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Abstract

In this paper, we present a belief propagation based global algorithm that gen-
erates high quality results while maintaining real-time performance. To our
knowledge, it is the first BP based global method that runs at real-time speed.
Our efficiency performance gains mainly from the parallelism of graphics
hardware,which leads to a 45 times speedup compared to the CPU imple-
mentation. To qualify the accurancy of our approach, the experimental re-
sults are evaluated on the Middlebury data sets, showing that our approach is
among the best (ranked first in the new evaluation system) for all real-time
approaches. In addition, since the running time of general BP is linear to the
number of iterations, adopting a large number of iterations is not feasible for
practical applications. Hence a novel approach is proposed to adaptively up-
date pixel cost. Unlike general BP methods, the running time of our proposed
algorithm dramatically converges.

1 Introduction

Stereo vision has traditionally been one of the most extensively investigated topics in com-
puter vision, and is still attracting the attention of many researchers. As a consequence,
a variety of approaches have been proposed and an excellent survey of stereo algorithms
can be found in [10].

In general, stereo algorithms can be categorized into two major classes: local meth-
ods and global methods. Local algorithms, which are based on correlation can have very
efficient implementation that are suitable for real-time application [17, 18]. The central
problem of local window-based algorithms is how to determine the size and shape of the
aggregation window. That is, a window must be large enough to cover sufficient intensity
variation while small enough to avoid crossing depth discontinuities for reliable estima-
tion. This inherent ambiguity causes problems such as noisy disparities in textureless
region and blurred object boundaries.

Global methods make explicit smoothness assumptions of the disparity map and mini-
mize some cost function. A classic category of global methods is Dynamic Programming
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(DP) based [19, 20]. DP technique can offer optimized solution for independent scan-
lines in an efficient manner. Due to DP’s one dimensional optimization solution and
efficient performance, it is the algorithm of choice for many real-time stereo applica-
tions [12, 13, 14]. The major problem of DP is that inter-scanline consistency cannot
be well enforced, leading to the well-known streaking” artifacts. Although new algo-
rithms [20, 21] have been proposed to reduce the effect, it can hardly be eliminated.
Recently, new global optimization methods such as Belief Propagation (BP) and Graph
cut (GC) have attracted much attention. Unlike DP, these methods [8, 11, 6, 4] enforce the
optimization in two dimensions, i.e. the entire image. Although some of the most impres-
sive stereo results are obtained, both BP and GC are typically computionally expensive
and therefore real-time performance has never been achieved. Recently, Felzenszwalb et
al. proposed an efficient BP algorithm [5] uses a hierarchical approach for reducing the
complexity. However, it still requires about one second to compute a small image (i.e.
384 x 288) and cannot achieve real-time performance yet.

In this paper, we propose a real-time belief propagation stereo approach. This algo-
rithm is based on a global energy-minimization framework which contains two terms, the
data term and smoothness term. Thus our method can be treated as a two-step algorithm:
the construction of the data term and the iterative optimization of the smoothness term.
The second step is the essential part of BP, while at the same time, is commonly believed
to be the bottleneck of the practical use of the algorithm. Hence, the main contributions of
this paper are: first, providing a good accelerator for all the BP based algorithms; second,
providing a high quality real-time stereo matching approach.

The rest of this paper is organized as follows. Section 2 gives a description of our
stereo matching approach. In Section 3, we propose a fast-converging BP algorithm that
greatly reduce the complexity when a large number of iterations are used. Section 4
details how our algorithm is implemented in GPU to gain performance improvement.
Our experimental results are presented in Section 5 and in Section 6 we conclude.

2 Approach Description

The algorithm can be partitioned into two blocks: correlation volume computation and
hierarchical BP implementation, which correspond to the two terms of the global energy:
the data term Ep and the smoothness term Eg respectively.

E(d) = Ep(d) + Es(d); 1)

The correlation volume module constructs the data term, and the hierarchical BP module
iteratively updates the smoothness term to minimize the global energy.

2.1 Correlation Volume Computation

In the correlation volume computation module, we compute the matching cost in a similar
way as the Birchfield and Tomasi’s pixel dissimilarity [3], that is for each disparity value,
five matching costs are compute. In order to reduce noise, the matching cost is passing
through a gaussian filter with & one pixel. The minimum of the matching costs is selected
and compared with a threshold T, multiply the smaller one with a weighting parameter 1
to get the data term and send it into the hierarchial BP module.
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Figure 1: In the left figure, pixel X has four neighbors Y 1, Y2, Y3, Y4, there’s a smooth-
ness term between pixel X and each of its neighboring pixels. The right figure provides
an example showing how to update the smoothness term Eg))( between pixel X and one of
its neighbors Y4.

2.2 Hierarchical BP

The basic idea of loopy belief propagation algorithm [8] is first gathering information
from a pixel’s neighbors and incorporate the information to update the smoothness term
between the current pixel and its neighboring pixels, and iteratively optimizing the smooth-
ness term to achieve global energy minimization. This is different from the scanline op-
timization algorithms which only enforce the smoothness along each scanline, because
in these algorithms, the smoothness cost information propagates only along the scanline,
while in global algorithms like loopy believe propagation and graph cuts algorithms, the
smoothness cost information is propagating across the whole image.

Figure 1 provides an example of how to update the smoothness term Es between
pixel X and one of its neighbors Y 4. The first step is using Equation 2 to incorporate the
data term of X (Ep x) with the smoothness term of its other neighboring pixels to generate

anew jump cost Mg;)(. In this paper, we define this cost as multi-passjump cost. The new

smoothness term Eg))(’”e“'(d) between X and its neighbor Y 4 is then updated by computing
the smallest jump cost using Equation 3.

MR (D) = Epx(d) +ESy%(ch) + ESV(0y) + ESy (o), @)
() = argmin(M (ch) + ¥ (ck, o)), )

we define W(dy,d) as single-pass jump cost between two neighboring pixels, it is linear
to the absolute difference of the disparities of pixel X and Y 4. However, in order to
increase the robustness to outliers, a threshold A is added as shown in Equation 4.

¥(dy,d) =min(4,p [dx—d]), (4)

The smoothness term (Esg) is iteratively updated which results in the minimization of
the global energy E:

d) =Y Ex(d EED x(d) +ES) (d) +ESY, (d) + ESy, (d) +ESY, (), (5)
X
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Figure 2: The left figure provides the percentage of the non-converged pixels after ev-
ery iteration, and the right figure provides the comparison of the running time of fast-
converging BP and Standard hierarchical BP algorithms. Both algorithms are run on
Tsukuba data set with the same number of iterations on all the four scales.

The global energy converges after a certain number of iterations. The disparity value on
each pixel X is calculated as following:

Dx = argmin(Ex(d)). ©)

The general loopy belief propagation algorithm is too slow to be practically used
while achieving very good result, not only because the algorithm itself is complicated,
but also because a certain number of iterations are required before the algorithm con-
verges. Felzenszwalb [5] provides a hierarchical algorithm which runs much faster than
the previous algorithms while yielding comparable accuracy. The main difference be-
tween the hierarchical BP and general BP is that hierarchical BP works in a coarse-to-fine
manner, first performing BP at the coarsest scale, then using the output from the coarser
scale to initialize the input for the next scale.

3 Fast-Converging BP

For standard BP algorithms, in order to achieve the best stereo results, a large number of
iterations are required to guarantee the convergence. However, since the running time is
linear to the number of iterations, large number of iterations will greatly hurt the practical
application of BP algorithms.

Actually, there are lots of redundant computations involved in standard BP. In essence,
by only updating pixels that have not yet converged, fast-converging BP removes those
redundant computations while achieving the same accurancy as standard BP.

In detail, the new smoothness term of one of the pixels in the graph is updated ac-

cording to its own data term (Ep x), the previous smoothness term of its four neighboring

pixels (E(Si:;?'d), and the single-pass jump cost function . Since the data term and the

single-pass jump cost stay unchanged, they can be treated as fixed parameters, and the
updated smoothness term (Eglg"eN) of a pixel X in the graph thus becomes a function of



variables containing only the previous smoothness term of its four neightboring pixels,
for instance:

4), 3).0ld 4).0ld 1),0ld
ESY™ = f(ES % (dh), ESYY (), ESY " (db), )

As a result, before updating the smoothness term of a pixel X at iteration i, check
whether the smoothness term of its four neighboring pixels at iteration i — 1 and at iteration
i — 2 are equivalent or not. If the smoothness terms are the same, it is not necessary to
update the smoothness term of pixel X .

Figure 2 shows that after several numbers of iterations, most of the pixels on the
graph converge. The fast-converging BP algorithm thus ignores these pixels, the updating
scheme is only applied to the non-converged pixels, which greatly decrease the running
time of BP approaches with large number of iterations. Figure 2 also shows that the
running time of the standard BP is linear to the number of iterations while the running
time of the fast-converging BP dramatically converges.

We have successfully implemented this fast-converging BP approach on CPU, and are
looking forward to implementing it on GPU. The experiment results provided in Figure 2
are based on CPU implementation.

4 GPU Implementation

We have implemented both the first (correlation volume computation) and second step
(hierarchical BP) on graphics hardware to facilitate real-time computation. The GPU
implementation of the first step is very simple, so we only focus on the second step.

Algorithm 1 Updating the Smoothness Term on GPU

Require: ng)l?arse i=1,2,3,4.
S i), fi i), fi i),
1. Initialize E("": EQL"™(X) = EQE<(X/2).
2: Initialize N with the number of iterations of the current scale.
3: repeat _
4. -Compute Mg> according to Equation 2;
5. -Compute the minimun of Mg> for each pixels, plus it with the threshold A which
is provided in Equation 4, save it as MINs;
6: -Update Egzm:
for d from 1to NRgyjsp — 1:
MY (d)=min(MZ (d), MY (d - 1)+ p);
for d from NRgisp —2t00:
(.)M‘ﬁ;)(d)?;nin(Mg)(d), MY (d+1) + p,MINg);
i i),
_ ESnew - Ms’;
I -Eglld =EY)

: Snew’ _
such that YN-2EJ)  (d)=0

ize EM
-Normalize E Snew

Shew’

8:
9:  -Decrease N by 1.
10: until N <0.




In our implementation, there are four scales in the hierarchical BP, and the main pro-
cess for each scale are the same. The updating scheme for each scale are summarized in
Algorithm 1. For each scale, eight textures are used to store the smoothness term. The
old smoothness term generated in the previous iteration is stored in four of the textures

(E§L| 41 =1,2,3,4), the other four textures are used to store the updated smoothness term

(E(S?BN). For the coarsest scale, before the iteration begins, initialize Egz)ld with all zeros,

as to the other scales, Egzﬂd is initialized as Algorithm 1 describes. At the beginning of

each iteration, compute multi-pass jump cost Mg) from the data term and the previous
smoothness term as described in the Approach Section. The next step is to update the
smoothness term using Equation 3. The complexity of this problem is O(NRgiSp) (NRgisp
is the number of disparity levels), but the updating scheme provided in Algorithm 1 re-

duces the complexity to O(N). Finally, normalize E{) gy SUCh that 345 El)ey(d) = 0.
When the iteration is completed in the fine scale, uses Equation 5 and 6 to create the

disparity map.

5 Experimental Results

We tested our real-time BP algorithm on a 3 GHz PC running Direct3D 9.0. The GPU is
a Geforce 7900 GTX graphics card with 512M video memory from NVIDIA. All shaders
are implemented using HLSL and complied using pixel shader 3.0 profile. The following
experiments are conducted to evaluate both the quality and efficiency performance of our
algorithm. The same parameter settings were used throughout the experiments. Two
parameters T = 30 and n = 0.15 are used in the correlation volume computation module,
another two parameters are involved in the calculation of the single-pass jump cost: p
and A. p issetto 1.0, and A is determined by the the number of disparity levels (NRg;sp)
of the input data set: A = (2.0 x NRysp)/16. 16 is the number of disparity levels of the
Tsukuba data set. In this paper, we implement hierarchical BP in GPU with four scales,
and the typical iterations for each scale are (5,5,10,4), from coarse-to-fine scale.

5.1 Quality Evaluation with Ground Truth

We first evaluate the reconstruction quality of our approach using the benchmark Middle-
bury stereo data set based on known ground truth. The new evaluation test data consists
of four stereo pairs within which "Tsukuba” and ”Venus” are standard stereo data with
slanted surfaces and up to 20 disparity levels, "Teddy” and ”Cones” are both new adopted
image pairs with more complicated scene structure and much larger disparity ranges. We
evaluate the numerical accuracy of the dense disparity maps generated by our algorithm
using the online system at [7]. The results from all test images are shown in figure 3.
This quantitative evaluation confirms that, as demonstrated in Table 1, our real-time
BP performs as well as other global optimization approaches. Generally speaking, the
overall performance is ranked between the best belief propagation based algorithms which
are the current state-of-the-art stereo algorithms and the Graph Cuts based algorithms.
One thing worth noticing is that most of these methods, such as [1, 11, 6], integrate mul-
tiple low-level visual cues (e.g., segmentation, edges, visibility testing) as either soft or
hard constraints to improve stereo matching while our approach works under a basic and



Avg. Tsukuba Venus Teddy Cones

Algorithm Rank | nonocc all |nonocc all |nonocc all |onocc alt
DoubleBP [1] 2.3 0.88: 1.29 | 0.14, 0.60s | 3.55 8.71: | 2.90; 9.24
SymBP+occ [11] 51 0.97: 1.75 | 0.16s 0.33: | 6.47s 10.7. |4.79: 10.7s
Our Algorlthm 10.4 1490 340 | 0.777 1.90u |8.7213 13.2s | 4.61s 11.610

GC+occ [6] 11.5 1.19: 2.01s | 1.6414 2.19: | 11.216 17.416 | 5.3615 12.415
MultiCamGC [9] | 12.0 1.27s 1.99 | 2.79 3.1317 | 12.017 17.617 | 4.89:2 11.81
GC [10] 166 1.9412 4.1215 1.7916 3.4418 16.521 25.022 7.7017 18.218

Beliefprop. [8] | NA | 1.15 NA | 098 NA | NA NA | NA NA
HierarchicalBP [5] NA | 1.86 NA |09 NA | NA NA | NA NA

Table 1: Performance comparison of the proposed method with other high-quality global
optimization approaches. This measure is computed for three subsets of the images,they
are "nonocc”: the subset of non-occluded pixels, "all”: pixels that are either non-occluded
or half-occluded. The subscript is the relevant rank of each item on the table. Note that
since the old Middlebury table which contains several bp based stereo methods is no
longer functional, we have collected the non-occluded (overall) error rate of the shared
test data *Tsukuba’ and *Venus’. Those numbers that are not available due to this reason
are labeled "NA”.

clean probabilistic framework without any additional information incorporated. More-
over, the iteration numbers used across all experiments is only 4. Although increasing the
number of iterations can produce stronger results simultaneously, we balance the quality
and efficiency by not using too may iterations and our later experiments will show this
compensation does not prevent us from achieving satisfying results.

In addition, in terms of accuracy, Table 2 shows that our real-time BP outperforms
all the other methods that can achieve real-time or near real-time performance listed on
the new Middlebury evaluation table. Since the old evaluation table at Middlebury, which
contains some algorithms that aim real-time, is no longer functional, we collecte the non-
occluded error percentage of the shared test data *Tsukuba’ and *Venus’ and provide re-
sults in Table 2 for reference.

Avg. | Tsukuba | Venus | Teddy | Cones
Algorithm Rank | nonocc |nonocc |nonocc | nonocc
Our Algorlthm 10.4 1.49 10 0.77: | 872 461,
RealTimeGPU [12] 14.3 2051 | 192y | 7.23s | 6411
ReliabilityDP [13] | 15.6 1367 |2351 |9.821 | 1292
Realtime [16] NA 425nm |1.32m | NA NA
Realtime DP [14] | NA 2.85m |6.25n | NA NA
Max. surf. [15] NA 11.10na | 5518 | NA NA

Table 2: Performance comparison of the proposed method with other real-time ap-
proaches listed on the Middlebury evaluation tables.



Figure 3: Resulting disparity maps from the Middlebury stereo data set. (top row) Ground
truth; (bottom row) Disparity maps generated from our method.

Figure 4: Two sample images and their corresponding disparity maps from our live system
on a 3 GHz PC with a Geforce 7900 GTX graphics card from NVIDIA. Our system can
reach 16 fps given 320 x 240 input images and 16 disparity levels.

5.2 Live System and Efficiency Performance

We integrated our algorithm into a real-time stereo system with live video input. The
stereo pairs are rectified and with lens distortion removed. This pre-processing is imple-
mented in the GPU using texture-mapping functions. Figure 4 shows the results of apply-
ing our real-time BP algorithm to some live images captured from our system. These real
scene images are with resolution 320 x 240 and 16 disparity levels. Note that the scene
structures and object borders have been well detected. The speed is about 16 fps for our
live system.

To further evaluate the efficiency performance of our algorithm, we test our system
against the four Middlebury test data under different configurations and summarize the re-
sults in Table 3. Two characteristics of our real-time BP algorithm can be observed from
the measurements. First, by utilizing graphics hardware acceleration, we can achieve a
speedup factor up to 45 compared to its CPU counterpart. Second, the error percentage
changed slightly with the increasing of iterations. Using a few iterations are able to pro-
duce strong results. These two characteristics cooperatively explain why our algorithm is
very suitable for real-time application.



Iteration || MDE/Second Error(%) Avg.
(N) CPU | GPU || Tsukuba | Venus | Teddy | Cones || Rank
2 0.49 | 222 1.59 090 | 8.89 4.73 11.0
4 0.39 | 17.0 1.49 0.77 | 872 4.61 10.4
6 0.31 | 13.7 1.47 0.67 8.68 4.57 9.8

10 0.23 | 101 1.47 0.60 9.09 4.54 9.7

Table 3: Running time evaluation on the four new Middlebury stereo data. The speed
and overall error rate corresponding to different number of iterations are presented in
the table. Speed performance is measured by million disparity estimations per second
(MDE/s). Here both the CPU and GPU’s MDE/s values are calculated based on Tsukuba
data set. Clearly GPU acceleration can achieve a high speedup factor compared to the
CPU implementation. In addition, iterations used for each scale are (5,5,10,N), from
coarse-to-fine scale. N is the variable provided in the table.

6 Conclusions and Future Work

In this paper, a real-time stereo model based on hierarchical belief propagation was pro-
posed, which demonstrates that global optimization based stereo matching is possible for
real-time applications. The whole algorithm design in this paper is very clean and results
in very high quality stereo matching. We qualified the accuracy of the stereo results us-
ing the Middlebury benchmark, which shows that our algorithm outperforms all the other
real-time stereo algorithms.

Looking into the future, both the quality and the speed of the proposed real-time BP
approach can be improved. For the quality, more constraints and priors (e.g. edges, cor-
ners, junctions, segmentation, visibility) can be incorporated; for the speed, in Section
3, we have proposed an approach which allows large number of iterations to guarantee
the convergence, for instance, the running time of fast-converging BP with 100 iterations
is even less than the running time for standard BP with 5 iterations. We’re planning to
transfer it to GPU in the near future. In addition, [5] presented an approach which can
decrease both the storage requirements and the running time by a factor of two. Because
for a bipartite graph, all the nodes can be separated into two clusters, for each iteration,
only one cluster’s smoothness term needs to be updated. We have implemented this ap-
proach on CPU, and we would also like to implement this approach on GPU to improve
the speed upto a factor of two in the near future.
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