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Abstract

Displacement measuring interferometry has high resolution and high dynamic
range, which is widely used in displacement metrology and sensor calibration.
Due to beam leakage in the interferometer, imperfect polarization components,
and ghost reflections, the displacement measurement suffers from periodic error,
whose pitch is multiple harmonics of the Doppler frequency. In dynamic
measurements, periodic error is usually on the order of nanometers, which
impacts the dynamic measurement accuracy. This paper presents an approach
to estimate and correct periodic error in real time based on an extended Kalman
filter, which has the capability to deal with both constant and non-constant
velocity motions. This algorithm is implemented on an application-specific
hardware architecture in an FPGA, which has advantages in throughput and
resource usage compared with conventional implementations. The measurement
validation shows that this approach can effectively eliminate the periodic error
for both constant and non-constant velocity motion, and the residual error
reaches to the level of the background noise of the interferometer.
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1. Introduction

Displacement measuring interferometry (DMI) is a widely used technique
for displacement metrology, and for position feedback sensing in, e.g.,
photolithographic steppers, and position sensor calibration for, e.g., capacitance
sensors, linear variable differential transducers (LVDTs), and linescales.5
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Interferometer architectures can vary depending on the desired target
geometry and intended application [1]. There are two types of displacement
interferometers: 1) homodyne, meaning a single optical frequency is used, and 2)
heterodyne, meaning two optical frequencies are used. In all cases, the metrology
principle is the same: target position changes are recorded as a measured phase
change. So the target displacement is determined by the measured phase change,
the nominal relationship between them is

x =
λ

Nn

φ

2π
, (1)

where x is the displacement of the target, N is the interferometer fold factor
(two for the interferometer used in this work), n is the refractive index along the
optical path difference, λ is the wavelength of the light in the measurement arm,
and φ is the phase difference between the reference and measurement signals.

Displacement interferometry is often used in applications that require its10

high resolution and high precision in both static and dynamic measurement
instances. There are many optical, mechanical, and electrical error sources
in the interferometer system, which must be avoided or corrected to achieve
better performance [2]. Existing machine tool standards [3, 4, 5] define
quasi-static calibration procedures, which are often performed with laser15

interferometers. However, there is a push to establish a standard for performing
dynamic stage calibrations to complement the existing standards for quasi-static
calibrations [6]. For dynamic calibrations, periodic error can have different
implications for the measurement error in static versus dynamic cases. In this
paper, we propose a Kalman filter based method to estimate and correct periodic20

error in real time. We detail the algorithm, demonstrate its functionality
in simulated results, and validate its real-time performance using a precision
positioning system moving with both constant and non-constant velocity motion
profiles.

2. Periodic Error25

Periodic error is a non-cumulative error that manifests as a deviation from
the linear assumption between displacement and phase in (1). Optical and
electrical errors can lead to periodic error, causing a linear displacement to
exhibit a non-linear phase change. This non-linear phase change comprises the
nominal linear relationship between phase and displacement plus a number of30

sinusoidal harmonics, whose pitch is a multiple of the optical resolution of the
interferometer. Many previous studies on periodic error source investigation
have been done, e.g., [7, 8]. For all interferometers, beam leakage in the
interferometer, imperfect polarization components, and ghost reflections can
all cause periodic errors. For heterodyne interferometers, the laser source35

can suffer from polarization mixing, leading to frequency mixing in the source
[9, 7, 8]. The aforementioned leakage, imperfections, and ghost reflections then
exacerbate the effects of laser source mixing. For homodyne interferometers, the
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aforementioned leakage, imperfect optics, and ghost reflections get exacerbated
on the detection side of the interferometer. Here, the overlapping, but not40

interfering, arms of the interferometer are split to generate an additional phase
shift in one set of beams to generate in-phase and quadrature detection signals.
In either case, homodyne or heterodyne, the effect of periodic error is similar in
form and magnitude.

There are two common ways to correct or compensate the periodic error45

to achieve more precise measurement: 1) design a novel optical configuration
that eliminates the periodic error inherently [10, 11, 12, 13, 14], and 2) use
a compensation algorithm applied to the measurement data to correct the
periodic error electronically [15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. A novel
optical configuration of interferometer would lead vastly large and complicated50

setup, and be more sensitive to environment. While a signal processing method
could potentially apply to most of the traditional-configured interferometers,
one can just upgrade the electronic systems without changing any optical
configuration. In this work, we investigate and improve the implementation
of a signal processing algorithm to correct periodic error, achieving on-line55

estimation and real-time correction.
Previous work has demonstrated an effective model for the contributing

sources of periodic error [25, 26, 27, 28]. The measurement and reference signals
can be modeled as

Im ∝ cos(2πfst+ φ) + γ11 cos(2πfst) + γ12 sin(2πfst)

+γ21 cos(2πfst− φ) + γ22 sin(2πfst− φ), (2)

Ir ∝ cos(2πfst), (3)

where fs is split frequency, φ is the displacement-induced phase difference
between measurement and reference signals, which is the desired measurement
quantity. In (2), the first term is nominal measurement signal, the second and
third terms are the first-order periodic error, whose period is one cycle per fringe,60

and the fourth and fifth terms are second-order periodic error, whose period is
two cycles per fringe. Amplitudes γ11, γ12, γ21, and γ22 are corresponding
coefficients of the periodic errors. Typically, γ11 and γ21 contribute major
periodic error, and value of γ12 and γ22 are very small, which are introduced
by slight phase drift. Figure 1 illustrates how the extra periodic error terms in65

measurement signal influence its amplitude and spectrum.
To extract the phase difference φ, lock-in detection and single-bin discrete

Fourier transform methods are commonly used [1, 29]. In those methods, the
measurement signal is multiplied with the in-phase and quadrature components
of the reference signal. Then, the in-phase and quadrature components pass
low-pass filters to remove the high-frequency components, resulting in

Ix ∝+ cos(φ) + γ11 + γ21 cos(−φ) + γ22 sin(−φ), (4)

Iy ∝− sin(φ) + γ12 − γ21 sin(−φ) + γ22 cos(−φ). (5)
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Figure 1: The measurement signal Im in time domain (a) and frequency domain (b) when
simulating a constant velocity motion. In the time domain, the amplitude of the measurement
signal is varied, due to the appearance of periodic error. In the frequency domain, two extra
peaks appear, represent first- and second-order periodic error respectively, whose frequencies
are related to the Doppler frequency fd, and split frequency fs [27].

Like terms can be combined, yielding

Ix =

√

(1 + γ21)
2
+ γ222 cos (φ+ ϕ1) + γ11, (6)

Iy = −
√

(1− γ21)
2
+ γ222 sin (φ− ϕ2) + γ12, (7)

where tanϕ1 = γ22/(1 + γ21) and tanϕ2 = γ22/(1− γ21). These terms can be
expressed in the generic form [19],

Ix = a cos(φg + ϕ) + Ixc, (8)

Iy = b sin(φg) + Iyc, (9)

where
φg = φ− ϕ2,

ϕ = ϕ1 + ϕ2,

Ixc and Iyc are the DC offsets, a and b are the gain of the AC components, and
ϕ is the quadrature phase shift of φg (not exactly π/2 shift between Ix and Iy).
The displacement is represented by the change of phase φ, with constant offset
ϕ2 will not impact the change of φ, thus, not affect displacement measurement.70

The in-phase Ix and quadrature Iy signals for homodyne interferometers have
the same expression [17], thus the following correction method works for both
heterodyne and homodyne interferometers.

In an ideal interferometer setup, γ11, γ12, γ21, γ22 = 0, so |a| = |b|, Ixc =
Iyc = 0 and ϕ = 0, thus the phase difference φ can be extracted by an arctangent
operation directly,

φg = arctan

(

Iy
Ix

)

= arctan

(

sin(φg)

cos(φg)

)

. (10)
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Figure 2: The periodic error of displacement in time domain (a) and frequency domain (b)
when simulating a constant velocity motion. In time domain, the overall periodic error is
usually on the order of nanometer. In frequency domain, the two orders of periodic error
locate at Doppler frequency and two times of Doppler frequency, respectively. If the motion
is non-constant velocity, the two peaks will keep shifting on the spectrum. It is impractical
to use Fourier transform to characterize the periodic error in a long period.

However, in practice, the DC offsets and quadrature phase shift are non-zero,
and the gains are unequal. If (10) is used to extract the phase, the phase it
will be affected by periodic error, which is illustrated in Figure 2. To accurately
determine the phase including periodic error,

φg = arctan

(

Iy − Iyc
(Ix − Ixc) · α+ (Iy − Iyc) · β

)

, (11)

where α and β are correction coefficients in terms of a, b, and ϕ.

α =
b

a cos(ϕ)
, (12)

β = tan(ϕ). (13)

3. Correction Algorithm75

Several data processing algorithms have been proposed to correct the
periodic error. Among them, ellipse fitting is an essential correction method
in interferometer applications. Heydemann [15] presents a linear least-squares
method to identify and correct the gain ratio b/a, DC offsets, and quadrature
phase shift in (8,9) by fitting the ellipse, then calculate the phase using the80

corrected reference and measurement signals. Birch [16] improves the method
and uses a computer to simulate this correction method.

Some modern data processing techniques have also been applied to periodic
error correction, such as neural networks [30] and wavelet transforms [31].
However, due to their computational complexity, they are more suitable for85

off-line processing, and not straightforward to implement an on-line, real-time
solution.
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a

b

Figure 3: The Lissajous curve of raw (Ix, Iy) (ellipse) and corrected (Ix, Iy) (circle). For
those coefficients in (8,9), Ixc and Iyc are the center of ellipse, a and b are major and minor
semi-axes, and ϕ is the angle between the X-axis and the major axis. The goal of ellipse
fitting is to eliminate the influence of DC offset, unequal gain and quadrature phase shift.

3.1. Ellipse Estimation

Mathematically, the Lissajous curve of (Ix, Iy) is an ellipse (see Figure 3).
In analytic geometry, the point (Ix, Iy) satisfies

AIx
2 +BIxIy + CIy

2 +DIx + EIy + F = 0, (14)

where the coefficients (A,B,C,D,E, F ) determines the ellipse. Since the trace
A+C can never be zero for an ellipse, the arbitrary scale factor can be removed90

by the normalization A + C = 1. Thus, the ellipse can be described by a
vector (A,B,D,E, F ) [32]. By estimating the ellipse coefficients, the correction
coefficients α, β, Ixc and Iyc can be calculated using (A,B,D,E, F ). Then, the
periodic error can be corrected by the correction coefficients.

Estimating the ellipse coefficients from noisy data is a common problem in95

the field of computer vision. Several techniques for ellipse fitting have been
presented, including a linear least-squares, orthogonal least-squares, gradient-
weighted least-squares, bias-corrected renormalization, Kalman filters, and
robust techniques [33]. Some of them have been adjusted and applied to periodic
error correction, including linear least-squares and Kalman filtering.100

Wu, et al. [17] applied a linear least-squares method on a set of (Ix, Iy)
measurement data. A computer was used to post-process the estimation and
perform correction operations. Because of the off-line processing, the corrected
data is not suitable for further real-time measurement and control use.

Eom, et al. [20] presented an implementation to adjust (Ix, Iy) in real time105

by using a tunable analog circuit. However, the correction coefficients still must
be calculated on a computer using preliminary measurement data. Each time
the optical setup changes, the correction coefficients must be recalculated off-
line. Also, the correction coefficients must be treated as constant during one
measurement period. Furthermore, the analog circuit can potentially introduce110

other noise and drift.
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Chawah, et al. [23] established a system to estimate the coefficients and
correct the error based on a Kalman filter on a computer. However, the
measurement data has to be transferred from the data acquisition system
(FPGA) to the computer for off-line processing. Like Wu’s method, this too115

is unsuitable for real-time measurement and control.
Kim, et al. [21] developed a digital signal processing module for real-time

periodic error compensation. It can continuously obtain a specific phase result
at the multiples of π/4 to estimate the correction coefficients through simple
arithmetic calculations, instead of matrix operations. However, it is easily120

affected by the accuracy of those specific phases and the speed of the phase
change.

Wang, et al. [18] designed a real-time error correction technique based on a
microcontroller and computational analog circuit. It uses microcontroller run
a regression analysis to calculate the correction coefficients. It can perform on-125

line updates to the correction coefficients, but at a low frequency, only 15 Hz.
Also, it uses a computational analog circuit to correct the error, but has limited
bandwidth about 100 kHz.

From the above investigations, a linear least-square method usually leads to
a closed-form solution, however, it must wait for a large set of measurement130

data to be available, and then operate a single joint evaluation, which is a
set of matrix operations and is difficult to run in real-time. Unlike a linear
least-square method, a Kalman filter has a recursive nature, which makes it is
suitable for processing data in a time series [33]. However, it also has several
matrix operations where in previous work it was chosen to do off-line processing135

using a computer, which also makes the real-time, on-line ellipse estimation
impossible.

In this paper, we present an approach to on-line estimate and update
correction coefficients and real-time correct the periodic error based on a Kalman
filter, which is capable of self-adjusting to both homodyne and heterodyne140

interferometers and even correct time-varying periodic error. In this work, we
developed a compact phasemeter system integrating data acquisition, phase
demodulation, coefficient estimation, and periodic error correction all in one
FPGA board.

3.2. Kalman Filter145

The Kalman filter is a minimum mean-square error estimator, which gives
the optimal estimation of a linear dynamic system model [34]. A discrete linear
dynamic system can be expressed by

xk = Tkxk−1 + ck +wk, (15)

zk = Hkxk−1 + nk. (16)

where the xk is the current state vector, Tk is the state transition model which
is applied to the previous state xk−1, ck is the control vector; wk is the process
noise and usually modeled as white noise, zk is the current observation (or
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measurement) of current state xk, Hk is the observation model, and nk is the
observation noise.150

In this design, the Kalman filter is applied to estimate the ellipse coefficients
(A,B,D,E, F ), so the state vector x is (A,B,D,E, F )

T
. The ellipse coefficients

should be the same for all points on the ellipse, so (15) can be simplified by
setting Tk as identity vector and set wk and ck as zero, thus,

xk = xk−1.

However, the observation model is nonlinear for ellipse estimation, so (16)
should be rewritten in form

zk = h (xk−1) + nk,

where h () is the observation model of ellipse estimation,

h (x, Ix, Iy) = AIx
2 +BIxIy + (1−A)Iy

2 +DIx + EIy + F.

To still use the Kalman filter methodology [34] to estimate ellipse coefficients,
an extended Kalman filter (EKF) should be used to handle this nonlinear
problem. The basic thought is that it linearizes the observation model at each
point using a Taylor series expansion (akin to a tangent line at a certain point
on a curve), then uses the linearized model to replace the original model in155

computation.
The following details the principle of ellipse estimation using an extended

Kalman filter [32]. It linearizes models at each new value of (Ix, Iy). Because
the tangent lines at different points on the ellipse are different, the linearized
observation models and the covariance of observation noise nk must be updated
each time using

Hk =
∂h

∂xk

=
(

Ix
2 − Iy

2, IxIy, Ix, Iy, 1
)

, (17)

Rk = Σ2

(

(

∂h

∂Ix

)2

+

(

∂h

∂Iy

)2
)

= Σ2
(

(2AIx +BIy +D)
2
+ (BIx + (1−A)Iy + E)

2
)

, (18)

where Hk is linearized observation model, Rk is covariance of observation noise
nk, and Σ is the noise level.

Then the model enters the Predict Step of the Kalman filter, it uses the
previous state to estimate the current state. Two variables should be estimated,
one is state xk|k−1, and another is error covariance Pk|k−1, which measures the
estimated accuracy of the state estimate. As it stated before, the Tk is identity
vector, the formulas in the Predict Step are

xk|k−1 = xk−1|k−1, (19)

Pk|k−1 = Pk−1|k−1. (20)
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The initial value of Pk is an identity matrix.
After that, it enters the Update Step, which uses current observation

information to adjust the estimated state. The current observation information
is the measurement residual yk, which is the difference between the true
observation and estimate measurement. The purpose of the Kalman filter is
to use measurement residual to refine the estimate state, and then make the
measurement residual in following iterations approach zero, thus, a feedback
loop is built. The formulas in the Updated Step are

yk = zk − h(xk|k−1, Ix, Iy), (21)

Kk = Pk|k−1H
T
k /(HkPk|k−1H

T
k +Rk), (22)

xk|k = xk|k−1 +Kkyk, (23)

Pk|k = (I−KkHk)Pk|k−1, (24)

where Kk is optimal Kalman gain, xk|k is the updated estimate state, Pk|k is160

the updated estimate covariance.
Equations (17-24) are recursively computed for each new value of (Ix, Iy).

After a certain number of iterations, the state or ellipse coefficients x converges
to a constant value, thus the ellipse is optimally estimated and (A,B,D,E, F )
are ready to be used for correcting the periodic error.165

In fact, the extended Kalman filter is not an optimal estimator due to its
linearization strategy, and its result and performance depend on the initial
estimate state and the order of input data [33]. There are other advanced but
complex EKF, which could achieve a better estimation. However, the general
EKF has been shown to work in engineering estimation problems, specifically170

for ellipse fitting. More importantly, it is practical to implement this algorithm
in real-time in hardware.

3.3. Error Correction

In order to correct the periodic error, the correction coefficients Ixc, Iyc, α,
and β are needed in terms of ellipse coefficients (A,B,C,D,E, F ) [15],

Ixc =
2CD −BE

B2 − 4AC
, (25)

Iyc =
2AE −BD

B2 − 4AC
, (26)

α =
2A√

4AC −B2
, (27)

β =
B√

4AC −B2
. (28)

With ellipse coefficients approaching to constant values, the correction
coefficients also converge eventually, as Figure 4 shows.175

Depending on the arctangent implementation, the ways to correct the
periodic error may vary. If a single-input arctangent (atan( )) is used, it can
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Figure 5: The structure of periodic error correction module. It extracts the correction
coefficients from the input in-phase and quadrature signals and applies the coefficients back
to the signals for correction.

directly calculate

1
Ix−Ixc

Iy−Iyc

· α+ β
, (29)

and then feed the result into arctangent (11). If a dual-input arctangent
(atan2( , )) is used, it must correct Ix, Iy separately first,

I ′x = (Ix − Ixc) · α+ (Iy − Iyc) · β, (30)

I ′y = Iy − Iyc, (31)

and then feed them into the arctangent separately (10).

4. Implementation

The implementation of this periodic error correction module consists of
two parts: one is correction coefficients estimation part, and another is error
correction part. The structure is as Figure 5 shows.180

As we know, in the middle of the phasemeter process [1, 29], an in-phase
signal and a quadrature signal are generated to extract phase by an arctangent.
The correction coefficients estimation part uses the in-phase and quadrature
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signals to estimate the ellipse coefficients, and then converts them to correction
coefficients (25-28). The periodic error correction part is also applied to the in-185

phase and quadrature signals. By using simple arithmetic operations with the
correction coefficients, it corrects the periodic error in in-phase and quadrature
signals.

4.1. Correction Coefficients Estimation Design

The correction coefficients estimation part in this design consists of two steps:190

estimating the ellipse coefficients based on an extended Kalman filter, and then
calculating correction coefficients using ellipse coefficients (25-28). The Kalman
filter is the critical part in the model. Two solutions are commonly used to
implement the Kalman filter in hardware.

One is to program the Kalman filter algorithm in C/C++, and execute it195

as software in a microprocessor [18, 35], which is straightforward for design
and rapid for algorithm verification and prototyping. Due to the occurrence
of matrix multiplications, which consist of an amount of basic arithmetic
operations, the microprocessor must take a long time to serially execute these
operations for each input, which leads to low throughput (thousands of clock200

cycles per output).
Another is to map the Kalman filter to an HDL-designed, parallel, pipelined

architecture in FPGA, also known as systolic array [36]. The systolic array is
dedicated hardware for matrix operations specifically. It inherently has higher
throughput than the universal arithmetic logic unit (ALU) in a microprocessor,205

which means it can update those four correction coefficients at a higher
frequency. However, the systolic array architecture is difficult to design.

We present a new implementation other than those two previously-reported
methods. It implements more dedicated hardware architecture of Kalman filter
for the ellipse fitting application specifically, which costs considerably fewer210

hardware resources and less time to execute.

4.1.1. Microprocessor Based

In this method, the coefficients estimation module is implemented in a
microprocessor. An embedded soft processor and a co-processor provide
universal ALU and specific floating-point arithmetic operations circuits, which215

can integrate into an FPGA-based phasemeter [35, 37]. The Kalman filter
algorithm for ellipse estimation is implemented in C/C++ software. The
software is executed by the microprocessor and manages each fundamental
operation of coefficient estimation sequentially.

Due to the limitation of the maximum clock frequency of the soft processor220

and co-processor, and the complicated matrix operations of the Kalman filter
(time complexity: O(n2)), the software cannot process every input (Ix, Iy)
for fitting the ellipse. So this downsampling makes it update the correction
coefficients in a relatively low frequency. It needs about 1.54× 104 clock cycles
to process one input (Ix, Iy), and the clock frequency is 100 MHz, so this method225

could only update correction coefficients at 6.5 kHz.
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Some further options may increase the updating frequency. For example, if a
SoC FPGA is available, the integrated ARM-based hard processor could run up
to 800 MHz, which accelerates the processing speed; and it may support fixed-
point operations, which is even faster than current floating point operations.230

4.1.2. Systolic Array Based

The systolic array is a homogeneous network of Data Processing Units
(DPU). Unlike the microprocessor based Kalman filter using the universal ALU
in the processor, the systolic array based Kalman filter uses dedicated hardware
to achieve matrix operations, which is easy to achieve pipelining and parallel235

processing. Previous work has proposed to implement the Kalman filter in an
FPGA based on a systolic array [36, 38].

The systolic array has advantages in resource efficiency when used for large
scale matrix operations, which are high computationally intensive tasks [39],
such as image processing, biological sequence comparison, and graph algorithms.240

However, when the scale of the matrix is very small, the advantages become
insignificant. The most complex operation is a 1-by-5 matrix multiplying a 5-
by-5 matrix in the ellipse fitting application, which is much lighter than above
applications.

4.1.3. Application-specific Architecture Based245

This dedicated hardware architecture is for ellipse fitting application
specifically. Instead of dealing with matrix operations, this method decomposes
the Kalman filter equations to a lower scale, which deals with the single elements.
Because the ellipse fitting application only has small scale matrices, the amount
of the elements is acceptable.250

First, we decompose the Kalman filter equations to several fundamental
functions (Table. 1). Some of the fundamental functions depend on the result
of previous functions, which means they must wait for the previous functions to
be completed. Some functions contain an amount of the same basic operations,
which means if they are executed simultaneously, it costs considerable hardware255

resources. Hence, for those functions depending on the previous one, it is not
necessary to assign dedicated hardware for them. They can just share the
hardware with the previous one, which optimizes the resource usage and does
not influence the overall throughput. For those functions which contain a large
number of the same operations, we can make their hardware pipelined and260

folded, which reuses the hardware but decreases the throughput slightly. Hence,
we need to find the most common operation sets, whose hardware could be
shared among the functions, but also have balanced parallelism.

Steps 2 and 3, and correction coefficients calculation (25-28) execute similar
operation set, which can be abstracted as

a+ b× c+ d× e× f.

Its architecture is shown schematically in Figure 6. The hardware of the
operation set is designed as pipelined. By sharing the hardware among those265

steps, it saves the resource and keeps acceptable throughput.
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Table 1: Fundamental Functions of Kalman Filter Processing

Step Function Op Set

1 H(Ix, Iy) N/A

2 R(Ix, Iy,x) 1

3 y(Ix, Iy,x) 1

4 PHi = P×HT 2

5 HP = H×P 2

6 HPHi = HP ×HT 2

7 K = PHi/(HPHi +R) N/A

8 x = x+K× y 3

9 P = P−K×HP 3

Z
-n

Z
-n

Figure 6: The architecture of operation set 1. And it takes 7 clock cycles from input to result.

The matrix multiplications in Steps 4, 5, and 6 are M1,5 × M5,5,
M5,5 × M5,1, and M1,5 × M5,1

1. These functions contain a large amount
of element addition and multiplication operations. If every addition and
multiplication operation was assigned dedicated hardware, it could execute
these operations simultaneously and achieve maximum throughput, but cost
considerable hardware resources. If they are constrained to share only one
adder and one multiplier, it achieves minimum hardware usage, but significantly
decreases the throughput resulting from sequential operation. Hence, to balance
the hardware usage and throughput, we design a pipelined common operation
set:

a1b1 + a2b2 + a3b3 + a4b4 + a5b5,

which is between all-dedicated and all-shared hardware. This architecture is
shown schematically in Figure 7a.

For instance, the functions M1,5 ×M5,5 needs five of this operation set. As
Figure 7b shows, this architecture could feed the operands in at five clock cycles270

sequentially. Because it is pipelined, it only takes four more clock cycles than
all-parallel processing, but save 4/5 of the hardware resource.

1
Mi,j represents a matrix, which has i rows and j columns.
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Figure 7: (a) is the architecture of operation set 2. Its function is to calculate the summary
of five results of multiplication, which is a common operation set in matrix multiplication.
The internal signals are exactly synchronous. (b) is the timing for operating this set. It is
pipelined, so at each clock it could have a new data in. And it takes 8 clock cycles from input
to result.

Z
-n

(a)

4T

1T

(b)

Figure 8: (a) is the architecture of operation set 3. Its function is to calculate 6 multiply-
accumulate operations in parallel. (b) is the timing for operating this set. At each clock, it
feeds the operands for 6 multiply-accumulate operations. And it takes 4 clock cycles from
input to result.

Similarly, Steps 8 and 9 also contain large amount of addition/substation
and multiplication, but they can be abstracted as multiply-accumulate:

a+ b× c.

Its architecture is shown in Figure 8a. To calculate x and P, it needs 30
multiply-accumulate operations in total. Likewise, to balance to resource
usage and throughput, we implement an architecture with 6 pipelined multiply-275

accumulate in parallel, so it only needs to feed the operands in five continuous
clock cycles to complete all computation (Figure 8b).

Additionally, with one more standalone adder, multiplier, divider and square
root, all nine steps of Kalman filter and correction coefficients calculation (25-
28) could be calculated by the combination of above common operation sets and280

the standalone operations. Meanwhile, it achieves optimal hardware usage and
throughput balance.
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Eventually, the correction coefficients estimation module in this method
needs only 125 9 × 9 multipliers, which is 23.5% of the multiplier resource on
the DE2-115 FPGA board and 9.7% of that on the TR4 FPGA board. DE2-115285

and TR4 are two FPGA development boards used in this research.
All of the common operation sets and standalone operations are pipelined.

Meanwhile, by carefully arranging the timing of each operation, the overall
ellipse coefficients estimation (Kalman filter) and correction coefficients
calculation only take 44 clock cycles for one iteration (for easy downsampling,290

approximate to 50). In this project, the system clock is 50 MHz, so the correction
coefficients (α, β, Ixc, Iyc) can update at 1 MHz.

In aspects of hardware resource usage and throughput, this method is
superior to other two methods. It is practical to implement the application-
specific architecture based Kalman filter in FPGA.295

4.2. Error Correction Design

The error correction part corrects the input (Ix, Iy) based on the correction
coefficients. Since the input (Ix, Iy) are fixed-point signals, which are originally
digitized by the analog-to-digital converter, and following arctangent operation
is also fixed-point, it is necessary to convert the floating-point correction300

coefficients (α, β, Ixc, Iyc) to fixed-point first, and then operation fixed-point
error correction.

It is difficult and inefficient to implement fixed-point division on an FPGA,
so we do not consider single-input atan, which uses a result of division (29) as
an operand. A dual-input CORDIC-based atan2 can accept the numerator and305

denominator (11) separately, which avoids the division operation. Hence, the
next step is to calculate the corrected I ′x (30) and I ′y (31) separately.

The fixed-point correction operations can generate an output every clock
cycle, so it could correct every input (Ix, Iy) based on the latest correction
coefficients.310

However, if the periodic error is time-varying, the correction coefficients
estimation part needs 50 clock cycles to generate new coefficients, so the latest
correction coefficients may not reflect the current state. That is the reason why
it is preferential to update the correction coefficients as fast as possible, which
make it more accurately represent the current state. However, in this paper, we315

will only discuss the situation with constant periodic error amplitude.

4.3. Initial Value

Because the Kalman filter is a recursive process, it needs time to approach
to optimal estimation. The closer the initial value to the actual value, the
sooner it can converge, so the convergence time is important for ellipse fitting.320

If there is no periodic error in a heterodyne interferometer, the Lissajous curve
of (Ix, Iy) is a circle with a radius of 0.5. The ellipse coefficients x for this
circle are (0.5, 0, 0, 0,−0.125). Usually, the ellipse (Ix, Iy) does not deform too
much from a circle, it is fair to set it as the initial value for any uncharacterized
setup. If the ellipse coefficients are already known from previous measurements,325
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Figure 9: The setup of HIL simulation. On PC side, Stimulus is generated by
Matlab/Simulink, and transmitted to FPGA by Ethernet. On FPGA side, the stimulus is
processed by periodic error correction module, and the result is transmitted back to PC for
further processing and analysis.

the initial value could also be set as those known coefficients, which make it
converge sooner. The initial value in practice could be easily customized on
demand.

The noise level Σ is another coefficient that can be customized. It determines
the convergence process to be rapid but unstable, or gentle but rigid. In this330

work, we found Σ = 0.05 to be suitable as the default value.

5. Simulations

To determine the functionality and performance of this periodic error
correction module, a series of simulations were performed. By processing
computer-generated signals, it isolates other optical and mechanical error335

sources and obtains information on the error contribution and process capability
of this correction module only.

Traditional software simulations for FPGA digital signal processing
algorithms have a long simulation runtime, and application-specific availability
and accuracy. Because the software cannot fully imitate the conditions and340

environment of the real world, the results may not reflect its real performance
in hardware. A technique called FPGA hardware-in-the-loop (HIL) was used to
verify the functionality and performance of the FPGA design. Unlike software
simulation, HIL simulation allows data to be processed in real time by the FPGA
hardware rather than by the software. The stimulus data are generated by345

Matlab/Simulink, which could be arbitrary or customized, and fed to the FPGA,
and then the FPGA computational results are collected by the Matlab/Simulink
for further analysis and display. This approach accelerates simulation time, and
also ensures that the algorithm will behave as expected in the real world [40].
The setup of this simulation is shown in Figure 9.350

In this paper, two main scenarios were simulated. One is the measured
target has a constant velocity, another is the measured target has non-constant
velocity, which leads the Doppler frequency to be constant or not. As the
Figure 10 shows, when the Doppler frequency is constant, the points on the
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Figure 10: Doppler frequency influences the distribution of samples on Lissajous curve. (a) and
(b) show the Lissajous curves of in-phase (I) and quadrature (Q) signals of the measurements
with periodic error. Constant Doppler frequency leads even distribution (a), and non-constant
Doppler frequency leads uneven distribution (b).

Lissajous curve distribute evenly. However, when the Doppler frequency is355

non-constant, the point on the Lissajous curve is not evenly. The simulations
will figure out whether the distribution of samples impacts the ellipse fitting
performance.

In following simulations (5.1, 5.2), it assumes that the amplitude of each
order of periodic error is constant. Because generally once interferometer360

configuration setup, the amplitude of periodic error is almost constant or just
slightly changes during one measurement.

5.1. Constant Velocity

Constant velocity is the most common scenario of target motion
measurement. Most of the periodic error correction methods deal with this365

scenario. In this paper, several simulations are performed in different constant
velocities to verify its performance in this basic scenario.

The following simulations simulate the measurements taken by a heterodyne
interferometer with 100 kHz split frequency. The velocities of measured target
are 1 mm/s (Doppler frequency: 3.16 kHz) and 10 mm/s (Doppler frequency:
31.6 kHz). The sampling frequency of the system is 50 MHz. The computer-
generated stimulus are given by:

Ix =0.5 ((1 + γ21) cos (2πfd)− γ22 sin (2πfd) + γ11) , (32)

Iy =0.5 ((γ21 − 1) sin (2πfd) + γ22 cos (2πfd) + γ12) , (33)

where fd is Doppler frequency, which is a constant value. Coefficients γ11 is 0.1,
γ12 is 0.02, γ21 is 0.08, γ22 is 0.03.

From Figure 11a and Figure 12a, we can see the residual error (red) takes370

a short time to reach steady state, and then keeps at picometer levels. In
frequency domain, for 1 mm/s velocity simulation (Figure 11b), the periodic
error correction method could decrease first- and second- order error by 75.9 dB
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Figure 11: Comparison of periodic error before and after correction. The Doppler frequency
is 3.16 kHz. In the time domain (a), the periodic error attenuates from ±8.0 nm to ±2.1 pm,
RMS attenuates from 4.7 nm to 0.7 pm. In the frequency domain (b), the first- and second-
order error attenuate 75.9 dB and 102.0 dB, respectively.
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Figure 12: Comparison of periodic error before and after correction. The Doppler frequency
is 31.6 kHz. In the time domain (a), the periodic error attenuates from ±8.0 nm to ±2.1 pm,
RMS attenuates from 4.7 nm to 0.7 pm. In the frequency domain (b), the first- and second-
order error attenuate 76.2 dB and 88.4 dB, respectively.

and 102.0 dB; for 10 mm/s velocity simulation (Figure 12b), it could decrease
first- and second- order error by 76.2 dB and 88.4 dB.375

According to the simulation results, the residual errors after correction
are just slightly varying among different Doppler frequencies, but significantly
attenuated compared with original periodic errors. So this implementation can
effectively correct periodic error for constant velocity measurements, and has
very high correction performance consistently.380

5.2. Non-constant Velocity

Non-constant velocity is a common scenario for target motion measurement
as well, including changing direction, accelerating, and decelerating. The
following simulations simulate the target moving in sinusoidal velocities, which
is typical motion in manufacturing processes.385
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Figure 13: Comparison of periodic error before and after correction, when the Doppler
frequency is oscillating at 100 Hz. When the peak Doppler frequency is 1.99 kHz
(0.63 mm/s) (a), the periodic error attenuates from ±8.0 nm to ±2.1 pm, RMS attenuates
from 4.5 nm to 0.6 pm. When the peak Doppler frequency is 49.6 kHz (15.7 mm/s) (b), the
periodic error attenuates from ±8.0 nm to ±2.3 pm, RMS attenuates from 4.7 nm to 0.7 pm.

Four simulations are performed. They are the combination of two peak
velocities 0.63 mm/s and 15.7 mm/s, and two frequencies of oscillating 10 Hz
and 100 Hz. The other parameters are the same as that in the constant velocity
simulation. The computer-generated stimulus are similar to (32,33), except the
Doppler frequency is non-constant:

fd = fp sin (2πfot) , (34)

where fp is peak Doppler frequency, fo is the frequency of velocity oscillating.
From Figure 13 and Figure 14, no matter what the peak velocity (Doppler

frequency) or the frequency of oscillating is, the peak-to-peak periodic error
and RMS of periodic error decrease to picometer level, which is more than
three orders of magnitude lower than the original errors. Because the Doppler390

frequency is continuously changing during one measurement, only time-domain
plots of periodic error are given here.

According to the simulation results, the amplitude of residual error after
correction are the almost same for these four simulations, and significantly
decreased compared with the original periodic errors. So the uneven distribution395

of samples does not influence the accuracy of ellipse fitting, and the error
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Figure 14: Comparison of periodic error before and after correction, when the Doppler
frequency is oscillating at 10 Hz. When the peak Doppler frequency is 1.99 kHz
(0.63 mm/s) (a), the periodic error attenuates from ±8.0 nm to ±2.2 pm, RMS attenuates
from 5.2 nm to 0.6 pm. When the peak Doppler frequency is 49.6 kHz (15.7 mm/s) (b), the
periodic error attenuates from ±8.0 nm to ±2.1 pm, RMS attenuates from 4.6 nm to 0.7 pm.

correction performance for non-constant velocity is comparable to that for
constant velocity.

5.3. Performances

All previous simulations test the functionality, however, the performances,400

like the speed of convergence and noise tolerance, are also critical
specifications [16, 30]. Hence, we also investigate the speed of convergence and
the RMS of residual noise in output for the different input noise levels.

Mathematically, the noise level is Σ in (18). The higher noise level leads to
the higher covariance of observation noise Rk, thus, leads to smaller optimal
Kalman gain Kk in (22). According to (19) and (23),

xk|k = x0|0 +
k
∑

i=0

Kiyi, (35)

where xk|k is the updated estimate state at k-th iteration, x0|0 is the initial
state. Assume x is the real state, when xk|k is within x ± ε, we consider it as
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Figure 15: The RMS of the residual noise in output when adding different levels of noise to
input signals. The solid lines are the local RMS of 50 points of residual noise after correction.
Using local RMS instead of global RMS eliminates the influence of transient state at the
beginning. The dash lines are the levels of input noise. Because the Kalman filter in this
design only deals with periodic error, the white noise in the inputs will pass through and be
left in the output.

the real state. Thus,

∣

∣x− xk|k

∣

∣ =

∣

∣

∣

∣

∣

x− x0|0 −
k
∑

i=0

Kiyi

∣

∣

∣

∣

∣

≤ ε. (36)

If Ki becomes smaller for each iteration, it needs more iterations to hold
inequality (36), which slows the speed of convergence.405

To test its noise tolerance and convergence speed, we add 0.5%, 1% and
2.5% white noise to the input signals2, and then compare the RMS of noise
in output with and without correction. The stimulus signals Ix, Iy are
generated based on the correction coefficients (α, β, Ixc, Iyc), which are set
as (1.1434,−0.1676,−0.06854,−0.0702) in this test. The results are shown in410

Figure 15.
From the simulations, we can see the white noise introduced to input signals

also appears in the output, because the periodic error correction does not have a
mechanism to eliminate the noise. Meanwhile, the residual noise levels approach
to input noise levels eventually, which means it will not amplify the noise as415

well. However, the noises do impact the performance of the correction. The
large ripple in the red line reflects that variations caused by noise on input
Ix, Iy impact the accuracy of the ellipse fitting, and the higher level noise
impacts the fitting much more significant. The noise also influences the speed
of convergence. In the ideal case (0% noise), it needs only 0.6 cycle to achieve420

the optimal estimation, however, along with the noise increasing to 2.5%, it
needs about 1 cycle but still not stable, which means that it may need 633 nm
(1 cycle) length to get stable correction coefficients in real measurement.

2In fact, the profiles of actual noise in Ix, Iy for homodyne and heterodyne interferometers
may be different. For heterodyne interferometer, Ix, Iy are filtered by previous low-pass
filters, so the spectrum of the noise should decrease towards high frequency, depends on the
characteristic of the filters. For simplification, we use white noise for simulations.
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Figure 16: The optical layout of the heterodyne interferometer used for testing. Apertures
(aper.) are used to set the level of periodic error.

Several techniques can be applied to front-end digital signal processing
system, photodetector system, and optical setup to attenuate the noise, or425

increase signal-to-noise ratio, such as using filters to attenuate particular
frequency band of noise, isolating the optical setup and detectors to avoid the
light and temperature variation from the environment. Controlling the noise
level of the input signals is helpful to achieve optimal periodic error correction
performance.430

6. Measurement Validation

We also use real measurement data to validate our implementation.
A heterodyne Twyman-Green interferometer was used to measure the
displacement of the nPoint nano-positioning stage, the interferometer’s optical
layout is shown in Figure 16. The interferometer is mounted on an optical435

isolation table to minimize vibration noise. A Zeeman laser (Hewlett Packard,
HP 5518A) with a split frequency of 1.91 MHz was used as a source for
the heterodyne interferometer. The beam passes through a non-polarizing
beamsplitter (BS), where the reflected beam is interfered using a polarizer
and detected on a photodiode (PD) generating the optical reference. The440

other portion of the beam travels to a polarizing beam splitter (PBS). Here,
the two orthogonal beams split via polarization and frequency. Each passes
through a quarter wave plate (QWP), before reflecting from the reference
and measurement mirrors. Upon reflection, the beams pass back through the
QWP, rotating their respective polarizations a total of 90◦. Now, the originally445

reflected beam transmits through the PBS and vice versa for the originally
transmitted beam. The two beams are then interfered with a polarizer and
detected using a PD to generate the measurement signal. Apertures are used
on the reference and measurement beams directly before the PDs to help set
the level of periodic error.450

The heterodyne frequency of the laser is 1.91 MHz, which is higher than
the maximum bandwidth of 100 kHz of the lock-in amplifier (Sanford Research,
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SR830) used to measure the phase change. This was solved by down mixing
the 1.91 MHz heterodyne frequency with a common local oscillator driven at
1.88 MHz using a function generator (Tektronix, AFG3022B) and frequency455

mixers (Mini-Circuits, AZD-1-1+). The signal output from the frequency mixers
has both 30 kHz and 3.79 MHz components. The higher frequency was removed
using a low pass filter (Krohn-Hite, 3944) to precondition the signal for the lock-
in amplifier, and amplify the signals by 20 dB. The lock-in amplifier produces in-
phase (8) and quadrature (9) signals for following phase measurement and error460

correction use. The data from the lock-in amplifier was recorded with LabView
and an NI-6529 DAQ card on a Windows PC. The NI DAQ was also used to
generate voltage drive signals, which were directly sent to the nPoint controller.
The built-in capacitive sensor of nPoint stage provides its instantaneous position
under closed-loop control. The readout of the capacitive sensor is used as the465

reference to examine the periodic error in interferometer measurement.
We met a technical difficulty in recording capacitive sensor readout and

periodic error correction module readout simultaneously. For comparison
purpose, we chose simultaneously record capacitive sensor readout, in-phase,
and quadrature signals instead, and then feed the in-phase and quadrature470

signals to correction module.
Several constant and non-constant velocity measurement profiles have

been taken. Figure 17 shows two constant velocity motion measurements
comparison among capacitive sensor, interferometer, and interferometer with
error correction.475

When the target has a constant velocity, its displacement is a linear ramp
ideally. Figure 17a and 17c show the residual errors after removing the linear
trend of the displacement. The raw DMI measurement has an error about
±20 nm, which is a superposition of periodic error, the effects of temperature
and refractive index drift, utility frequency (60 Hz and its harmonics), and data480

acquisition system. After periodic error correction, the residual errors go down
to ±2 nm, which is also smaller than the noise of capacitive sensor measurement
±6 nm. Figure 17b and 17d show the spectrum of residual errors. The first and
second order periodic errors are removed after correction, whose amplitudes are
attenuated about 50 dB and 30 dB, respectively. There is a third order periodic485

error that appears in the spectrum due to misalignment, but it is attenuated
to the baseline of noise too. Some other peaks appear at the same position on
the three spectrums. They are the common residual error or noise from utility
frequency, environment, data acquisition system, and the stage itself.

Two non-constant velocity measurement profiles also have been measured490

to compare the residual errors among capacitive sensor, interferometer, and
interferometer with error correction. In this case, the stage has sinusoidal
velocity, sinusoidal displacement, and its periodic error has a time-varying
frequency. Figure 18 shows the errors of each measurement. There is a common
drift on the errors, which is caused by the respond of stage’s closed-loop control.495

Regardless of the drift, the capacitive sensor has a noise about ±6 nm. The raw
DMI measurement has an error about ±20 nm, which has the same sources as
the previous measurement. After residual correction, the error goes down to
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Figure 17: Measurement error comparison among capacitive sensor, interferometer, and
interferometer with error correction. (a) and (b) are the residual error and its spectrum
for 11µm/s motion (Doppler frequency 35Hz) measurement. After correction, the first- and
second- order error attenuate 48.5 dB and 36.5 dB, respectively. (c) and (d) are the residual
error and its spectrum for 99.7µm/s motion (Doppler frequency 315Hz) measurement. After
correction, the first- and second- order error attenuate 51.1 dB and 26.9 dB, respectively.

±1.5 nm. Those residual errors have the same amplitudes as that in constant
velocity scenario. So this correction module has consistent performance in both500

constant and non-constant velocity measurements.
Above measurements are just a part of the measurements we did, all of

them show that Kalman filter algorithm and implementation could attenuate
the periodic error effectively, no matter what the velocity is and how the velocity
changes. Currently, the residual error after correction is about ±1.5 nm, which505

are all from other sources. The periodic error is effectively corrected.

7. Conclusion

We present a periodic error correction implementation for the heterodyne
interferometer, and compatible with the homodyne interferometer. This module
can on-line estimate and update correction coefficients at 1 MHz, and real-time510

correct the periodic error at 50 MHz. It also has the capability to deal with
slow time-varying periodic error.
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Figure 18: Measurement error comparison among capacitive sensor, interferometer, and
interferometer with error correction. (a) illustrates the residual errors when measuring a
sinusoidal motion: 5µm· sin (2π · 0.1Hz · t). (b) illustrates the residual errors when measuring
a sinusoidal motion: 5µm· sin (2π · 1Hz · t).

This periodic error correction module is based on ellipse fitting using
extended Kalman filter. Its application-specific hardware architecture in
FPGA takes only 44 clock cycles to finish one iteration of the Kalman filter515

process. This implementation has advantages in throughput and resource usage
compared with conventional implementations.

In the measurement validation, the module can effectively eliminate the
periodic error for both constant and non-constant velocities. The residual error
after correction is about ±1.5 nm, which is background noise limited by the520

DMI system, not the periodic correction module.
This technique needs approximately one cycle (Ix, Iy) data to get stable

correction coefficients, which means it needs to move 633 nm to estimate the
coefficients. For the displacement measurement shorter than 633 nm, it cannot
estimate stable coefficients during measurement, so a prior estimating process525

has to be performed before measurement.
In the future, we will build a better interferometer setup to achieve lower

background noise. We will also design an interferometer configuration, which
could introduce time-varying periodic error, and test the correction performance
of this module for the time-varying periodic error.530
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