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ABSTRACT
This paper presents a new approach to the problem of ges-
ture recognition in real time using inexpensive accelerome-
ters. This approach is based on the idea of creating special-
ized signal predictors for each gesture class. These signal
predictors forecast future acceleration values from current
ones. The errors between the measured acceleration of a
given gesture and the predictors are used for classification.
This approach is modular and allows for seamless inclusion
of new gesture classes. These predictors are implemented us-
ing Continuous Time Recurrent Neural Networks (CTRNN).
On the one hand, this kind of networks exhibits rich dynam-
ical behaviour that is useful in gesture recognition and on
the other, they have a relatively low computational cost that
is interesting feature for real time systems.
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1. INTRODUCTION
Wearable computers are intelligent devices seamlessly in-

tegrating in clothing or objects we carry around everyday.
By being “on the body” wearable computers are at an ideal
location to detect important informations about the “state”
of the user, such as his position, his activities or gestures
or even his social interactions. This context awareness [7,
17] allows wearable computers to e.g. become the personal
health assistant of the user [23] (e.g. by monitoring the phys-
ical activity) or to deliver context-based information [20].
User gestures are an important aspect of the context. They
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can be used for human-computer interactions [14], to de-
tect social interactions [15], or even provide an insight into
affective disorders or depression [12].

One of the challenge of gesture recognition in wearable
computing is to offer good recognition accuracy on miniature
wearable devices (e.g. [21]) which offer long battery life, and
consequently limited computational power.

Hidden Markov models, dynamic programming and neural
networks have been investigated for gesture recognition [6]
with hidden Markov models being nowadays one of the pre-
dominant approach to classify sporadic gestures (e.g. clas-
sification of intentional gestures [5]).

Fuzzy expert systems has also been investigated for ges-
ture recognition[8] based on analyzing complex features of
the signal like the doppler spectrum. The disadvantage of
these methods is that the classification is based on the sepa-
rability of the features, therefore two different gestures with
similar values for these features may be difficult to classify.

In this article we describe a method to classify gestures
from inexpensive accelerometers. This approach is based on
signal predictors for each gesture class that is to be clas-
sified. These signal predictors forecast future acceleration
values from current ones. The errors between the measured
acceleration of a given gesture and the predictors are used for
classification. Signal predictors have the advantage of oper-
ating directly on the raw sensor signal. They do not require
feature extraction that is common in Bayesian classification
or hidden Markov models. Therefore they may avoid de-
signer bias in feature selection and thus have the potential of
being more general. This prediction approach has been used
previously to recognize gestures obtaining high recognition
rates. In [22] several gestures captured by a magnetic mo-
tion tracker are classified using predictors based on kalman
filter. Neuro-Fuzzy systems have also been studied to create
such predictors [1, 13]. In particular, in [1] we used Neuro
Fuzzy systems to create acceleration signal predictors ob-
taining high recognition rates which showed the suitability
of the prediction approach with acceleration signals.

The objective of this paper is to investigate how this pre-
dictor approach performs when using a more general sig-
nal predictor than in our previous work with Neuro Fuzzy



systems [1]: a Continuous Time Recurrent Neural Network
(CTRNNs) is used instead as predictor. CTRNNs are net-
works of continuous model neurons without constraints placed
on their connectivity [10] that exhibit rich dynamics [2]. It
has been proved that the internal state of a CTRNN neuron
can approximate any dynamical system [9]. The dynamic
and non-linear nature of CTRNN makes them suited for
temporal information processing. Sequential behaviors and
learning with CTRNNs have been illustrated in bit sequence
tasks [25] and in robotics [3].

CTRNN may be therefore well suited as universal signal
predictors. They may cope with the dynamics of any gesture
signal with the appropriate time constants and interconnec-
tion weights.

The rest of the paper is organized as follows: in section
2 the device used for signal capture is described. Section 3
explains the structure of the CTRNN predictors and how to
use them to recognize gestures. In section 4 we describe the
gesture recognition experiment carried out to validate the
approach. In section 5 we discuss the results and highlight
future work. And finally, section 6 concludes this paper.

2. SENSOR HARDWARE
In order to capture the gestures used in the following ex-

periments, a tri-axial accelerometer is used 1. This device
was selected because it has good features for wearable ap-
plications. It is small sized, so it can be worn easily (see
figure 1). It has as well a very low power consumption so it
can operate for long periods of time (12 hours) with a single
battery that is inside the case. This accelerometer module
is connected over Bluetooth to the personal computer cap-
turing the data.

Figure 1: Tri-Axial Acceleration Sensor 64x40x15

milimeters

The data provided by this sensor consists in an acceler-
ation vector with three components: one for each axis (ax,
ay, az). Their values are measured in gravity units (g) in the
range of [-6g,6g] encoded with 10 bits. This vector is cap-
tured with a sampling rate of 100 Hz, which is fast enough
for our purpose since the maximum frequency of hand ges-
tures is about 10 Hz [24].

During the experiments, this sensor was held in the hand
in a vertical orientation. Furthermore, to segment some ges-

1The acceleration sensor used in this work is the
module Witilt v2.5 provided by Sparkfun electronics
http://www.sparkfun.com
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Figure 2: Acceleration signals recorded at the hand

when performing a circular hand motion.

tures we used a wireless mouse that was held in the other
hand. Data from the wireless button was recorded on the
personal computer together with the acceleration data. This
button was pressed before doing the gesture and released af-
ter finishing it. An example of the acceleration signals for a
circular hand motion is illustrated in figure 2.

3. GESTURE RECOGNITION USING SIG-
NAL PREDICTORS

The recognition system presents a high modularity be-
cause it is completely composed of the basic component rep-
resented in figure 3. There are as many components as num-
ber of different class of gestures. This component consists
of three main blocks: a memory block in order to delay one
time step the input signal, a predictor block that is the core
of the method and an error block that is used to calculate
the prediction error.

Figure 3: Basic Component

3.1 Predictor block using CTRNN
As stated in introduction, the predictor block is imple-

mented with CTRNN. The specific architecture of the neu-
ral network used in this work consists of five fully connected
neurons in which each neuron can be connected to every in-
put (see figure 4). The input of this predictor block is the
acceleration vector in the previous time step V t−1

[X,Y,Z] and



the output is the prediction of the acceleration vector for
the present time P t

[X,Y,Z] that are the activations of three
neurons.

In order to obtain the output values, it is necessary to
calculate the activations of all neurons. The activation of
the neuron i is calculated using the following differential
equation ([3]):

dγi

dt
=

1

τi
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(1)

Aj = σ (γj − θj) where σ (x) =
1

1 + e−x
(2)

Where N is the number of neurons in this case five, γi is
the state of neuron i, τi is the time constant of neuron i,
ωij is the weight of the synapse from neuron i to j. Aj is
the activation of the neuron j that is calculated using the
equation 2 where θj is the bias of that neuron, ωik is the
weight that neuron i applies to input k and lastly Vk is the
value of the predictor inputs for each axis X,Y and Z.

To discretize the differential equation 1 we use the For-
ward Euler numerical integration as in [3] so, the iterative
update rule for the state of each neuron is:
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Where ∆t is the integration step and for this work it was
fixed to 0.01s because this is the sampling rate of the sensor.
Furthermore, since the outputs of the CTRNN are in the
range [0, 1], the inputs in range [−6g, +6g] are normalized
to this range by a linear mapping.

Figure 4: Architecture of the CTRNN

3.2 Prediction error block
The function of the error block is to measure how good is

the prediction produced by the predictor. For this, it cal-
culates the error between the real signals and the predicted
ones. In particular for this work, the error measurement for
a sample is the mean absolute error of each axis of the signal,
computed with the following equation:

Pred Errort =

X,Y,Z
X

i

|P t
i − V t

i |/3 (4)

This is the prediction error for only one sample so, to obtain
the prediction error for one gesture, the mean of this error

Parameter # per neuron Range
Neuron weights 5 [-0.25,0.25]
Input weights 3 [-0.25,0.25]
Time constant 1 [0.01,0.1]
Neuron Bias 1 [-0.25,0.25]

Table 1: Parameters of each Neuron of CTRNN

is calculated for all its samples.

Pred Gesture Error =

T
X

t=1

Pred Errort/T (5)

Where T is the number of samples of the gesture.

3.3 Training of the signal predictors
Once the architecture of the signal predictor is defined

(number of neurons, connections), the next step is to find
the appropriate parameters to create the predictors of each
class. In table 1 are shown all parameters for each neuron
that need to be trained. The second column indicates how
many parameters of this type there are in each neuron. The
last column shows the range used for these parameters that
were chosen after several trials with different ranges.

For this type of neural networks, a global optimization
of the network parameters using genetic algorithms can be
performed [3]. Genetic algorithms allow to do robust global
searches in complex search spaces [11]. The basic idea of this
method is to represent the neuron parameters as a bit string
(the genetic string). A population of such string is then
“evolved” using operators of selection, mutation and cross-
over inspired by biological evolution, in order to maximize
or minimize a fitness function. In this case, each genetic
string represents the parameters of a CTRNN. The length
of this genetic string is 300 bits and each block of 60 bits
encodes the parameters of a single neuron. In this neuron
block are represented 5 connection weigths between neurons,
3 weights applied to the inputs, 1 time constant and 1 bias of
the neuron in this order. All parameters are binary encoded
on 6 bits in the range indicated in table 1.

To evolve the CTRNN, a standard genetic algorithm was
used with a population of 100 invididuals, rank selection of
the 30 best individuals, one-point crossover rate of 70% and
mutation rate of 1% per bit and elitism that copies the best
individual without change in the new generation.

The fitness function that guides the search of the genetic
algorithm reflects how well the CTRNN predicts a training
set T that is composed of several instances T1..N of gestures
of the same class. The fitness function is the mean of the
measure Pred Gesture Error (5) for all training instances.
Therefore, the genetic algorithm should minimize it because
the smaller this measure, the better the predictor.

Fitness =

N
X

i=1

(Pred Gesture Error(Ti)/N (6)

Notice that for each different training instance the activa-
tions of the CTRNN start with zero value so we decided
to feed the CTRNN with twenty previous samples of the
instance in order to initialize it.

3.4 Recognition of gestures
The first step to recognize gestures is to create a signal



predictor for each different gesture class that we want to
recognize. This is done using the previous genetic algorithm
with one training set for each gesture class. Each training
set is composed of several instances of gestures of the same
class.

After training, the system is used to recognize gestures
in the following way: the acceleration signal that contains
the gestures is provided sample by sample to all the pre-
dictors. So, the activations of all neurons of the predictors
are updated for each sample. In contrast to the training
step, where the neuron activations are reset at the begin-
ning of the gesture, no reset is done during recognition to
allow for continuous use (i.e. the predictors are provided
with all the recorded samples that contain a succession of
gestures). When all activations are updated, the prediction
error produced by each predictor is computed by the error
block. To classify each gesture, the information of segmenta-
tion is used to extract the part of the signal that belongs to
that gesture. For this part, the measure Pred Gesture Error
is computed for all the predictors. After comparing all these
errors, the lowest one indicates the class of the analyzed ges-
ture because usually the predictor trained with gestures of
that class will produce the better prediction.

4. PERFORMANCE EVALUATION
A set of eight different gestures represented in figure 5 has

been used to test the performance and accuracy of the recog-
nition method. The begin and end of each gesture is marked
with a circle and an arrow, respectively. All gestures were
performed vertically. In this work, two different datasets
were recorded by only one person that held the sensor in a
vertical orientation with the right hand. For both datasets,
twenty instances of each gesture were recorded in a random
sequence. So, in total for each dataset, there are 160 gesture
instances.

In the first dataset, the objective was to check the valid-
ity of the proposed approach for gesture recognition. In this
dataset the noise sources were minimized: the person that
performed all gestures was sitting during the recording time.
Furthermore, these gestures were isolated: between one ges-
ture and the next, the hand rested in the same position. In
a first step, the segmentation was done manually pressing a
button but we noticed that this was not accurate because
the person sometimes took some time to release the button
after finishing the gesture. So, in order to avoid these seg-
mentation problems, in this test the gestures were segmented
automatically using the magnitude of the acceleration sig-
nal. When the device is not moving the only acceleration
present in the sensor device is the gravity that is equal to 1
g, therefore if the magnitude of the acceleration is different
from 1 g this means that there is a gesture. In particu-
lar it was considered that the device was moving when the
magnitude was out of the range [−1.15g, 1.15g].

The second dataset was recorded in order to test how the
predictors behave in a realistic environment. As in the previ-
ous dataset, the same gestures were done by only one person
but this person moved around the room in an uncontrained
way. A continuous sequence of motion and activities was
carried out like: sitting, standing up, reading books, open-
ing drawers ... during which the 8 gestures were performed
at random instants. Furthermore, there was not any rest
posture between two following gestures. In this dataset, the
automatic segmentation was not used because it cannot dis-

Figure 5: Gestures used to analized the performance

of the method

criminate between gestures and other activities. Therefore,
the gestures were segmented manually pressing the button
of the wireless mouse.

4.1 Results
In both datasets, 5 instances randomly selected for each

class of gesture were used to train the signal predictors. As it
was explained before, during this training, the genetic algo-
rithm has to minimize the fitness function. As an example of
this training, figure 6 shows the evolution of the fitness func-
tion during the training of a predictor for gestures of class
A. As can be seen from this figure only about 20 generations
were necessary for the fitness values to reach a stable level
although evolution is always performed for 200 generations.
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Figure 6: Evolution of the fitness function during a

run of the training for the predictor of class A

Using the trained predictors of the dataset of isolated ges-
tures, we can observe how the recognition method works.
For example, figure 7 represents the prediction errors ob-
tained in a trial for all the instances of class A. The training
instances used for this trial are in the positions 2, 8, 15, 16
and 19. Most of the 20 instances are well classified because
the lowest prediction errors are produced by the predictors
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Figure 7: Prediction Errors for individual gestures of class A with the 8 class of predictors

that belongs to the same class. There is only one missclas-
sification in 13th instance, the predictor H obtains a lower
error than predictor A. Furthermore, it can be observed that
there is a high variability in this error for all instances. This
means that it may be difficult to recognize a gesture by
comparing the error of its corresponding predictor to an ab-
solute threshold. However in this experiment recognition
seems possible due to the comparison of the errors produced
by different predictors between them.

To measure the performance of the classifiers for both
datasets, a confusion matrix is used. This matrix illustrates
the result of the classification. It has as many rows and
columns as a classes of gestures. The element placed in the
row i and column j indicates the percentage of gestures of
type j that are classified as gestures of type i. Therefore,
correctly classified gestures will be in the diagonal of the
matrix. In the following results each element of the tables
have two numbers. The first and second numbers indicate
the classification accuracy of the training and testing set
respectively.

Optimizing the predictors with a genetic algorithm is a
stochastic process. In order to alleviate variability, the ex-
periment has been repeated 10 times with different set of
evolved predictors. Furthermore, for each trial the 5 train-
ing instances of each predictor were randomly selected. The
confusion matrix is the average of this 10 repetitions.

The table 2 shows the confusion matrix for the isolated
gestures. A high recognition rate of 98% was obtained for
the training set and 94% for the testing set. Another in-

teresting result of this test is that the gestures C and D
are sometimes missclassified between them. One explana-
tion may be that on the second and fourth segment both
gestures go up and down, respectively. So, this gestures are
quite similar during about 50% of the length of the gesture.

The table 3 shows the confusion matrix for the gestures
captured in a realistic environment. The total recognition
rate for training instances is about 80.5% and for testing
instances is 63.6 %. So, there is a noticeable decrease in
performance compared to the previous dataset which was
recorded in a more constrained way. Besides, the recogni-
tion accuracy for the various classes differs much. For ex-
ample, the recognition rate for class B is very high while for
classes A,D and F is relatively low. Lastly, it is interesting
to remark that the misclassification between C and D also
appears in this dataset and some more like G and H.

Lastly, we noticed that these neural networks presented
a robust behaviour for both datasets. They never got satu-
rated or locked in oscillatory patterns, although the predic-
tors were fed directly with the whole signal without resetting
the activations between different gestures.

5. DISCUSSION
There is a significant difference between performance of

the 2 considered datasets. This could be explained by the
higher noise in the signal caused by the person movements
and activities in the second dataset. Furthermore, due to the
movement it is usual that the device is not held exactly in
the same orientation for all gestures. These little variations



Classes A B C D E F G H

A 100.0/96.7 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
B 0.0/0.0 98.0/95.3 0.0/0.0 0.0/0.0 0.0/2.7 0.0/0.0 0.0/0.0 0.0/0.7
C 0.0/0.0 0.0/0.0 94.0/79.3 6.0/9.3 0.0/0.7 0.0/0.0 0.0/0.0 0.0/2.0
D 0.0/0.0 0.0/0.0 6.0/20.7 92.0/90.7 0.0/0.7 0.0/0.0 0.0/0.0 0.0/2.7
E 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 100.0/96.0 0.0/0.0 0.0/0.0 0.0/0.0
F 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 100.0/100.0 0.0/0.0 0.0/0.0
G 0.0/0.0 2.0/4.7 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 100.0/100.0 0.0/0.0
H 0.0/3.3 0.0/0.0 0.0/0.0 2.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 100.0/94.7

Table 2: Confusion matrix for isolated gestures

Classes A B C D E F G H

A 72.0/50.7 0.0/0.0 2.0/3.3 0.0/0.0 0.0/4.0 18.0/14.0 2.0/0.0 0.0/6.0
B 0.0/0.0 100.0/92.7 0.0/0.0 0.0/0.0 6.0/9.3 0.0/0.0 0.0/0.0 0.0/0.0
C 4.0/16.7 0.0/0.0 88.0/64.0 18.0/34.0 4.0/6.0 10.0/14.7 0.0/0.0 0.0/0.0
D 0.0/0.7 0.0/0.0 6.0/25.3 68.0/48.7 8.0/8.0 2.0/4.0 0.0/0.7 0.0/0.0
E 0.0/6.7 0.0/2.0 2.0/6.0 14.0/16.7 76.0/68.7 0.0/0.0 0.0/0.0 0.0/0.7
F 14.0/12.0 0.0/1.3 2.0/1.3 0.0/0.7 4.0/2.7 62.0/48.0 6.0/8.0 0.0/5.3
G 0.0/1.3 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 4.0/9.3 86.0/66.7 8.0/18.7
H 10.0/12.0 0.0/4.0 0.0/0.0 0.0/0.0 2.0/1.3 4.0/10.0 6.0/24.7 92.0/69.3

Table 3: Confusion matrix for gestures captured in a realistic environment

produce large differences in the signal because, due to the
effect of gravity, the signal provided by the accelerometers
depends highly in the orientation of the sensor. This could
be solved using the gravity to estimate the device orientation
and then reorienting the acceleration vector [18].

Another reason for the difference in performance could
be the less accurate hand-made segmentation used for the
gestures captured in the realistic environment. This coarse
segmentation may include parts of the signal that do not
belong to the gesture. During training, these parts are also
used to train the predictor and this could produce the lower
recognition rate. Therefore, a main objective of future work
is the search of an automatic segmentation method that also
works for noisy datasets. An initial idea for this, could be
to detect periods of the signal where there is activity using
some features of the acceleration signal like the standard
deviation or the magnitude.

In previous work we investigated predictors based on Neuro
Fuzzy systems [1]. Each predictor consisted of a fuzzy rule
based system that only forecast one axis of the acceleration
signal. So, for each gesture, three predictors were needed
(one for each axis). The inputs were the previous values
of the acceleration signal (t-8, t-16, t-24) of one axis and
its output was the predicted signal in current time (t) for
that axis. Using this approach, high recognition rates were
obtained however it presents some limitations. On the one
hand, the distribution in time of the previous values of in-
puts favours the prediction of specific frequencies of the sig-
nal. On the other, if there are correlations between the sig-
nals of different axis, this predictor cannot use them because
it only has information of one axis. Lastly, these fuzzy pre-
dictors do not present any time dynamics. Therefore, these
problems and the search for a more general predictor were
the reasons that motivated us to look for another kind of
predictors

Neural networks have been used in previous research to
perform gesture classification [19, 4, 16]. In these approaches
complex hierarchical neural networks are often used (Koho-

nen map combined with a recurrent network in [4], multi-
network approach in [16]). Although this added complexity
may show benefits in terms of recognition accuracy, our ap-
proach was to use a comparatively simple and compact net-
work, with the main motivation of minimizing the computa-
tional requirements for implementation in miniature wear-
able sensor nodes. The network that we chose for this pur-
pose however allows for rich temporal dynamics which is
required for the task at hand. Murakami et al. used a
discrete-time recurrent neural network for gesture classifica-
tion (Elman network) [19]. Although our work bears some
similarity, the key advantage of CTRNN is their richer tem-
poral dynamics which can be controlled by the neuron time
constants. In addition Murakami et al. relied on absolute
as well as relative hand position for gesture recognition.
This requires a complex sensing device: here inexpensive
accelerometers are directly used instead.

To train the predictor, the fitness function that is cur-
rently used tends to generate CTRNN that maximize the
prediction accuracy of gestures of their own class. As a con-
sequence, lower fitness value means higher prediction accu-
racy, but may not necessarily translate into higher classifica-
tion accuracy. Another fitness function may be investigated
that specifically tries to maximize the recognition accuracy.
This has not been investigated, because the inclusion of new
gesture classes obliges to recalculate the whole system. With
the current fitness function new gesture classes can be added
by simply training the corresponding predictor, which is a
more scalable approach.

Lastly, the system described here currently does not in-
clude a null class. In other words a gesture that is not in
the training set will nevertheless be classified instead of be-
ing discarded. This is due to the classification is being only
based on the election of the predictor that produces the min-
imum prediction error. A line of work in the future is the
search for a measurement based on the prediction error that
allow to classify a gesture in a null class.



6. CONCLUSION
The use of signal predictors to recognize gestures is a novel

approach in this field. The results obtained in this paper and
the previous ones presented in [1] show that this approach is
promising and works with different predictor types: CTRNN
and Neuro Fuzzy Systems, respectively. The predictors have
interesting features especially for real time systems. They
are fast, simple and modular which allows to incorporate
easily new gestures in the recognition method.

CTRNN provides a more general predictor that can deal
with the dynamics of the gesture signal. The classification of
8 gestures of an isolated dataset achieved very high success
rates (94%). In an unconstrained recording the recognition
accuracy was 64%, which is nevertheless a high accuracy
regarding the number of gesture classes. The recognition
rates reached by this method show its suitability for this
problem. Besides, these neural networks presented a robust
behaviour during gestures prediction because they did not
saturate or get locked in oscillatory behaviors.

One of the limitations of this recognition method is its
dependency on segmentation and device orientation, but
this will be improved in future work. In addition, although
changes in device orientation was shown to decrease recog-
nition accuracy, this problem is shared by other methods
relying on acceleration data to perform classification.

A comparison of recognition performance with different
predictors and different dataset complexity is needed in or-
der to quantify the benefit of using a generic predictor such
as a CTRNN instead of simpler Neuro-Fuzzy systems. Fur-
thermore, it is necessary to validate this approach using data
from different subjects in order to prove the system robust-
ness because all experiments of this paper were done only by
one person. These points remain the object of future work.
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