
Real-Time Garbage Collection for Java

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

Abstract

Automatic memory management or garbage collection
greatly simplifies the development of large systems. How-
ever, garbage collection is usually not used in real-time sys-
tems due to the unpredictable temporal behavior of current
implementations of a garbage collector. In this paper we
propose a concurrent collector that is scheduled periodi-
cally in the same way as ordinary application threads. We
provide an upper bound for the collector period so that the
application threads never run out of memory.

1. Introduction

Garbage Collection (GC) is an essential part of the Java
runtime system. GC enables automatic dynamic mem-
ory management which is essential to build large applica-
tions. Automatic memory management frees the program-
mer from complex and error prone explicit memory man-
agement. However, garbage collection is considered unsuit-
able for real-time systems due to the unpredictable block-
ing times introduced by the GC work. As one solution to
use Java for real-time systems the Real-Time Specification
for Java (RTSJ) [4] introduces new thread types with pro-
gram managed, scoped memory for dynamic memory re-
quirements. This scoped memory (and static memory called
immortal memory) is not managed by the GC.

We believe that for the acceptance of Java for real-time
systems the restrictions imposed by the RTSJ are too strong.
To simplify creation of possible large real-time applications
most of the code should be able to use the GC managed
heap. For a collector to be used in real-time systems two
points are essential:

• The GC has to be incremental with a short maximum
blocking time that has to be known

• The GC has to keep up with the garbage generated by
the application threads to avoid out-of-memory stalls

The first point is necessary to limit interference between the
GC thread and high-priority threads. The second issue that
has to be considered is scheduling the GC so that the GC
collects enough garbage. The memory demands (static and
dynamic) by the application threads have to be analyzed.
These requirements together with the properties of the GC
result in scheduling parameters for the GC thread. We pro-
vide a solution to calculate the maximum period of the GC
thread that collects enough memory in each collector cycle
so we never run out of memory. The collector cycle depends
on the heap size and the allocation rate of the application
threads.

To distinguish between other garbage collectors and a
collector for (hard) real-time systems we define a real-time
collector as follows:

A real-time garbage collector provides time pre-
dictable automatic memory management for tasks
with bounded memory allocation rate with mini-
mal temporal interference to tasks that use only
static memory.

The collector presented in this paper is based on [13, 6,
2]. However, the copying collector performs the copy of an
object concurrent by the collector and not as part of the mu-
tator work. Therefore we name it concurrent-copy collector.
We use the terms first introduced in [6]. The application is
called the mutator to reinforce that the application changes
(mutates) the object graph while the GC does the collection
work. The GC process is simple called collector.

The paper is structured as follows: Section 2 provides an
introductional example of concurrent collection for a mark-
compact and a copy collector. In Section 3 the minimum
heap size for a mark-compact and copying collector are
given. It is shown that the necessary heap size for a mark-
compact collector is similar to the heap size for a copying
collector. Based on the findings from Section 3 we provide
an upper bound for the collector period so that the appli-
cation threads never run out of memory in Section 4. It is
also shown how producer/consumer threads and static ob-
jects can be incorporated in the collector period analysis.



l7f6f5f4

after compaction

l7f6f5f4

before compaction

g3g2g1

l5f4

in the middle (marking)

g1 g2 g3

g1 g2 g3 l4

at the begin of the GC cycle

Figure 1. Heap usage during a mark-compact
collection cycle

Furthermore we provide a simpler solution for static objects
than the immortal memory in the RTSJ. In Section 5 we
show experiments where the results from this paper are ap-
plied on the first prototype implementation of a concurrent-
copy collector on a Java processor. Section 6 presents re-
lated work and the paper is concluded in Section 7.

This paper makes a strong statement to consider a peri-
odic scheduled, concurrent garbage collector as an option
for hard real-time systems. The collector period, besides
the WCET of the collector, is the single parameter of the
collector that can be incorporated in standard schedulability
analysis.

2. An Example

We start our discussion with a simple example1 where
the collector period is 3 times the mutator period and a heap
size of 8 objects. We show the heap during one GC cycle for
a mark-compact and a concurrent-copy collector. The fol-
lowing letters are used to show the status of a memory cell
(that contains one object from the mutator in this example)
in the heap: gi is garbage from mutator cycle i, l is the live
memory, and f is floating garbage. We assume that all ob-
jects that become unreachable during the collection remain
floating garbage.

Figure 1 shows the changes in the heap during one col-
lection cycle. At the start there are three objects (g1, g2, and
g3) left over from the last cycle (floating garbage) which are
collected by the current cycle and one live object l4. During

1The relation between the heap size and the mutator/collector propor-
tion is an arbitrary value in this example. We provide the exact values in
the next sections.

l5f4

f5f6l7f4

g1g2g3f4

in the middle of the cycle

g1g2g3f4

at the end (before flip)

f4 l7 f6 f5

after the flip

to-space

at the begin of the GC cycle

from-space

l4 g3 g2 g1

Figure 2. Heap usage during a concurrent-
copy collection cycle

the collection the live objects become unreachable and are
now floating garbage (e.g. f4 in the second sub-figure). At
the end of the cycle, just before compacting, we have three
garbage cells (g1-g3), three floating garbage cells (f4-f6)
and one live cell l7. Compaction moves the floating garbage
and the live cell to the start of the heap and we end up with
four free cells. The floating garbage will become garbage
in the next collection cycle and we start over with the first
sub-figure with three garbage cells and one live cell.

Figure 2 shows one collection cycle of the concurrent-
copy collector. We have two memory spaces: the from-
space and the to-space. Again we start the collection cycle
with three garbage cells left over from the last cycle and one
live cell. Note that the order of the cells is different from the
previous example. New cells are allocated in the to-space
from the top of the heap, whereas moved cells are allocated
from the bottom of the heap. The second sub-figure shows
a snapshot of the heap during the collection. Former live
object l4 is already floating garbage f4 and copied into to-
space. A new cell l5 is allocated in the to-space. Before
the flip of the two semi-spaces the from-space contains the
three garbage cells (g1-g3) and the to-space the three float-
ing garbage cells (f4-f6) and one live cell l7. The last sub-
figure shows the heap after the flip: The from-space con-
tains the three floating cells which will be garbage cells in
the next cycle and the one live cell. The to-space is now
empty.

From this example we see that the necessary heap size
for a mark-compact collector is similar to the heap size for a
copying collector. We also see that the compacting collector
has to move more cells (all floating garbage cells and the
live cell) than the copying collector (just the one cell that is
live at the beginning of the collection).



3. Minimum Heap Size

In this section we show the memory bounds for a
mark-compact collector with a single heap memory and
a concurrent-copying collector with the two spaces from-
space and to-space.

The following symbols are used for the rest of the paper:
heap size for a mark-compact collector (HMC) and for a
concurrent-copying collector (HCC) containing both semi-
spaces, period of the GC thread (TGC), period of a single
mutator thread (TM ), period of mutator thread i (Ti) from
a set of threads, and memory amount allocated by a single
mutator (a) or by mutator i (ai) from a set of threads.

3.1. Mark-Compact

For the mark-compact collector the heap HMC can be
divided into allocated memory M and free memory F

HMC = M + F = G + G + L + F (1)

where G is garbage at the start of the collector cycle that will
be reclaimed by the collector. Objects that become unreach-
able during the collection cycle and will not be reclaimed
are floating garbage G. These objects will be detected in
the next collection cycle. We assume the worst case that all
objects that die during the collection cycle will not be de-
tected and therefore are floating garbage. L denotes all live,
i.e. reachable, objects. F is the remaining free space.

We have to show that we will never run out of memory
during a collection cycle (F ≥ 0). The amount of allocated
memory M has to be less than or equal the heap size HMC

HMC ≥ M = G + G + L (2)

In the following proof the superscript n denotes the col-
lection cycle. The subscript letters S and E denote the value
at the start and the end of the cycle, respectively.

Lemma 1. For a collection cycle the amount of allocated
memory M is bounded by the maximum live data Lmax at
the start of the collection cycle and two times Amax, the
maximum data allocated by the mutator during the collec-
tion cycle.

M ≤ Lmax + 2Amax (3)

Proof. During a collection cycle G remains constant. All
live data that becomes unreachable will be floating garbage.
Floating garbage GE at the end of cycle n will be detected
(as garbage G) in cycle n + 1.

Gn+1 = G
n

E (4)

The mutator allocates A memory and transforms part of this
memory and part of the live data at the start LS to floating

garbage GE at the end of the cycle. LE is the data that is
still reachable at the end of the cycle.

LS + A = LE + GE (5)

with A ≤ Amax and LS ≤ Lmax. A new collection-
cycle start immediately follows the end of the former cycle.
Therefore the live data remains unchanged.

Ln+1
S = Ln

E (6)

We will show that (3) is true for cycle 1. At the start of
the first cycle we have no garbage (G = 0) and no live data
(LS = 0). The heap contains only free memory.

M1
S = 0 (7)

During the collection cycle the mutator allocates A1 mem-
ory. Part of this memory will be live at the end and the
remaining will be floating garbage.

A1 = L1
E + G

1

E (8)

Therefore at the end of the first cycle

M1
E = L1

E + G
1

E

M1 = A1 (9)

As A1 ≤ Amax (3) is fulfilled for cycle 1.
Under the assumption that (3) is true for cycle n, we have

to show that (3) holds for cycle n + 1.

Mn+1 ≤ Lmax + 2Amax (10)

Mn = Gn + G
n

E + Ln
E (11)

Mn+1 = Gn+1 + G
n+1

E + Ln+1
E (12)

= G
n

E + Ln+1
S + An+1 apply (4) and (5)

= G
n

E + Ln
E + An+1 apply (6)

= Ln
S + An + An+1 apply (5)

(13)

As LS ≤ Lmax, An ≤ Amax and An+1 ≤ Amax

Mn+1 ≤ Lmax + 2Amax (14)

3.2. Concurrent-Copy

In the following we denote the maximum allocated mem-
ory in the from-space as MFrom and the maximum allo-
cated memory in the to-space as MTo.



For a copying-collector the heap HCC is divided in two
equal sized spaces HFrom and HTo. The amount of allo-
cated memory M in each semi-space has to be less than or
equal HCC

2

HCC = HFrom + HTo ≥ 2M (15)

Lemma 2. For a collection cycle the amount of allocated
memory M in each semi-space is bounded by the maximum
live data Lmax at the start of the collection cycle and Amax,
the maximum data allocated by the mutator during the col-
lection cycle.

M ≤ Lmax + Amax (16)

Proof. Floating garbage at the end of cycle n will be de-
tectable garbage in cycle n + 1

Gn+1 = G
n

E (17)

Live data at the end of cycle n will be the live data at the
start of cycle n + 1

Ln+1
S = Ln

E (18)

The allocated memory MFrom in the from-space con-
tains garbage G and the live data at the start Ls.

MFrom = G + LS (19)

All new objects are allocated in the to-space. Therefore the
memory requirement for the from-space does not change
during the collection cycle. All garbage G remains in the
from-space and the to-space only contains floating garbage
and live data.

MTo = G + L (20)

At the start of the collection cycle the to-space is completely
empty.

MTo S = 0 (21)

During the collection cycle all live data is copied into the
to-space and new objects are allocated in the to-space.

MTo E = LS + A (22)

At the end of the collector cycle the live data from the
start LS and new allocated data A stays either live at the
end LE or becomes floating garbage GE .

LS + A = LE + GE (23)

For the first collection cycle there is no garbage (G = 0)
and no live data at the start (LS = 0), i.e. the from-space
is empty (M1

From = 0). The to-space will only contain all
allocated data A1, with A1 ≤ Amax, and therefore (16) is
true for cycle 1.

Under the assumption that (16) is true for cycle n, we
have to show that (16) holds for cycle n + 1.

Mn+1
From ≤ Lmax + Amax

Mn+1
To ≤ Lmax + Amax (24)

At the start of a collection cycle the spaces are flipped
and the new to-space is cleared.

Hn+1
From ⇐ Hn

To

Hn+1
To ⇐ ∅ (25)

The from-space:

Mn
From = Gn + Ln

S (26)

Mn+1
From = Gn+1 + Ln+1

S (27)

= G
n

E + Ln
E

= Ln
S + An (28)

As LS ≤ Lmax and An ≤ Amax

Mn+1
From ≤ Lmax + Amax (29)

The to-space:

Mn
To = G

n

E + Ln
E (30)

Mn+1
To = G

n+1

E + Ln+1
E (31)

= Ln+1
S + An+1

= Ln
E + An+1 (32)

As LE ≤ Lmax and An+1 ≤ Amax

Mn+1
To ≤ Lmax + Amax (33)

From this result we can see that the dynamic memory
consumption for a mark-compact collector is similar to a
concurrent-copy collector. This is contrary to the common
believe that a copy collector needs the double amount of
memory. We need double of the memory of the allocated
data during a collection cycle in either case. The advantage
of the copying collector over a compacting one is that newly
allocated data are placed in the to-space and do not need to
be copied. The compacting collector moves all newly cre-
ated data (that is mostly floating garbage) at the compaction
phase.

4. Garbage Collection Period

In the following we derive the maximum collector period
that guarantees that we will not run out of memory. The



maximum period TGC of the collector depends on Lmax

and Amax for which safe estimates are needed.
We assume that the mutator allocates all memory at the

start of the period and the memory becomes garbage at the
end. In other words the memory is live for one period. This
is the worst case, but very common.

4.1. Single Mutator Thread

First we give an upper bound for the collector cycle time
for a single mutator thread.

Lemma 3. For a single mutator thread with period TM

that allocates memory (a) each period the maximum col-
lector period TGC that guarantees that we will not run out
of memory is

TGC ≤ TM

⌊
HMC − a

2a

⌋
(34)

TGC ≤ TM

⌊
HCC − 2a

2a

⌋
(35)

Proof. The maximum live data referenced by a single muta-
tor is the maximum data allocated by the mutator in a single
cycle.

Lmax = a (36)

A single mutator allocates a memory during the period TM .
Therefore the maximum allocation during the collector pe-
riod TGC is

Amax = a

⌈
TGC

TM

⌉
(37)

Using equations (2) and (3) we get the minimum heap size
HMC for a mark-compact collector

HMC ≥ Lmax + 2Amax

HMC ≥ a

(
1 + 2

⌈
TGC

TM

⌉)
(38)

Equations (15) and (16) result in the minimum heap size
HCC , containing both semi-spaces, for the concurrent-copy
collector

HCC ≥ 2(Lmax + Amax)

HCC ≥ 2a

(
1 +

⌈
TGC

TM

⌉)
(39)

The ceiling function covers the worst-case schedule be-
tween the collector thread and the mutator thread. We are
interested in the maximum collector period TGC with a
given heap size HMC or HCC⌈

TGC

TM

⌉
≤ HMC − a

2a
(40)

⌈
TGC

TM

⌉
≤ HCC − 2a

2a
(41)

The maximum quotient (TGC

TM
) that fulfills (40) or (41) is an

integer n. n is the largest integer that is less than or equal
the right side of (40) or (41). Therefore we get for the mark-
compact collector

TGC

TM
≤

⌊
HMC − a

2a

⌋
(42)

⇒ TGC ≤ TM

⌊
HMC − a

2a

⌋
(43)

and for the concurrent-copy collector

TGC

TM
≤

⌊
HCC − 2a

2a

⌋
(44)

⇒ TGC ≤ TM

⌊
HCC − 2a

2a

⌋
(45)

4.2. Several Mutator Threads

In this section the upper bound of the period for the col-
lector thread is given for n independent mutator threads.

Theorem 1. For several (n) mutator threads with period
Ti where each thread allocates ai memory each period, the
maximum collector period TGC that guarantees that we will
not run out of memory is

TGC ≤
HMC − 3

∑n
i=1 ai

2
∑n

i=1
ai

Ti

(46)

TGC ≤
HCC − 4

∑n
i=1 ai

2
∑n

i=1
ai

Ti

(47)

Proof. For n mutator threads with periods Ti and alloca-
tions ai during each period the values for Lmax and Amax

are

Lmax =
n∑

i=1

ai (48)

Amax =
n∑

i=1

⌈
TGC

Ti

⌉
ai (49)

The ceiling function for Amax covers the individual worst
cases for the thread schedule and cannot be solved analyt-
ically. Therefore we use a conservative estimation A

′

max

instead of Amax.

A
′

max =
n∑

i=1

(
TGC

Ti
+ 1

)
ai ≥

n∑
i=1

⌈
TGC

Ti

⌉
ai (50)



From (2) and (3) we get the minimum heap size for a mark-
compact collector

HMC ≥ Lmax + 2Amax

≥
n∑

i=1

ai + 2
n∑

i=1

⌈
TGC

Ti

⌉
ai (51)

For a given heap size HMC we get the conservative upper
bound of the maximum collector period TGC

2A
′

max ≤ HMC − Lmax

2
n∑

i=1

(
TGC

Ti
+ 1

)
ai ≤ HMC − Lmax (52)

TGC ≤
HMC − Lmax − 2

∑n
i=1 ai

2
∑n

i=1
ai

Ti

(53)

⇒ TGC ≤
HMC − 3

∑n
i=1 ai

2
∑n

i=1
ai

Ti

(54)

Equations (15) and (16) result in the minimum heap size
HCC , containing both semi-spaces, for the concurrent-copy
collector

HCC ≥ 2Lmax + 2Amax

≥ 2
n∑

i=1

ai + 2
n∑

i=1

⌈
TGC

Ti

⌉
ai (55)

For a given heap size HCC we get the conservative upper
bound of the maximum collector period TGC

2A
′

max ≤ HCC − 2Lmax

2
n∑

i=1

(
TGC

Ti
+ 1

)
ai ≤ HCC − 2Lmax (56)

TGC ≤
HCC − 2Lmax − 2

∑n
i=1 ai

2
∑n

i=1
ai

Ti

(57)

⇒ TGC ≤
HCC − 4

∑n
i=1 ai

2
∑n

i=1
ai

Ti

(58)

4.3. Producer/Consumer Threads

So far we have only considered threads that do not share
objects for communication. This execution model is even
more restrictive than the RTSJ scoped memories that can be
shared between threads. In this section we discuss how our
GC scheduling can be extended to account for threads that
share objects.

Object sharing is usually done by a producer and a con-
sumer thread. I.e., one thread allocates the objects and
stores references to those objects in a way that they can be
accessed by the other thread. This other thread, the con-
sumer, is in charge to free those objects after use.

An example of this sharing is a device driver thread that
periodically collects data and puts them into a list for fur-
ther processing. The consumer thread, with a longer period,
takes all available data from the list at the start of the period,
processes the data, and removes them from the list. During
the data processing new data can be added by the producer.
Note that in this case the list will probably never be com-
pletely empty. This typical case cannot be implemented by
an RTSJ shared scoped memory. There would be no point
in the execution where the shared memory will be empty
and can get recycled.

The question now is how much data will be alive in the
worst case. We denote Tp as the period of the producer
thread τp and Tc as the period of the consumer thread τc. τp

allocates ap memory each period. During one period of the
consumer τc the producer τp allocates⌈

TC

TP

⌉
ap

memory. The worst case is that τc takes over all ob-
jects at the start of the period and frees them at the end.
Therefore the maximum amount of live data for this pro-
ducer/consumer combination is

2
⌈

TC

TP

⌉
ap

To incorporate this extended lifetime of objects we intro-
duce a lifetime factor li which is

li =

{
1 : for normal threads

2
⌈

Tc

Ti

⌉
: for producer τi and associated consumer τc

(59)
and extend Lmax from (48) to

Lmax =
n∑

i=1

aili (60)

The maximum amount of memory Amax that is allocated
during one collection cycle is not changed due to the freeing
in a different thread and therefore remains unchanged.

The resulting equations for the maximum collector pe-
riod are

TGC ≤
HMC −

∑n
i=1 aili − 2

∑n
i=1 ai

2
∑n

i=1
ai

Ti

(61)

and

TGC ≤
HCC − 2

∑n
i=1 aili − 2

∑n
i=1 ai

2
∑n

i=1
ai

Ti

(62)



4.4. Static Objects

The discussion about the collector cycle time assumes
that all live data is produced by the periodic application
threads and the maximum lifetime is one period. However,
in the general case we have also live data that is allocated
in the initialization phase of the real-time application and
stays alive until the application ends. We incorporate this
value by including this static live memory Ls in Lmax

Lmax = Ls +
n∑

i=1

aili (63)

A mark-compact collector moves all static data to the
bottom of the heap in the first collection cycle after the
allocation. It does not have to compact these data during
the following collection cycles in the mission phase. The
concurrent-copy collector would move these static data in
each collection cycle. Furthermore, the memory demand
for the copy collector is increased by the double amount of
the static data (compared to the single amount in the mark-
compact collector)2.

As these static objects live forever, we propose a similar
solution to the immortal memory of the RTSJ. We divide
our application into an initialization and a mission phase
[10]. All static data is allocated during the initialization
phase (where no application threads are scheduled). As part
of the transition to the mission phase we perform a special
collection cycle in a stop-the-world fashion. Live data that
exists after this cycle are assumed to be immortal data and
make up the immortal memory area. The remaining mem-
ory is used for the garbage collected heap.

This static live data will still be scanned by the collec-
tor to find references into the heap but it is not collected.
The main differences between our immortal memory and
the memory areas of the RTSJ are:

• We do not have to state explicitly which data belongs
to the application life-time data. This information is
implicitly gathered by the start-mission transition.

• References from the static memory to the garbage col-
lected heap are allowed contrary to the fact in the RTSJ
that references to scoped memories, that have to be
used for dynamic memory management without a GC,
are not allowed from immortal memory.

The second fact greatly simplifies communication be-
tween threads. For a typical producer/consumer configu-
ration the container for the shared data is allocated in im-
mortal memory and the actual data in the garbage collected
heap.

With this immortal memory solution the actual Lmax

only contains allocated memory from the periodic threads.
2Or the collector period gets shortened.

5. Experiments

In this section we test an implementation of the
concurrent-copy garbage collector on a Java processor (JOP,
[12]). The tests are intended to get some confidence that the
formulas for the collector periods are correct. Furthermore
we visualize the actual heap usage of a running system.

The examples are synthetic benchmarks that emulate
worst-case execution time (WCET) by executing a busy
loop after allocation of the data. The WCET of the collector
was measured to be 10.4ms when executing it with schedul-
ing disabled during one collection cycle for example 1 and
11.2ms for example 2. We use 11ms and 12ms respective
as the WCET of the collector for the following examples3.

In our example we use a concurrent-copy collector with
a heap size (for both semi-spaces) of 100KB. At startup the
JVM allocates about 3.5KB data. We incorporate4 these
3.5KB as static live data Ls.

5.1. Independent Threads

The first example consists of two threads with the prop-
erties listed in Table 1. Ti is the period, Ci the WCET, and
ai the maximum amount of memory allocated each period.
Note that the period for the collector thread is also listed in
the table although it is a result from the application threads
properties and the heap size.

With the periods Ti and the memory consumption ai for
the two worker threads we calculate the maximum period
TGC for the collector thread τGC by using Theorem 1

TGC ≤
HCC − 2 (Ls +

∑n
i=1 ai)− 2

∑n
i=1 ai

2
∑n

i=1
ai

Ti

≤ 100− 2(3.5 + 4)− 2 · 4
2

(
1
5 + 3

10

) ms = 77ms

The priorities are assigned rate-monotonic [8] and we
perform a quick schedulability check with the periods Ti

and the WCETs Ci by calculation of the processor utiliza-
tion U for all three threads

U =
3∑

i=1

(
Ci

Ti

)
=

1
5

+
3
10

+
11
77

= 0.643

which is less than the maximum utilization for three tasks

Umax = m ∗ (2
1
m − 1) = 3 ∗ (2

1
3 − 1) ≈ 0.78

In Figure 3 the memory trace for this system is shown.
The graph shows the free memory in one semi-space (the

3It has to be noted that measuring execution time is not a safe method
to estimate WCET values.

4We have not yet implemented the suggested handling of static data to
be moved to immortal memory at mission start in our prototype.



0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600

Time [ms]

Fr
ee

 M
em

or
y 

[B
yt

e]

Figure 3. Free memory in experiment 1

Ti Ci ai

τ1 5ms 1ms 1KB
τ2 10ms 3ms 3KB
τGC 77ms 11ms

Table 1. Thread properties for experiment 1

to-space, which is 50KB) during the execution of the appli-
cation. The individual points are recorded with time-stamps
at the end of each allocation request.

In the first milliseconds we see allocation requests that
are part of the JVM startup (most of it is static data). The
change to the mission phase is delayed 100ms and the first
allocation from a periodic thread is at 105ms. The collector
thread also starts at the same time and the first semi-space
flip can be seen at 110ms (after one allocation from each
worker thread). We see the 77ms period of the collector
in the jumps in the free memory graph after the flip. The
different memory requests of two times 1KB from thread τ1

and one time 3KB from thread τ2 can be seen every 10ms.
In this example the heap is used until it is almost full, but

we run never out of memory and no thread misses a dead-
line. From the regular allocation pattern we also see that this
collector runs concurrently. With a stop-the-world collector
we would notice gaps of 10ms (the measured execution time
of the collector) in the graph.

5.2. Producer/Consumer Threads

For the second experiment we split our thread τ1 to a pro-
ducer thread τ1 and a consumer thread τ3 with a period of
30ms. We assume after the split that the producer’s WCET
is halved to 500µs. The consumer thread is assumed to be
more efficient when working on lager blocks of data than in
the former example (C3=2ms instead of 6·500µs). The rest

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600

Time [ms]

Fr
ee

 M
em

or
y 

[B
yt

e]

Figure 4. Free memory in experiment 2

Ti Ci ai

τ1 5ms 0.5ms 1KB
τ2 10ms 3ms 3KB
τ3 30ms 2ms
τGC 55ms 12ms

Table 2. Thread properties for experiment 2

of the setting remains the same (the worker thread τ2). Ta-
ble 2 shows the thread properties for the second experiment.

As explained in Section 4.3 we calculate the lifetime fac-
tor l1 for memory allocated by the producer τ1 with the cor-
responding consumer τ3 with period T3.

l1 = 2
⌈

T3

T1

⌉
= 2

⌈
30
5

⌉
= 12

The maximum collector period TGC is

TGC ≤
HCC − 2 (Ls +

∑n
i=1 aili)− 2

∑n
i=1 ai

2
∑n

i=1
ai

Ti

≤ 100− 2(3.5 + 1 · 12 + 3 + 0)− 2 · 4
2

(
1
5 + 3

10 + 0
30

) ms = 55ms

We check the maximum processor utilization:

U =
4∑

i=1

(
Ci

Ti

)
=

0.5
5

+
3
10

+
2
30

+
12
55

= 0.685 ≤ 4 ∗ (2
1
4 − 1) ≈ 0.76

In Figure 4 the memory trace for the system with one
producer, one consumer, and one independent thread is
shown. Again, we see the 100ms delayed mission start after
the startup and initialization phase, in this example at about
106ms. Similar to the former example the first collector cy-
cle performs the flip a few milliseconds after the mission



start. We see the shorter collection period of 55ms. The
allocation pattern (two times 1KB and one time 3KB per
10ms) is the same as in the former example as the threads
that allocate the memory are still the same.

We have also run this experiment for a longer time than
shown in Figure 4 to see if we find a point in the execution
trace where the remaining free memory is less than the value
at 217ms. The pattern repeats and the observed value at
217ms is the minimum.

6. Related Work

Baker [2] extends Cheneys [5] copying collector for in-
cremental GC. However, it uses an expensive read barrier
that moves the object to the to-space as part of the mutator
work. Baker proposes the Treadmill [3] to avoid copying.
However, this collector works only with objects of equal
size and still needs an expensive read barrier.

Despite the title [1] is still not a real-time collector. They
propose a collector with constant utilization to meet real-
time requirements. However, utilization is not a real-time
measure per se; it should be schedulability or response time
instead. Pause times are in the range of 12ms. In [9] two
collectors based on [6] and [3] are implemented on a multi-
threaded Microcontroller. Higuera suggests in [7] the use of
hardware features from picoJava to speed up RTSJ memory
region protection and garbage collection.

In [11] the authors provide an upper bound in the GC
cycle time as5

TGC ≤
H−Lmax

2 −
∑n

i=1 ai∑n
i=1

ai

Ti

Although stated that this bound “is thus not dependent of
any particular GC algorithm”, the result applies only for
single heap GC algorithms (e.g. mark-compact) and not for
a copying collector. A value for Lmax is not given in the
paper. If we use our value of Lmax =

∑n
i=1 ai the result

is the same as in our finding (see Theorem 1) for the mark-
compact collector. No analysis is given how objects with
longer lifetime and static objects can be incorporated.

7. Conclusion

In this paper we suggest an approach to real-time
garbage collection in order to benefit from a more dynamic
programming model for real-time applications. The pro-
posed collector is incremental and scheduled periodically
in the same way as an application thread.

To guarantee that the applications will not run out of
memory the period of the collector thread has to be short

5We use our symbols in the equation for easier comparison to our find-
ing.

enough. We provided the maximum collector periods for
a mark-compact collector type and a concurrent-copy col-
lector. We have also shown how a longer lifetime due to
object sharing between threads can be incorporated into the
collector period analysis.

The proposed concurrent-copy collector was imple-
mented as a prototype on a Java processor. As the next step
we will work on an efficient implementation of the collector
and supporting hardware for the write-barrier in JOP [12].

References

[1] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time
garbage collector with low overhead and consistent utiliza-
tion. In POPL ’03: Proceedings of the 30th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 285–298, New York, NY, USA, 2003. ACM
Press.

[2] H. G. Baker. List processing in real time on a serial com-
puter. Commun. ACM, 21(4):280–294, 1978.

[3] H. G. Baker. The treadmill: real-time garbage collec-
tion without motion sickness. SIGPLAN Not., 27(3):66–70,
1992.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Java
Series. Addison-Wesley, June 2000.

[5] C. J. Cheney. A nonrecursive list compacting algorithm.
Commun. ACM, 13(11):677–678, 1970.

[6] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the-fly garbage collection: an exercise
in cooperation. Commun. ACM, 21(11):966–975, 1978.

[7] T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J.-P. Lesot,
and F. Parain. Memory management for real-time Java: an
efficient solution using hardware support. Real-Time Sys-
tems Journal, 2002.

[8] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. J. ACM,
20(1):46–61, 1973.

[9] M. Pfeffer, T. Ungerer, S. Fuhrmann, J. Kreuzinger, and
U. Brinkschulte. Real-time garbage collection for a
multithreaded java microcontroller. Real-Time Systems,
26(1):89–106, 2004.

[10] P. Puschner and A. J. Wellings. A profile for high integrity
real-time Java programs. In 4th IEEE International Sym-
posium on Object-oriented Real-time distributed Computing
(ISORC), 2001.

[11] S. G. Robertz and R. Henriksson. Time-triggered garbage
collection: robust and adaptive real-time GC scheduling for
embedded systems. In LCTES ’03: Proceedings of the 2003
ACM SIGPLAN conference on Language, compiler, and tool
for embedded systems, pages 93–102, New York, NY, USA,
2003. ACM Press.

[12] M. Schoeberl. JOP: A Java Optimized Processor for Em-
bedded Real-Time Systems. PhD thesis, Vienna University
of Technology, 2005.

[13] G. L. Steele. Multiprocessing compactifying garbage col-
lection. Commun. ACM, 18(9):495–508, 1975.


