represent a compressed form of background model for a long image sequence. This allows us to

capture structural background variation due to periodic-like motion over a long period of time under limited memory. The

codebook representation is efficient in memory and speed compared with other background modeling techniques. Our method can

handle scenes containing moving backgrounds or illumination variations, and it achieves robust detection for different types of

videos. We compared our method with other multimode modeling techniques.

In addition to the basic algorithm, two features improving the algorithm are presented—layered modeling/detection and adaptive

codebook updating.

For performance evaluation, we have applied perturbation detection rate analysis to four background subtraction algorithms and

two videos of different types of scenes.

r 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The capability of extracting moving objects from a

video sequence captured using a static camera is a typical

first step in visual surveillance. A common approach for

discriminating moving objects from the background is

detection by background subtraction. The idea of

background subtraction is to subtract or difference the

current image from a reference background model. The

subtraction identifies non-stationary or new objects.

1.1. Related work

The simplest background model assumes that the

intensity values of a pixel can be modeled by a single

unimodal distribution. This basic model is used in [1,2].

However, a single-mode model cannot handle multiple

backgrounds, like waving trees. The generalized mixture

of Gaussians (MOG) in [3] has been used to model

complex, non-static backgrounds. Methods employing

MOG have been widely incorporated into algorithms

that utilize Bayesian frameworks [4], dense depth data

[5], color and gradient information [6], mean-shift

analysis [7], and region-based information [8].

MOG does have some disadvantages. Backgrounds

having fast variations are not easily modeled with just a

few Gaussians accurately, and it may fail to provide

sensitive detection (which is mentioned in [9]). In

addition, depending on the learning rate to adapt to

background changes, MOG faces trade-off problems.

For a low learning rate, it produces a wide model that

has difficulty in detecting a sudden change to the

background. If the model adapts too quickly, slowly

moving foreground pixels will be absorbed into the

background model, resulting in a high false negative

rate. This is the foreground aperture problem described

in [10].
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To overcome these problems, a non-parametric

technique estimating the probability density function

at each pixel from many samples using kernel density

estimation technique was developed in [9]. It is able to

adapt very quickly to changes in the background process

and to detect targets with high sensitivity. A more

advanced approach using adaptive kernel density

estimation was recently proposed in [11].

However, the non-parametric technique in [9] cannot

be used when long-time periods are needed to suffi-

ciently sample the background—for example when there

is significant wind load on vegetation—due mostly to

memory constraints. Our algorithm constructs a highly

compressed background model that addresses that

problem.

Pixel-based techniques assume that the time series of

observations is independent at each pixel. In contrast,

some researchers [5,8,10] employ a region- or frame-

based approach by segmenting an image into regions or

by refining low-level classification obtained at the pixel

level. Markov random field techniques employed in

[12,13] can also model both temporal and spatial

context. Algorithms in [14,15] aim to segment the

foreground objects in dynamic textured backgrounds

(e.g., water, escalators, waving trees, etc.). Furthermore,

Amer et al. [16] describes interactions between low-level

object segments and high-level information such as

tracking or event description.

1.2. Proposed algorithm

Our codebook (CB) background subtraction algo-

rithm was intended to sample values over long times,

without making parametric assumptions. Mixed back-

grounds can be modeled by multiple codewords. The

key features of the algorithm are

" an adaptive and compact background model that can

capture structural background motion over a long

period of time under limited memory. This allows us

to encode moving backgrounds or multiple changing

backgrounds;

" the capability of coping with local and global

illumination changes;

" unconstrained training that allows moving foreground

objects in the scene during the initial training period;

" layered modeling and detection allowing us to have

multiple layers of background representing different

background layers.

In Section 2, we describe the codebook construction

algorithm and the color and brightness metric, used for

detection. We show, in Section 3, that the method is

suitable for both stationary and moving backgrounds in

different types of scenes, and applicable to compressed

videos such as MPEG. Important improvements to the

above algorithm are presented in Section 4—layered

modeling/detection and adaptive codebook updating. In

Section 5, a performance evaluation technique—pertur-

bation detection rate analysis—is used to evaluate four

pixel-based algorithms. Finally, conclusion and discus-

sion are presented in last Section 6.

2. Background modeling and detection

The CB algorithm adopts a quantization/clustering

technique, inspired by Kohonen [18,19], to construct a

background model from long observation sequences.

For each pixel, it builds a codebook consisting of one or

more codewords. Samples at each pixel are clustered

into the set of codewords based on a color distortion

metric together with brightness bounds. Not all pixels

have the same number of codewords. The clusters

represented by codewords do not necessarily correspond

to single Gaussian or other parametric distributions.

Even if the distribution at a pixel were a single normal,

there could be several codewords for that pixel. The

background is encoded on a pixel-by-pixel basis.

Detection involves testing the difference of the current

image from the background model with respect to color

and brightness differences. If an incoming pixel meets

two conditions, it is classified as background—(1) the

color distortion to some codeword is less than the

detection threshold, and (2) its brightness lies within the

brightness range of that codeword. Otherwise, it is

classified as foreground.

2.1. Construction of the initial codebook

The algorithm is described for color imagery, but it

can also be used for gray-scale imagery with minor

modifications. Let X be a training sequence for a single

pixel consisting of N RGB-vectors: X ¼ fx1;x2; . . . ;xNg:
Let C ¼ fc1; c2; . . . ; cLg represent the codebook for the

pixel consisting of L codewords. Each pixel has a

different codebook size based on its sample variation.

Each codeword ci; i ¼ 1 . . .L; consists of an RGB

vector vi ¼ ðR̄i; Ḡi; B̄iÞ and a 6-tuple auxi ¼ h !I i; Î i; f i;
li; pi; qii: The tuple auxi contains intensity (brightness)

values and temporal variables described below:

!I ; Î the min and max brightness, respectively, of all

pixels assigned to this codeword

f the frequency with which the codeword has

occurred

l the maximum negative run-length (MNRL) defined

as the longest interval during the training period

that the codeword has NOT recurred

p; q the first and last access times, respectively, that the

codeword has occurred
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In the training period, each value, xt; sampled at time t

is compared to the current codebook to determine which

codeword cm (if any) it matches (m is the matching

codeword’s index). We use the matched codeword as the

sample’s encoding approximation. To determine which

codeword will be the best match, we employ a color

distortion measure and brightness bounds. The detailed

algorithm is given below.
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Algorithm for Codebook construction

I. L 01, C ; (empty set)

II. for t ¼ 1 to N do

(i) xt ¼ ðR;G;BÞ; I  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ G2 þ B2
p

(ii) Find the codeword cm in C ¼ fcij1pipLg matching to xt based on two conditions (a) and (b).

(a) colordistðxt; vmÞp!1

(b) brightnessðI ; h !Im; ÎmiÞ ¼ true

(iii) If C ¼ ; or there is no match, then L Lþ 1: Create a new codeword cL by setting

" vL ðR;G;BÞ
" auxL hI ; I ; 1; t' 1; t; ti:

(iv) Otherwise, update the matched codeword cm; consisting of

vm ¼ ðR̄m; Ḡm; B̄mÞ and auxm ¼ h !Im; Îm; f m; lm; pm; qmi; by setting

" vm  
fmR̄mþR

fmþ1
; fmḠmþG

fmþ1
; fmB̄mþB

fmþ1

" #

" auxm  hminfI ; !Img;maxfI ; Îmg; f m þ 1;maxflm; t' qmg; pm; ti:
end for

III. For each codeword ci; i ¼ 1; . . . ;L; wrap around li by setting li  maxfli; ðN ' qi þ pi ' 1Þg:

The two conditions (a) and (b) in the Step II(ii), detailed

in Eqs. (2, 3) later, are satisfied when the pure colors of

xt and cm are close enough and the brightness of xt lies

between the acceptable brightness bounds of cm: Instead
of finding the nearest neighbor, we just find the first

codeword to satisfy these two conditions. !1 is the

sampling threshold (bandwidth). One way to improve

the speed of the algorithm is to relocate the most

recently updated codeword to the front of the codebook

list. Most of the time, the matched codeword was the

first codeword thus relocated, making the matching step

efficient.

Note that reordering the training set almost always

results in codebooks with the same detection capacity.

Reordering the training set would require maintaining

all or a large part of it in memory. Experiments show

that one-pass training is sufficient. Retraining or other

simple ‘‘batch’’ processing methods do not affect

detection significantly.

2.2. Maximum negative run-length

We refer to the codebook obtained from the previous

step as the fat codebook. It contains all the codewords

that represent the training image sequence, and may

include some moving foreground objects and noise.

In the temporal filtering step, we refine the fat

codebook by separating the codewords that might

contain moving foreground objects from the true

background codewords, thus allowing moving fore-

ground objects during the initial training period. The

true background, which includes both static pixels and

moving background pixels, usually is quasi-periodic

(values recur in a bounded period). This motivates the

temporal criterion of MNRL (l), which is defined as the

maximum interval of time that the codeword has not

recurred during the training period. For example, as

shown in Fig. 1, a pixel on the tip of the tree was

sampled to plot its intensity variation over time. The

codeword of sky-color has a very small l; around 15,

and that of tree-color has 100. However, the codeword

of the person’s body has a very large l; 280.
Let M and TM denote the background model (which

is a refined codebook after temporal filtering) and the

threshold value, respectively. Usually, TM is set equal to

half the number of training frames, N=2;

M ¼ fcm j cm 2 C ^ lmpTMg. (1)

Codewords having a large l will be eliminated from the

codebook by Eq. (1). Even though one has a large

frequency ‘f’, its large l means that it is mostly a

foreground event which was stationary only for that

period f. On the other hand, one having a small f and a

small l could be a rare background event occurring

quasi-periodically. We can use l as a feature to1
 means assignment.
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discriminate the actual background codewords from the

moving foreground codewords. If TM ¼ N=2; all the

codewords should recur at least every N=2 frames. We

note that we also experimented with the combination of

the frequency f and l; but that l alone performs almost

the same as that combination.

Experiments on many videos reveal that only 6.5

codewords per pixel (on average) are required for the

background acquisition in order to model 5min of

outdoor video captured at 30 frames/s. By contrast,

indoor videos are simpler, having one or two back-

ground values nearly everywhere. This reasonable

number of codewords means that our method achieves

a high compression of the background model. This

allows us to capture variable moving backgrounds over

a very long period of training time with limited memory.

2.3. Color and brightness

To deal with global and local illumination changes

such as shadows and highlights, algorithms generally

employ normalized colors (color ratios). These techni-

ques typically work poorly in dark areas of the image.

The dark pixels have higher uncertainty2 than the bright

pixels, since the color ratio uncertainty is related to

brightness. Brightness should be used as a factor in

comparing color ratios. This uncertainty makes the

detection in dark regions unstable. The false detections

tend to be clustered around the dark regions. This

problem is discussed in [17].

Hence, we observed how pixel values change over

time under lighting variation. Fig. 2(b) shows the pixel

value distributions in the RGB space where 4 represen-

tative pixels are sampled from the image sequence of the

color-chart in Fig. 2(a). In the sequence captured in a

lab environment, the illumination changes over time by

decreasing or increasing the light strength to make the

pixel values darker or brighter. The pixel values are

mostly distributed in elongated shape along the axis

going toward the origin point ð0; 0; 0Þ:
Based on this observation, we developed a color

model depicted in Fig. 3 to perform a separate

evaluation of color distortion and brightness distortion.

The motivation of this model is that background pixel

values lie along the principal axis of the codeword along

with the low and high bound of brightness, since the

variation is mainly due to brightness. When we have an

input pixel xt ¼ ðR;G;BÞ and a codeword ci where vi ¼

ðR̄i; Ḡi; B̄iÞ;

kxtk
2 ¼ R2 þ G2 þ B2;

kvik
2 ¼ R̄

2

i þ Ḡ
2

i þ B̄
2

i ;

hxt; vii
2 ¼ ðR̄iRþ ḠiG þ B̄iBÞ

2:

The color distortion d can be calculated by

p2 ¼ kxtk
2 cos2 y ¼

hxt; vii
2

kvik
2

,

colordistðxt; viÞ ¼ d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kxtk
2 ' p2

q

. ð2Þ

Our color distortion measure can be interpreted as a

brightness-weighted version in the normalized color

space. This is equivalent to geometrically rescaling

(normalizing) a codeword vector to the brightness of

an input pixel. This way, the brightness is taken into

consideration for measuring the color distortion, and we

avoid the instability of normalized colors.

To allow for brightness changes in detection, we store
!I and Î statistics, which are the min and max brightness

of all pixels assigned to a codeword, in the 6-tuple

defined in Section 2.1. We allow the brightness change

to vary in a certain range that limits the shadow level

and highlight level. The range is ½I low; Ihi); for each

codeword, defined as

I low ¼ aÎ ; Ihi ¼ min bÎ ;
!I

a

$ %

,
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Most of the time, the pixel shows sky colors 

The tree shows up quasi-periodically with an acceptable λ  

The person occupied the pixel over this period.

frame244

A pixel on the tip of the 

tree was sampled.
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Fig. 1. Example showing how MNRL is used.

2Consider two pairs of two color values at the same Euclidean

distance in RGB space—h10; 10; 10i and h9; 10; 11i for dark pixels,

h200; 200; 200i and h199; 200; 201i for bright pixels. Their distor-

tions in normalized colors are 2
30
¼ j10'9jþj10'10jþj10'11j

30
and 2

200
¼

j200'199jþj200'200jþj200'201j
200

; respectively.
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where ao1 and b41: Typically, a is between 0.4 and

0.7,3 and b is between 1.1 and 1.5.4 This range ½I low; Ihi)
becomes a stable range during codebook updating. The

logical brightness function in Section 2.1 is defined as

brightnessðI ; h !I ; ÎiÞ ¼
true if I lowpkxtkpIhi;

false otherwise:

$

(3)

2.4. Foreground detection

Subtracting the current image from the background

model is straightforward. Unlike MOG or [9] which

compute probabilities using costly floating point opera-

tions, our method does not involve probability calcula-

tion. Indeed, the probability estimate in [9] is dominated

by the nearby training samples. We simply compute the

distance of the sample from the nearest cluster mean.

This is very fast and shows little difference in detection

compared with the probability estimate. The subtraction

operation BGSðxÞ for an incoming pixel value x in the

test set is defined as:

Algorithm for Background subtraction

I. x ¼ ðR;G;BÞ; I  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ G2 þ B2
p

II. For all codewords in M in Eq. (1), find the

codeword cm matching to x based on two

conditions:

" colordistðx; cmÞp!2

" brightnessðI ; h !Im; ÎmiÞ ¼ true

Update the matched codeword as in Step II (iv)

in the algorithm of codebook construction.

III.
BGSðxÞ ¼

foreground if there is no match

background otherwise:

(

!2 is the detection threshold. The pixel is detected as

foreground if no acceptable matching codeword exists.

Otherwise it is classified as background.

2.5. Review of multimode modeling techniques

Here, we compare our method with other multimode

background modeling techniques—MOG [3] and Kernel

[9]. The characteristics of each algorithm are listed in

Table 1.

" Unlike MOG, we do not assume that backgrounds are

multimode Gaussians. If this assumption, by chance,

were correct, then MOG would get accurate para-

meters, and would be very accurate. But this is not

always true. The background distribution could be

very different from normal, as we see in compressed

videos such as MPEG.

ARTICLE IN PRESS

Fig. 2. The distributions of 4 pixel values of the color-chart image sequence having illumination changes over time: (a) original color-chart image,

(b) 3D plot of pixel distributions.
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δ
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Fig. 3. The proposed color model—a separate evaluation of color

distortion and brightness distortion.

3These typical values are obtained from experiments. 0.4 allows large

brightness bounds, but 0.7 gives tight bounds.
4b is additionally used for limiting Ihi since shadows (rather than

highlights) are observed in most cases.
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" Also, in contrast to Kernel, we do not store raw

samples to maintain the background model. These

samples are huge, but do not cover a long period of

time. The codebook models are so compact that we

can maintain them with very limited memory.

" Ours handles multi-backgrounds well. There is no

restriction of the number of backgrounds. It can

model trees which move longer than the raw sample

size of Kernel. Even the rare background events,

which meet the quasi-periodicity condition, survive as

backgrounds.

" Unconstrained training using MNRL filtering allows

moving foreground objects in the training sequence.

" Our codebook method does not evaluate probabilities,

which is very computationally expensive. We just

calculate the distance from the cluster means. That

makes the operations fast.

" MOG uses the original RGB variables and does not

separately model brightness and color. MOG cur-

rently does not model covariances, which are often

large and caused by variation in brightness. It is

probably best to explicitly model brightness. Kernel

uses normalized colors and brightness; the normalized

color has uncertainty related to brightness. To cope

with the problem of illumination changes such as

shading and highlights, we calculates a brightness

difference as well as a color difference of rescaled

RGB values.

3. Detection results and comparison

Most existing background subtraction algorithms fail

to work with low-bandwidth compressed videos mainly

due to spatial block compression that causes block

artifacts, and temporal block compression that causes

abnormal distribution of encoding (random spikes).

Fig. 4(a) is an image extracted from an MPEG video

encoded at 70 kbits/s. Fig. 4(b) depicts 20-times scaled

image of the standard deviations of blue(B)-channel

values in the training set. It is easy to see that the

distribution of pixel values has been affected by the

blocking effects of MPEG. The unimodal model in

Fig. 4(c) suffers from these effects. For the compressed

video, CB eliminates most compression artifacts—see

Figs. 4(c)–(f).

In a compressed video, pixel intensities are usually

quantized into a few discontinuous values based on an

encoding scheme. Their histograms show several spike

distributions in contrast to continuous bell-shaped

distributions for an uncompressed video. MOG has

low sensitivity around its Gaussian tails and less

frequent events produce low probability with high

variance. Kernel’s background model, which contains

a recent N-frame history of pixel values, may not cover

some background events which were quantized before

the N frames. If Gaussian kernels are used, the same

problems occur as in the MOG case. CB is based on a

vector quantization technique. It can handle these

discrete quantized samples, once they survive temporal

filtering (l-filtering).

Fig. 5 illustrates the ability of the codebooks to model

multiple moving backgrounds—The trees behind the

person moving significantly in the video. For the test

sequence5 used in Fig. 5(a), further comparison of our

method was done with 10 different algorithms, and the

results are described in [10].

In areas such as building gates, highways, or path-

ways where people walk, it is difficult to obtain good

background models without filtering out the effects of

foreground objects. We applied the algorithms to a test

video in which people are always moving in and out a

building (see Fig. 6). By l-filtering, our method was able

to obtain the most complete background model.
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Table 1

Characteristics of background modeling algorithms

MOG [3] Kernel [9] CB (proposed)

Model representation Mixture of Gaussians Kernel density Codebook

Model evaluation Probability density estimation Probability density estimation Distance

Parametric modeling Yes No No

Color metric RGB only Normalized color r, g and s

(brightness)

Rescaled RGB and brightness

Background memorization

capacity

As much as K Gaussians hold Short-term (N samples) Almost practically infinite memory

Long-term (N samples)

Memory usage Small Large Compact

Processing speed Slow Slow Fast

Model maintenance Online updating with K Gaussians Short- and long-term models Layered modeling

and detection using cache

5We would like to thank K. Toyama and J. Krumm at Microsoft

Research, for providing us with this image sequence.
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Multiple backgrounds moving over a long period of

time cannot be well trained with techniques having

limited memory constraints. A sequence of 1000 frames

recorded at 30 frames/s (fps) was trained. It contains

trees moving irregularly over that period. The number

of Gaussians allowed for MOG was 10. A sample of

size 300 was used to represent the background. Fig. 7

shows that CB captures most multiple background

events; here we show typical false alarms for a frame

containing no foreground objects. This is due to a

compact background model represented by quantized

codewords.

The implementation of the approach is quite straight-

forward and is faster than MOG and Kernel. Table 2

shows the speeds to process the results in Figs. 7(b)–(d)

on a 2GHz Dual Pentium system. Note that the training

time of Kernel is mostly used for reading and storing

samples.
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Fig. 4. Detection results on a compressed video: (a) original image, (b) standard deviations, (c) unimodal model in [2], (d) MOG, (e) Kernel, (f) CB

(proposed).

Fig. 5. Detection results on multiple moving backgrounds: (a) original image, (b) MOG, (c) Kernel, (d) CB (proposed).
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Regarding memory usage for the results in Figs.

7(b)–(d), MOG requires 5 floating point numbers6 RGB

means, a variance, a weight for each distribution—10

Gaussians correspond to 200 bytes. Kernel needs 3 bytes

for each sample—300 samples amount to 900 bytes. In

CB, we have 5 floating point numbers (R̄; Ḡ; B̄; !I ; Î) and
4 integers (f ; l; p; q)—the average7 number of codewords

in each pixel, 4 codewords, can be stored in 112 bytes.

ARTICLE IN PRESS

Fig. 6. Detections results on training of non-clean backgrounds: (a) original image, (b) MOG, (c) Kernel, (d) CB (proposed).

Fig. 7. Detections results on very long-time backgrounds: (a) original image, (b) MOG, (c) Kernel, (d) CB (proposed).

6Floating point: 4 bytes, integer: 2 bytes. 7The number of codewords depends on the variation of pixel values.
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4. Improvements

In order to make our technique more practically

useful in a visual surveillance system, we improved the

basic algorithm by layered modeling/detection and

adaptive codebook updating.

4.1. Layered modeling and detection—model

maintenance

The motivation of layered modeling and detection is

to still be able to detect foreground objects against new

backgrounds which were obtained during the detection

phase. If we do not have those background layers,

interesting foreground objects (e.g., people) will be

detected mixed with other stationary objects (e.g., car).

The scene can change after initial training, for

example, by parked cars, displaced books, etc. These

changes should be used to update the background

model. We do this by defining an additional model H

called a cache and three parameters—TH; Tadd ; and

Tdelete: The periodicity of an incoming pixel value is

filtered by TH; as we did in the background modeling.

The values re-appearing for a certain amount of time

(Tadd) are added to the background model as non-

permanent, short-term background. We assume that the

background obtained during the initial background

modeling is permanent. Background values not accessed

for a long time (Tdelete) are deleted from the background

model. Thus, a pixel can be classified into four

subclasses—(1) background found in the permanent

background model, (2) background found in the non-

permanent background model, (3) foreground found in

the cache, and (4) foreground not found in any of them.

This adaptive modeling capability also allows us to

capture changes to the background scene (see Fig. 8).

Only two layers of background are described here, but

this can be extended to multiple layers. The detailed

procedure is given below:

I. After training, the background model M is

obtained. Create a new model H as a cache.

II. For an incoming pixel x; find a matching

codeword in M: If found, update the codeword.

III. Otherwise, try to find a matching codeword in H

and update it. For no match, create a new

codeword h and add it to H:
IV. Filter out the cache codewords based on TH:

H H' fhijhi 2H; l of hi is longer than THg

ARTICLE IN PRESS

Table 2

Processing speed in frames/s

MOG Kernel CB

Background training 8.3 40.8 39.2

Background subtraction 12.1 11.1 30.7

Fig. 8. Layered modeling and detection—a woman placed a box on the desk and then the box has been absorbed into the background model as non-

permanent. Then a purse is put in front of the box. The purse is detected against both the box and the desk.

K. Kim et al. / Real-Time Imaging ] (]]]]) ]]]–]]] 9



V. Move the cache codewords staying for enough

time, to M:

M M [ fhijhi 2H; hi stays longer than Taddg

VI. Delete the codewords not accessed for a long time

from M:

M M' fcijci 2M; ci not accessed for Tdeleteg

VII. Repeat the process from the Step II.

Layered modeling and detection can also be used for the

further analysis of scene change detection. As shown in

Fig. 9, a man unloads two boxes after parking the car.

The car and the two boxes are labeled with different

coloring based on their ‘first-access-times’ as non-

permanent backgrounds while the man is still detected

as foreground.

4.2. Adaptive codebook updating—detection under global

illumination changes

Global illumination changes (for example, due to

moving clouds) make it difficult to conduct background

subtraction in outdoor scenes. They cause over-detec-

tion, false alarms, or low sensitivity to true targets.

Good detection requires equivalent false alarm rates

over time and space. We discovered from experiments

that variations of pixel values are different (1) at

different surfaces (shiny or muddy), and (2) under

different levels of illumination (dark or bright). Code-

words should be adaptively updated during illumination

changes. Exponential smoothing of codeword vector

and variance with suitable learning rates is efficient in

dealing with illumination changes. It can be done by

replacing the updating formula of vm with

vm  gxt þ ð1' gÞvm

and appending

s2m  rd2 þ ð1' rÞs2m

to Step II (iv) of the algorithm for codebook construc-

tion. g and r are learning rates. Here, s2m is the overall

variance of color distortion in our color model, not the

variance of RGB. sm is initialized when the algorithm

starts. Finally the function colordistðÞ in Eq. (2) is

modified to

colordist ðxt; viÞ ¼
d

si
.

We tested a PETS’20018 sequence which is challenging

in terms of multiple targets and significant lighting

variation. Fig. 10(a) shows two sample points (labeled 1

and 2) which are significantly affected by illumination

changes and Fig. 10(b) shows the brightness changes of

those two points. As shown in Fig. 10(d), adaptive

codebook updating eliminates the false detection which

occurs on the roof and road in Fig. 10(c).

5. Performance evaluation using PDR analysis

In this section we evaluate the performance of several

background subtraction algorithms using perturbation

detection rate (PDR) analysis. PDR measures, given

a false alarm rate (FA-rate), the sensitivity of a

background subtraction algorithm in detecting low

contrast targets against a background as a function of

contrast (D), also depending on how well the model

captures mixed (moving) background events. As an

alternative to the common method of ROC analysis, it

does not require foreground targets or knowledge of

foreground distributions. PDR graphs show how

sensitively an algorithm detects foreground targets at a

certain contrast (D) to the background as the contrast

increases. A detailed discussion of PDR analysis is

reported in [21].

We evaluate four algorithms—CB (proposed), MOG

[3], KER [9], and UNI [2]. UNI was added to evaluate

single-mode technique in contrast to multi-mode ones.

Since the algorithm in [9] can work with either normal-

ized colors (KER) or RGB colors (KER.RGB), it has

two separate graphs. Fig. 11 shows the representative

empty frames from two test videos.

Fig. 12 depicts an example of foreground detection,

showing differences in detection sensitivity for two

algorithms due to differences in the color metrics. These

differences reflect the performance shown in the

PDR graph in Fig. 13. The video image in Fig. 12(a)

shows someone with a red sweater standing in front of

the brick wall of somewhat different reddish color

shown in Fig. 11(a). There are detection holes through

the sweater (and face) and more shadows behind the

person in the MOG result (Fig. 12(b)). The holes are

mainly due to difference in color balance and not overall

brightness. The CB result in Fig. 12(c) is much better

for this small contrast. After inspection of the image,

the magnitude of contrast D was determined to be about

16 in missing spots. Fig. 13 shows a large difference

in detection for this contrast, as indicated by the

vertical line.

Fig. 14 shows how sensitively the algorithms detect

foregrounds against a scene containing moving back-

grounds (trees). In order to sample enough moving

background events, 300 frames are allowed for training.

A windows is placed to represent ‘moving backgrounds’

as shown in Fig. 11(b). PDR analysis is performed on

the window with the FA-rate obtained only within the

ARTICLE IN PRESS
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window—a ‘window’ false alarm rate (instead of ‘frame’

false alarm rate).

The PDR graph (Fig. 14) for the moving background

window is generally shifted right, indicating reduced

sensitivity of all algorithms for moving backgrounds.

Also, it shows differences in performance among algo-

rithms, with CB and KER performing best. CB and KER,

both of which model mixed backgrounds and separate

color/brightness, are most sensitive, while, as expected,

UNI does not perform well as in the previous case

because it was designed for single-mode backgrounds.

KER.RGB and MOG are also less sensitive outdoors.

ARTICLE IN PRESS

Fig. 9. The leftmost column: original images, the middle column: color-labeled non-permanent backgrounds, the rightmost column: detected

foreground. The video shows that a man parks his car on the lot and takes out two boxes. He walks away to deliver them.
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6. Conclusion and discussion

Our new adaptive background subtraction algorithm,

which is able to model a background from a long

training sequence with limited memory, works well on

moving backgrounds, illumination changes (using our

color distortion measures), and compressed videos

having irregular intensity distributions. It has other

desirable features—unconstrained training and layered

modeling/detection. Comparison with other multimode

ARTICLE IN PRESS

Fig. 10. Results of adaptive codebook updating for detection under global illumination changes. Detected foregrounds on the frame 1105 are labeled

with green color: (a) original image—frame 1, (b) brightness changes, (c) before adaptive updating, (d) after adaptive updating.

Fig. 11. The sample empty-frames of the two videos used in the experiments: (a) red-brick wall, (b) parking lot.

Fig. 12. Sensitive detection at small contrast showing the differences in color metrics of the algorithms: (a) a ‘red-brick wall’ frame including a person

in a red sweater, (b) MOG, (c) CB (proposed).
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modeling algorithms shows that the codebook algorithm

has good properties on several background modeling

problems.

In summary, our major contributions are as follows:

(1) We propose a background modeling technique

efficient in both memory and speed. Experiments

show that nearest neighbor ‘classification’, which is

computationally very efficient, is as effective as

probabilistic classification (both kernel and MOG)

for our application. Practically, even when comput-

ing probabilities of pixel measurements coming from

the background, these probabilities are dominated

by the nearest component of the background

mixture.

(2) The most important lesson, based on our experience,

for analyzing color videos is that using an appro-

priate color model is critical for obtaining accurate

detection, especially in low light conditions such as

in shadows. Using RGB directly lowers detection

sensitivity because most of the variance at a pixel is

due to brightness, and absorbing that variability into

the individual RGB components results in a lower

true detection rate for any desired false alarm rate.

In other words, an algorithm would have to allow

greater color variability than the data actually

requires in order to accommodate the intrinsic

variability in brightness. Using normalized colors,

on the other hand, is undesirable because of their

high variance at low brightness levels; in order to

maintain sufficiently low detection error rates at low

brightness, one necessarily sacrifices sensitivity at

high brightness. This is due to using an angular

measure between normalized color coordinates for

detection. The color model proposed in this paper,

on the other hand, maintains a constant false alarm

rate across, essentially, the entire range of brightness

levels. One would expect that modifying other

background subtraction algorithms, such as the

MOG algorithm, to use this more appropriate color

model would bring their performance much closer to

that of the codebook algorithm.

We have applied the PDR analysis to four background

subtraction algorithms and two videos of different types

of scenes. The results reflect obvious differences among

the algorithms as applied to the particular type of

background scenes. We also provided a real video

example of differences among the algorithms with

respect to sensitive foreground detection which is

consistent with the PDR simulation.

Automatic parameter selection is an important goal

for visual surveillance systems as addressed in [20]. Two

of our parameters, !1 in Section 2.1 and !2 in Section 2.4,

can be automatically determined. Their values depend

on variation within a single background distribution,

and are closely related to false alarm rates. Preliminary

experiments on many videos show that automatically

chosen threshold parameters !1 and !2 are sufficient.

However, they are not always acceptable, especially for

highly compressed videos where we cannot always

measure the robust parameter accurately. In this

ARTICLE IN PRESS
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Fig. 13. PDR for ‘red-brick wall’ video in Fig. 11(a).
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Fig. 14. PDR for window on moving background (Fig. 11(b)).
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regards, further investigation could be done to obtain

robust parameters.
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