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Abstract The article demonstrates the usefulness of

heterogeneous System on Chip (SoC) devices in smart

cameras used in intelligent transportation systems (ITS). In

a compact, energy efficient system the following exem-

plary algorithms were implemented: vehicle queue length

estimation, vehicle detection, vehicle counting and speed

estimation (using multiple virtual detection lines), as well

as vehicle type (local binary features and SVM classifier)

and colour (k-means classifier and YCbCr colourspace

analysis) recognition. The solution exploits the hardware–

software architecture, i.e. the combination of reconfig-

urable resources and the efficient ARM processor. Most of

the modules were implemented in hardware, using Verilog

HDL, taking full advantage of the possible parallelization

and pipeline, which allowed to obtain real-time image

processing. The ARM processor is responsible for exe-

cuting some parts of the algorithm, i.e. high-level image

processing and analysis, as well as for communication with

the external systems (e.g. traffic lights controllers). The

demonstrated results indicate that modern SoC systems are

a very interesting platform for advanced ITS systems and

other advanced embedded image processing, analysis and

recognition applications.

Keywords Intelligent Transportation Systems �

Hardware-software image processing (Zynq SoC) � Vehicle
queue length estimation � Vehicle detection � Vehicle type

and colour recognition

1 Introduction

The use of vision systems in vehicle traffic analysis and

control (so-called intelligent transportation systems—ITS)

is becoming more and more widespread. It is evidenced by

the increasing number of cameras installed near the roads.

They are used to:

– analyse and control traffic at intersections,

– monitor traffic congestions,

– detect unusual events (e.g. collisions or accidents),

– estimate travel time between two cities,

– measure average speed on a given road section,

– measure vehicle speed,

– detect red light crossing,

– collect toll (car parks, motorways).

The first of the mentioned applications seems to be espe-

cially important. A vision system mounted at the inter-

section can provide a range of relevant information.

Firstly, it can be used to estimate the car queue length, i.e.

detect the presence of vehicles in certain locations. This

can be achieved with the use of so-called virtual induction

loops or virtual detection areas. Alternative solutions such

as induction loops, passive magnetic sensors or pneumatic
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tubes have a common drawback. Their installation and

maintenance in case of a failure require interference with

the road surface, which can be quite costly. In addition, the

obtained information is only binary (vehicle/no vehicle).

On the other hand, these solutions are quite reliable and not

very sensitive to external conditions (time of the day,

weather, etc.).

A vision-based system also allows for: vehicle counting,

vehicle mean speed estimation, rough classification of

vehicles (e.g. bikes/motorbikes, cars, minibuses, buses,

trucks) and rough colour estimation (only basic colours:

white, black, red, green, blue, etc.). Furthermore, it is

possible to track vehicles between intersections (using the

plate number or other features), detect abnormal situations

(accidents, breakdowns, etc.) or even to exactly classify the

vehicles (make and model) [25]. Moreover, the human

operator of the ITS system should be able to download

images from the camera and accurately assess the current

situation—for example, using a web-based access

interface.

However, it is also noteworthy to point out certain dis-

advantages of the vision-based system. First, these solu-

tions are often affected by lighting and meteorological

conditions. Good examples are: night-time, deep shadows,

heavy rain, snowfall or fog. Great challenges are also posed

by: the huge variety of vehicles (different sizes and shapes)

and the limited computational power (real-time image

processing vs. low power consumption).

In the case of vision systems, the required calculations

can be realised in two variants. In the first, the video stream

from cameras mounted at intersections is transmitted to the

surveillance centre, where it is subjected to manual or

automatic analysis. The main disadvantage of this approach

is the need for very high bandwidth communication

infrastructure. In the second approach, the smart camera [8]

concept is used. In this case, image processing and analysis

are carried out immediately after image acquisition and

there is no need to transmit every frame to other compo-

nents of the system. Usually, the output contains only

simple data such as the vehicle queue length or the number

of detected vehicles (so-called meta-data stream). Of

course, the smart camera should also allow to access the

raw video stream, as this can be useful in the analysis of

unusual situations or debugging the system.

When designing a smart camera, a very important issue

is the choice of the hardware computing platform. There

are solutions based on general-purpose processors (GPP),

digital signal processors (DSP) and reconfigurable devices

(FPGA—field programmable reconfigurable arrays). For

performing real-time image processing and analysis with

relatively low energy usage the third platform seems to be

very attractive. In recent years it has been proved that

reconfigurable systems can handle many vision algorithms

such as various filtration methods, complex background

modelling and foreground object segmentation. Further

examples are optical flow computation, tracking and object

classification systems (e.g. pedestrian detection) [7]. Many

image processing systems implemented in FPGAs involve

the pipeline data processing approach, where the pixel

stream passes through different computing elements.

However, for some complex vision algorithms the

pipeline implementation proved quite cumbersome or

even impossible. A good example is the region growing

segmentation, which requires an unpredictable number

and order of pixels accesses. In such cases, the use of

a general purpose processor system is a much more con-

venient solution. Modern FPGAs allow to use a so-called

soft-processor (MicroBlaze from Xilinx, Nios from

Altera), but these solutions have quite limited computing

performance. In 2012 Xilinx introduced the Zynq

heterogeneous platform, which is a combination of FPGA

logic resources and a dual-core ARM processor [71]. The

portfolio consist of the Zynq 7000 SoC series and Zynq

UltraScale? MPSoC series. The first one contains an

ARM Cortex-A9 dual-core processor, the second a quad-

core ARM Cortex-A53 processor, a dual-core ARM

Cortex-R5 processor and an ARM Mali-400MP GPU

(graphics processing unit).

Similar devices are also available from Altera [2]. They

are called Altera SoC. The portfolio consists of Cyclone V

SoC, Arria V SoC, Arria 10 SoC and Stratix 10 SoC. The

first three devices contain an ARM Cortex-A9 dual-core

processor and the last a 64-bit quad-core ARM Cortex-

A53.

The solution has gained some interest in the embedded

image processing community. In the end of year 2015 over

30 SoC-based papers were available in the most popular

databases. They cover different topics:

– image filtering [16],

– feature extraction [28, 60],

– optical flow computation [42],

– road sign recognition [54],

– driver awareness monitoring system [56],

– face detection [23, 77],

– stereovison system [10],

– object detection and tracking [49],

– advanced driver assistance systems [59].

In this paper the concept of using the Zynq SoC device in

an embedded smart camera for intelligent transportation

systems is considered. To the best of our knowledge this is

the first reported approach of this type.

On a single hardware–software system—repro-

grammable logic and ARM processor system with Peta-

Linux [70] operating system—the following algorithms

were implemented:
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– vehicle queue length estimation,

– vehicle detection, counting and speed estimation,

– vehicle type recognition,

– vehicle colour recognition.

The main contributions of the paper can be summarised as

follows:

– the concept of using the heterogeneous (hardware–

software) Zynq SoC device for ITS smart-camera,

which allows to obtain an effective, low-power com-

puting platform,

– evaluation of this concept by implementing sample

algorithms used in ITS smart cameras,

– the proposal of a new and robust vehicle detection

algorithm customized for a hardware–software system,

– the proof that a Zynq-based smart camera allows real-

time image processing of a 720 9 576 @ 50 fps pixel

video stream.

The paper is organized as follows. First, the general con-

cept of an embedded hardware–software image processing

system is discussed in Sect. 2. Then, in Sect. 3 the prior-

mentioned algorithms used in ITS are reviewed. A general

overview of the proposed system is provided in Sect. 4.

Then particular modules are described: vehicle queue

length estimation (Sect. 5), vehicle detection and counting

(Sect. 6), vehicle type and colour recognition (Sect. 7). In

Sect. 8 modules (so-called global), which are common for

the image processing system are discussed. Integration of

the system on the Xilinx ZC 702 development board, as

well as evaluation results are presented in Sect. 9. The

article ends with further research discussion and a short

summary.

2 Concept of an embedded hardware–software

vision system

In this work, an embedded hardware–software vision sys-

tem based on the heterogeneous Zynq platform is dis-

cussed. Its architecture is presented in Fig. 1.

It consists of the following devices:

– a video camera with HDMI output (source of the video

stream),

– a computing platform (heterogeneous Zynq device),

– an evaluation board containing a Zynq device, RAM

and peripherals (ZC 702 board from Xilinx),

– a display device (LCD monitor).

The source of the video stream is a digital camera with

high-definition multimedia interface (HDMI) output.1 In

this case the user logic receives the following signals:

– pixel clock (PIXEL CLK),

– data validity signal (DE),

– horizontal synchronization signal (HSYNC),

– vertical synchronization signal (VSYNC),

– pixel data (e.g. 24 bits per pixel in RGB format).

The used Zynq computing platform consists of pro-

grammable logic resources (PL) and a processing system

(PS). The heterogeneous system is a part of an evaluation

board, which contains also the required input/output inter-

faces and external RAM memory. In the presented solution,

it is also possible to visualize image processing results via an

HDMI output. Furthermore, image analysis results (meta-

data) are available through Universal Asynchronous Recei-

ver Transceiver (UART), Ethernet or a simple web service.

In this section the pipeline data processing concept is

presented. In addition, the assumptions that were adopted

during distributing the computational task between PL and

PS are discussed. Furthermore, the choice of the operating

system for the PS is explained.

2.1 Pipeline data processing

A hallmark of the used video source is the stream data

transmission method. It was implemented in analogue

1 In general, a tighter integration, i.e. direct communication between

the complementary metal-oxide semiconductor (CMOS) or charge

coupled device (CCD) vision sensor and the reprogrammable logic is

also possible.
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Fig. 1 Concept of the proposed

embedded hardware–software

system
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video transmission systems (i.e. CCIR TV). Today, this

method is also used in digital standards, i.e. HDMI.

When the image acquisition phase is complete, the

camera transmits data pixel by pixel, line by line, frame by

frame. These data are not compressed, the transmission

does not require the use of complex protocols and it is not

necessary to buffer the image frame when forming the

signal. The disadvantages of this solution are, however, the

high signal bit rate (related to the high clock frequency of

the synchronous data bus) and the limited length of the

cable. Therefore, the tight integration of image acquisition

and processing systems is highly desirable. This is often

referred to as the smart-camera concept [8].

Processing and analysis of video stream data in a pipe-

lined system is a well-known and often used technique.

The first implementations of basic image processing

operations were proposed over 20 years ago in [4, 64] or

[19]. The development of the FPGA technology enabled to

use these devices for image analysis and recognition [14,

27]. Furthermore, the study [20] showed that pipelined

image processing systems can achieve linear acceleration.

Outstanding computing performances of parallel-pipelined

modules for the Horn–Schunck optical flow algorithm were

demonstrated in papers [31, 35].

Depending on the used algorithms, it may be necessary

to gather a local context of the image. This can be done

easily with so-called delay lines (e.g. for image filtering).

In some cases, it is necessary to temporary cache the full

image frame. Examples include two-pass connected com-

ponent labelling [27], optical flow computation [31] or

foreground object segmentation [34]. Nevertheless, the

data temporarily stored in the buffer are transmitted again

to the rest of the system in the form of a video stream.

The most important parameter of a pipeline system is

the data processing frequency. To ensure real-time opera-

tion, the frequency of all used hardware modules (pro-

cessing elements) should be equal or greater than the so-

called pixel clock (i.e. the frequency of pixel propagation).

Video stream parameters such as the number of pixels in a

single frame (i.e. image resolution), the number of frames

per second (fps) and pixel representation (e.g. 8-bit grey-

scale or 24-bit RGB) determine the required frequency of

the system. For example, for resolution 720� 576 @ 50

fps it equals 27 MHz and for 1920� 1080 @ 50 fps—

148.5 MHz.2 Thus, the key challenge when designing a

pipeline processing system is to create a computing

architecture that meets the above requirement. The com-

puting performance of the pipeline system also depends on

the complexity of the used algorithms. In [20] it has been

shown that the performance of a pipeline solution depends

on the number of operations performed for a single pixel

and pixel propagation frequency.

In the defined pipeline architecture, the suspension of

processing is not allowed, as data are transmitted contin-

uously. The basic data unit in this system is a single pixel.

Therefore, it is referred to as fine-grain.

The above-described fine-grain pipeline data processing

system is essentially different from a typical software

solution implemented on a general purpose processor

(GPP). In the latter case the basic data unit is a single

frame. Therefore, the system is described as a course-grain.

A typical software video processing application operates in

three steps: image acquisition and storing the image in the

input memory (from a camera or hard disk), calculations

and saving of output data. Although single pixel processing

(i.e. for loop over the image) is often used, in many cases

it could be parallelized. The data transfer between the GPP

and RAM is usually efficient enough to obtain larger image

chunks and process them in parallel. An example would be

pedestrian detection in several areas of the image executed

in separate threads (each on a separate processor core).

The real-time requirement for coarse-grain processing is

defined in a different way than for the fine-grained one.

Here, the overall calculation time cannot exceed the time

between the acquisition of two consecutive frames (e.g.

1/50 s for 50 fps). However, if the above condition is not

met, it is usually possible to reduce the processing rate (e.g.

from 50 to 33 fps). This solution is acceptable in non-time

critical vision systems.

In a pipeline processing system such a situation is not

possible. The execution time limit for each computation

step results from the pixels propagation frequency. If this

time is exceeded, even in one element of the system, the

obtained results are completely wrong and useless. In

practice, the designer verifies the maximum pixel clock

frequency at which the system operates properly (using

timing analysis tools and hardware verification). Then, the

maximal allowable video stream parameters (resolution

and frame rate or bit rate) can be selected and verified.

The pipeline data processing architecture implies certain

limitations. For example, algorithms involving operations

that are dependent on pixel order in the data stream are

impossible to implement—e.g. region growing segmenta-

tion, where the data access pattern depends on image

content. In many other cases, it is necessary to impose

some additional restrictions such as the maximum number

of objects in connected component labelling. However,

despite the mentioned drawbacks, the pipeline scheme is a

very attractive solution. First, because it is consistent with

the data sending method from the image sensor, and

therefore frame buffering between successive operations is

2 Due to the presence of front porches, sync pulses and back

porches the pixel clock frequency is given by the formula:

ðhorizontal resolutionþ front porch þ sync pulse þ back porchÞ�
ðvertical resolutionþ front porchþ sync pulseþback porchÞ� fps.
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not required. Second, as already mentioned, the linear

acceleration in a pipeline system [20] allows to achieve

very high computing performance (operations per second)

and energy efficiency (operations per watt) [31].

Thus, if the main requirement of an embedded vision

system is real-time processing of a video sequence (espe-

cially high definition), the pipeline data processing is par-

ticularly recommended. Therefore, the majority of

calculations should be implemented in hardware resources

(PL). However, there are some cases when designing a

hardware module is not possible or very complicated and,

therefore, not justified. Then, a software processing system

with random assess to each pixel should be used.

The integration of both types of architectures proved to

be feasible in the heterogeneous Zynq device. The fine-

grain part can be implemented efficiently in repro-

grammable resources (PL). The coarse-grain processing

can be realised on the ARM processor cores.

The above-discussed assumptions andfine-grain andcoarse-

grain architectures were used in the proposed vision system.

The majority of image processing algorithms were imple-

mented in a pipelinemanner in reprogrammable resources. The

ARM processor was used only for operations that would be

difficult to implement in PL, i.e. complex image processing,

Ethernet communication, database,web server, etc. It should be

also noted that this approach allowed to limit the number of

transfers between the PL and PS. Essentially, the transfer was

only one directional from PL to PS.

Finally, it should be noted that the presented method of

using heterogeneous devices for image processing systems is

not the only one possible solution. In many real-life cases,

the input data do not origin directly from a video source, but

is transferred from a host PC via PCI-X bus or received from

a camera with Ethernet (e.g. GigE) or USB interface. The

latter solutions often involve intra- or interframe video

compression. Thus, the basic data chunk is not a pixel, but a

part or the entire image frame. In this situation, a coarse-

grain or middle-grain approach is required. However, some

of the computing intensive tasks (so-called bottlenecks) can

be transferred by the processor to the accelerating modules

in PL. With such assumptions, before splitting the comput-

ing tasks between hardware and software, a thorough code

profiling should be performed to determine all bottlenecks.

In the above-described approach, the GPP is considered as

the primary computation platform. Nevertheless, such a

system architecture and design methodology is completely

opposite to the chosen by the authors of this paper.

2.2 Operating system selection for the ARM

processor

After specifying the role of the ARM processor in the pro-

posed vision system, it is possible to choose the best suited

operating system (OS). For the Zynq platform the following

options are available: the so-called bare metal (without OS),

Linux OS, real-time operating system (RTOS) and Android

OS. The simplest solution is a bare metal application. It is

easy to implement and efficient. However, the basic features

of an OS like multitasking, applying libraries (e.g. OpenCV),

easy communication via Ethernet are not supported. More-

over, this solution limits and complicates the potential future

development of the system.

Another solution is the use of the Linux operating system.

Several distributions, both free and commercial, are available

for the Zynq platform. The basic, supported by Xilinx, is

PetaLinux [70]. Others include: Arch LinuxDistribution, Denx

ELDK, ENEA Linux, MontaVista Linux, SYSGO ELinOS,

Timesys LinuxLink, Wind River Linux and Xillinux.

The third possibility is the use of a real-time operating

system, for example, FreeRTOS. In the presented vision

system, this solution was not considered, as no time-critical

applications were assigned to the processor. Furthermore, it

is possible to run Android OS on the Zynq, however, this

option has no advantages over Linux, and therefore was

also not considered.

From the above-listed solutions, the PetaLinux system

was chosen because it contains all the necessary drivers,

tools (boot loaders, device drivers, etc.) and a well-devel-

oped community support. In addition, Xilinx has prepared

a Board Support Package (BSP) for the ZC 702 platform

used in the experiments. It contains a properly configured,

ready-to-build system distribution. This allowed to imple-

ment the described vision system easier and quicker. Fur-

thermore, the required functionalities: communication via

SSH, FTP, SFTP, web server or running the OpenCV

library (for performance evaluation of the software model)

were almost instantly available. The use of another distri-

bution would involve a fairly tedious configuration pro-

cess, which is beyond the scope of this research.

It is also worth mentioning that for more advanced

applications both ARM processing cores could be used. For

example, a configuration with Linux on one core, and

RTOS or bare-metal on the second is possible. In the

context of future development of the considered applica-

tion the Linux ? RTOS option could be particularly

interesting. The RTOS would be responsible for tasks

directly related to traffic light control and the Linux for less

time-critical functions like statistics and communication.

3 Algorithms used in smart cameras for ITS

In this section the most widespread ITS vision algorithms

are discussed: vehicle queue length estimation, vehicle

detection and counting, vehicle speed estimation, as well as

vehicle type and colour recognition.
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3.1 Vehicle queue length estimation

The problem of vehicle queue length estimation has been

widely described in scientific papers. This issue is very sig-

nificant, because information about the queue length can be

almost directly applied in an intelligent traffic light controller.

Algorithms In the work [55] the analysis area (i.e. the

intersection) was divided into several separate blocks

(called ROI—regions of interest). The width of a single

block corresponded to the width of the roadway and the

height to the average length of a typical car. The authors of

the algorithm made use of vehicle queue forming proper-

ties—the cars stop one by one beginning from the marked

stop line. In the first stage, after the traffic light turns red,

the ROIs closest to the camera were analysed. When

a stopped vehicle was detected, the queue counter was

increased and the next block was analysed. The counter

was set to zero, when the first car started to move. This

approach saved computing resources, as only two blocks

had to be analysed for a single lane (queue head and tail).

The most important element of the algorithm was the

procedure that allowed to determine whether the car was

located within the given block. The authors proposed

a two-stage approach. In the first step, the number of edges

(Sobel edge detector) was used to detect a vehicle. Typi-

cally, the vehicle had much more edges than the road

surface. However, the detection in areas where a deep

shadow cast by trees or other objects nearby the road was

present sometimes provided incorrect results. Therefore, in

the second stage so-called dark areas were detected. The

required binarization threshold was calculated as a certain

percentage of the mean brightness in the given ROI.

The two-step approach described above allowed to

determine the status of the block. The algorithm was

evaluated on 45 short sequences. In total over 32,000 dif-

ferent ROIs were tested and 99.9 % accuracy was reported.

The only errors were caused by the presence of large

vehicles which contained a small number of edges and,

therefore, were not detected correctly.

A similar solution was described in the work [75]. It was

based on movement detection (consecutive frame differ-

encing) and vehicle detection (entropy and edge based) in

disjoint blocks. Also a comparable approach was used in

the paper [76]. The authors also proposed a queue severity

index and the methodology for selecting all thresholds used

in the algorithm. This system was extensively evaluated

during a 6-month period.

A slightly different approach was applied by the authors

of the paper [1]. The vehicle detection was based on corner

features (Harris algorithm). This resulted from the observa-

tion that the road surface is generally uniform and vehicles

usually have many corners. Additionally, the information

about movement was obtained using consecutive frame

differencing. The queue length was determined by counting

corners on static parts of a given lane. The authors also used

a perspective correction based on homographic transforma-

tion, which allowed to estimate the queue length in meters.

Extensive tests in different conditions confirmed the effec-

tiveness of the proposed solution.

A different solution was proposed in [72]. The camera

was placed not on or above the traffic lights but in such

a way so that the cars were visible from the back. The rear

parts of the vehicles were detected using Haar features and

AdaBoost cascade classifier. Also movement and edge

detection were used. The lane markings were eliminated

using a pattern matching-based approach. The queue

length was determined using two moving windows—one

for the head and second for the tail of the queue.

The author of the work [51] applied linguistic variables

and fuzzy set theory to detect the presence of a vehicle in

a given area. This method involved the analysis of local

context size of 7� 7 pixel size used to determine the rela-

tionship between the central pixel and the corners. The

relationships were then described with the use of fuzzy sets.

The detection was based on counting and thresholding the

found attributes. Themethod was tested onmore than 20 h of

recordings and proved to be robust. The author emphasizes

the possibility of an efficient hardware implementation.

Embedded implementations There are also several articles

describing embedded implementations of ITS systems.

In the article [63] a hardware module for queue length

detection was described. A DSP was used as the compu-

tation platform. The algorithm was based on the thresh-

olding of the input image using the Otsu method [47] for

determining the threshold. During segmentation objects

lighter and darker than the road surface were detected. The

resulting object mask was filtered and analysed to estimate

the queue length.

In the study [74] also a DSP-based embedded vision

system was presented. The analysis was carried out in

disjoint blocks. Consecutive frames differencing and

foreground object detection (using the Gaussian Mixture

Models method) was used for motion detection. Vehicle

presence detection was based on edge analysis (morpho-

logical edge detector). To reduce the computational com-

plexity, motion detection was performed only for the

beginning and end of the queue and the presence detection

only for the end of the queue. Tests made in different

weather conditions during a two weeks period showed high

efficiency of the solution.

Summary The above-described algorithms and their

implementations are summarized in Table 1. The following

parameters were considered:
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– Platform—the used computing platform,

– ROI—region of analysis (whole image, a single lane or

a certain part of the lane),

– Detection algorithm—features used for vehicle pres-

ence detection,

– Evaluation—available information about evaluation,

i.e. used dataset and reported accuracy,

– Remarks.

Most of the listed solutions operate on image parts

(blocks) corresponding to a single vehicle. Movement

detection is based on consecutive frame differencing.

Vehicle presence detection is mainly based on edges,

sometimes supported by entropy or dark areas analysis.

Accuracy comparison of the presented solutions is dif-

ficult. The ITS vision community did not develop a single

video sequence database to evaluate this type of algo-

rithms.3 Moreover, the authors test their system in real-life

conditions for a long period of time (weeks, months).

Obviously, this is an excellent approach, but it makes the

comparison even harder, as repeating the experiment would

require at lot of computations and data storage.

3.2 Vehicle detection

Algorithms Vehicle detection can be performed using

foreground object or moving object segmentation. In the

first case, objects are usually extracted using the differen-

tial image between the current frame and the so-called

background model. This approach has been used, among

others, in works [24, 11, 17, 53, 3]. Unfortunately, this

solution has a number of drawbacks that hinder its practi-

cal application in traffic monitoring. These are: low resis-

tance to camera jitter (it is usually necessary to implement

some kind of jitter compensation algorithm), difficulties in

initializing and reinitializing the background model prop-

erly (especially in the presence of heavy traffic), high

sensitivity to shadows and sudden illumination changes

(e.g. reflections of car lights on the road). In addition, the

specific conditions present at an intersection cause that

background elements (i.e. carriageway) are obscured by

cars waiting for the green light for extended periods of

time. This significantly hinders the background update

procedure and causes many segmentation errors.

Moving object detection using optical flow or, in

a simplified case, consecutive frame differencing, was

applied to vehicle segmentation in the work [18]. The

solution helps to eliminate some of the disadvantages of

background subtraction—e.g. sensitivity to camera move-

ment or problems with maintaining the correct background

model. On the other hand, it only allows to segment

vehicles that are moving. This greatly complicates the

analysis of the situation on an intersection. Furthermore,

the obtained object masks often require complex post-

processing, since the optical flow field for homogeneous

areas is usually incorrect (e.g. division of a large uniform

object). In the literature more advanced solutions such as

3D deformable models [50] were also described. However,

the computational complexity limits their usage in

embedded devices.

A very interesting approach, that is frequently used in

recent research papers, are virtual detection lines (VDL)

Table 1 Queue length estimation—summary

Work Platform ROI Detection algorithm Evaluation Remarks

[55] GPP Block Edge, so-called dark areas 45 sequences—99 % accuracy % –

[75] GPP Block Entropy, edge Acc. not provided –

[76] GPP Lane Horizontal edges, consecutive

frame differencing

Acc. not provided, 6 months of

evaluation

–

[1] GPP Lane Corners, consecutive frame

differencing

Acc. not provided Result analysis method

difficult to implement in

a pipeline vision system

[72] GPP Lane Edge, movement, Harr features,

AdaBoost classification, pattern

matching

Acc. not provided Algorithms difficult to

implement in a pipeline

vision system

[51] GPP Block 7� 7 local context analysis, fuzzy

sets

Less than 1 % errors (11 % during

night-time), 20 h video

–

[63] DSP Lane Ots’u thresholding Acc. not provided –

[74] DSP Block Consecutive frame differencing,

foreground object segmentation

(GMM), edge

Acc. not provided, 2 week period

evaluation

–

[61] FPGA Lane Edge, entropy – Paper in Chinese

3 It is worth mentioning that such solutions exist for multiple video

processing topics. Examples are: changedetection.net for foreground

object segmentation, http://vision.middlebury.edu/stereo/data/ for

stereovision or http://vision.middlebury.edu/flow/ for optical flow.
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and time-spatial images (TSI). The idea is presented in

Fig. 2. The basis is a virtual detection line (VDL) located

on a given part of the road (red line). In each frame, the

pixels on the VDL are stored in a buffer and form the time-

spatial image. The TSI image contains information about

vehicles width (x-axis) and vehicle size/speed (t-axis). This

can be used to implement vehicle counting, speed estima-

tion or even classification [41, 73].

In the literature, two approaches are presented. The TSI

image is generated from the object mask obtained using

background subtraction [73] or directly using the raw

image from the camera [41]. In the second case, edge

detection (e.g. Canny algorithm) followed by some mor-

phological post-processing (closing, filling holes) is often

applied. This allows to obtain masks of individual objects

(vehicles). It is also possible to integrate the results from

several VDL/TSI, which can improve the reliability of the

system [41]. An important feature of this approach is the

relatively low computational complexity due to processing

only a rather small portion of the image. What is more, it

allows to detect moving and stopped vehicles (with proper

TSI image analysis). Additionally, a system with many

VDLs can be easily implemented in a parallel computing

architecture, such as FPGA or heterogeneous SoC devices.

Embedded implementations Hardware implementations of

vehicle detection algorithms have been described in several

papers. One of the first works [21] used a relatively simple

background model and the SAD algorithm. To maintain

a proper background model, the update was performed

only when no vehicles were detected at the specific loca-

tion. The system was implemented in Handel-C HLS lan-

guage [39] and PixelStream library [40]. It was evaluated

on RC300E platform with a Virtex II FPGA device. It

allowed to process 25 frames with 786 9 576 pixels res-

olution per second.

In the paper [38] a rather simple vehicle motion detection

algorithm was reported. It was based on foreground object

detection. The module was implemented for a Cyclone II

FPGA device. No data about performance were provided. A

similar system was also presented in the work [9].

In the paper [57] a hardware implementation of a traffic

analysis algorithm was presented. The segmentation was

based on background modelling and subtraction (short- and

long-term background models), supplemented by shadows

and light reflections detection. The application allowed

also to measure the speed of vehicles. To increase relia-

bility, a geometric transformation of the image was

applied. The system was evaluated on a Virtex 4 FPGA

and allowed to process 32 frames with a resolution of 128

9 128 per second. The correct detection rate of the system

given by the authors was 90 % at day and 56 % at night

(100 cars in each test).

In articles [66, 67] extended versions of the above-de-

scribed system were presented. Edges were added to the

background model, the generalized Hough transform was

applied and object tracking based on a binary mask was

implemented (executed on a CPU). A very valuable part of

the work was its practical verification in urban conditions.

A total number of 26 nodes were used (22 based on FPGA

and four on ASIC). The authors reported an accuracy of 93

% at a sunny day, 83 % at a cloudy day and 63 % at night

(100 cars in each test).

Summary The above-described algorithms and their

implementations are summarized in Table 2. The following

parameters were considered:

– Platform—the used computing platform,

– Detection method—the used vehicle presence detection

approach,

– Evaluation—available information about evaluation,

i.e. used dataset and reported accuracy,

– Remarks.

The vast majority of the analysed methods were based

on foreground object segmentation and background sub-

traction. It is worth noting that they were primarily

designed for vehicle detection and counting on highways,

i.e. without stopped vehicles. In the case of an intersection,

especially with high intensity of traffic, the correct back-

ground model update is quite difficult. Therefore, approa-

ches without background subtraction seem to be a more

promising solution, especially the VDL and TSI proposed

T=0

t

x

(a)

(b)

(c)

d)

t1

t2

t3

Fig. 2 The idea of using virtual detection lines (VDL) and time-

spatial images (TSI). a Frame at time t3, b frame at time t2, c frame at

time t1, d vehicles on the TSI, x-axis—spatial, t-axis—time [33]
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in [41]. The vision systems were evaluated on different

sequences. In should also be noted that in favourable

conditions some systems achieve 100 % detection

accuracy.

3.3 Vehicle type recognition

Algorithms The issue of vehicle classification can be divi-

ded into two relatively distinct subproblems. The first is the

so-called mark and model recognition. It is quite difficult

for several reasons. Firstly, modern vehicles from different

manufacturers are quite similar to each other, at least within

one segment (with a few exceptions). Secondly, the

recognition usually is based on logotype analysis, but this is

often changed or modified and also placed at various

locations. Finally, other features such as traffic lights (front

or back) or grille are usually ‘‘hard’’ to describe. There are

a few scientific papers covering this topic: [5, 12, 37]. They

use the proven histogram of oriented gradients (HOG) and

support vector machines (SVM) approach introduced for

pedestrian detection in the work [15].

Make and model recognition requires an high-quality

input image. Unfortunately, such an image cannot be

obtained using typical cameras mounted at intersections. In

a standard setup (camera above the road surface) and

720� 576 pixel resolution the logotype size is only a few

pixels. Therefore, a large part of ITS vision systems

enables only a rough vehicle classification into several

groups: motorbikes (bikes), passenger cars (hatchback,

sedan, estate, SUV), minibus, bus, van, truck. Statistics on

the number of different types of vehicles (e.g. heavy

vehicles movement through city centres) are useful when

making decisions about the infrastructure.

There are a few different approaches to vehicle type

recognition described in scientific papers. In the paper [24]

two features: size and ‘‘linearity’’ were used. The first one

was normalized with using vehicle position information.

The second was used to discriminate between trucks and

van–trucks or buses. The designed classifier was based on

template matching and allowed to integrate cues from

different frames. In addition, a shadow elimination proce-

dure used during vehicle segmentation was proposed. The

authors reported 93 % recognition accuracy.

In [62] the well-known and reliable scheme: HOG fea-

tures and SVM classifier was used to divide vehicles into

the following categories: motorbikes, small and big cars.

The authors reported precision 93.82 % and recall 88 %.

The SVM classifier was also used in the work [13]. As

Table 2 Vehicle detection—summary

Work Platform Detection method Evaluation Remarks

[24] GPP Background subtraction Four highway sequence, acc. 70 % Advanced shadow

elimination procedure

[11] GPP Background subtraction 30 min. highway sequence, acc. not provided –

[17] GPP Background subtraction, detection

verification by pyramidal HOG ? SVM

Four sequences on highway acc. not provided Also tracking

[53] GPP Background subtraction Highway sequence (3400 frames 76 vehicles),

97.37 % accuracy

Also tracking

[3] GPP Background subtraction (GMM) Five highway image sequences, in favourable

conditions up to 100 % accuracy

Also shadow elimination

[18] GPP Optical flow (Horn-Schunck) Intersection sequence, almost aerial view, 95.4 %

accuracy

–

[50] GPP Background subtraction, deformable 3D

model

267 sequences with 3074 vehicles, 100 % accuracy –

[41] GPP Multiple VDLs and TSIs, vehicle detection

on TSI based on Canny edge detection

Sequences from Dhaka Bangladesh and Suwon

Korea, acc. not provided

Quite complicated logic

to handle occlusions

[73] GPP Background subtraction, VDL, TSI Sequences Highway 1, 2 (acc. 89.2 %) and four

others (each 50 min) (acc. 97.2 %)

Also shadow elimination

[21] FPGA Background subtraction Acc. not provided –

[38] FPGA Background subtraction Acc. not provided –

[9] FPGA Background subtraction Sequence with 247 vehicles, acc. not provided –

[57] FPGA Background subtraction Day (acc. 90 %) and night (acc. 50 %) seq. with

100 cars each

Shadow and light

reflection detection

[67] FPGA Background subtraction Sunny day (acc. 93 %), cloudy day (acc. 83 %) and

night (acc. 63 %) seq. with 100 cars each

Shadow and light

reflection detection,

tracking

J Real-Time Image Proc (2018) 15:123–159 131

123



features, simple shape parameters: size, aspect ratio, width

and solidity were used. The reported specificity reached

88.7 %.

The recognition can also be based on vehicle shape

parameters. For example, in [41] the following were used:

width, area, compactness, height to width ratio, major-axis

to minor-axis ratio and rectangularity. A two-step kNN

classifier was utilized. The reported accuracy was more

than 90 %. A very similar approach was applied by the

authors of the paper [36]; however, they used a dynamic

Bayesian network classifier. In the paper [53] the local

binary pattern (LBP) descriptor and linear discriminate

analysis (LDA) classifier were used. The authors report an

approx. 87 % accuracy.

In the work [3] the vehicle classification was based on

Hu geometric invariant moments and a k-NN like

approach. Three classes were detected: small, medium, big

or unclassified. The method was evaluated on five highway

sequences. The authors report 96.96 % accuracy.

Embedded implementations Hardware implementation

of vehicle classification was addressed in two scientific

papers.

In the work [9] background subtraction for object

detection was used. In the post-processing phase the

removal of objects with width smaller than N pixels as well

as connecting adjacent scan-lines were proposed. The

classification was based on vehicle size (kNN classifier).

The system was evaluated on a Virtex 4 FPGA device.

Real-time image processing for 640� 480 pixels was

reported.

The study [48] discussed theoretical aspects of the

vehicle classification problem implemented in an FPGA

device. Methods based on features, model matching and

invariants evaluation were compared. In the conclusions

the author suggested the third approach, because of its low

sensitivity to the camera position and no need for

calibration.

Summary The above-described algorithms and their

implementations are summarized in Table 3. The following

parameters were considered:

– Platform—the used computing platform,

– Features—the used features,

– Classifier—the used classifier,

– Classes—the recognized vehicle classes,

– Evaluation—available information about evaluation,

i.e. used dataset and reported accuracy,

The comparison does not include the work [48], because it

describes only a concept and not an actually realized vision

system.

All described systems involve the following processing

stages (Fig. 3):

– obtaining the input sample, i.e. the window (block,

ROI) in which the analysed vehicle is present,

– optional scaling the sample to a predetermined size,

– optional adjustment of image parameters: e.g. convert-

ing to grayscale, filtration or histogram equalization,

– feature extraction. Depending on the specific approach

this could involve: HOG, LBP or some geometrical

parameters (for which a high-quality object mask is

required),

– classification (SVM, kNN, LDA, etc. classifier).

These solutions allow to assign a given vehicle to one of

several fairly coarse classes. Accuracy of the systems dif-

fers, but is usually between 80 and 90 %. Once again, it

should be noted that each team tested their system on a

separate database.

Table 3 Vehicle classification—summary

Work Platform Features Classifier Classes Evaluation

[24] GPP Size, ‘‘linearity’’ Template

matching

Car, minivan, truck, van

truck

Taiwan highways, acc. 93 %

[13] GPP Shape based SVM Car, van, truck Specificity 88.7 %

[62] GPP HOG SVM Car, small, large vehicle, non Acc. 93 %

[41] GPP Shape Two-step

k-NN

2, 3, 4, 6 wheelers (with

subclasses)

Sequences from Dhaka Bangladesh and

Suwon Korea (1h), acc. 90 %

[36] GPP Shape, location and shape of

licence plate, vehicle pose

Dynamic

Bayesian

network

Sedan, bus, micro-bus and

unknown

Sequence with 128 vehicles acc. 83.75 %

[53] GPP LBP histogram, shape LDA Motorbikes, cars, minibuses,

trucks and heavy trucks

3400 frames with 76 vehicles, acc. 87.82

%

[3] GPP Hu geometric invariant

moments

kNN like Small, medium, big,

unknown

Five image sequences (form Taiwan,

Italy, France highways), acc. 96.96 %

[9] FPGA Size Linear Four sizes Acc. 97–50 % depending on class
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3.4 Vehicle colour recognition

The topic of vehicle colour recognition was described in

several research papers. In the article [65] it was stated that

the best car part for obtaining a colour sample is the hood,

because it is usually flat and uniform. This area was

detected using the shadow cast by the vehicle (a dark

region in front of the vehicle). Then, mean brightness was

calculated on horizontal lines—to detect uniform and long

ones. This information was used to select the sampling

area—primarily, the middle part of the hood. In the next

step the colour recognition procedure was applied. It was

based on HSV colourspace and fuzzy logic approach. The

Mamdani Fuzzy Interference System was used. Finally, on

a set of 2418 samples 58.60 % accuracy was reported.

In the study [68] also a lot of attention was given to the

proper sample selection. Image segmentation was based on

k-means clustering algorithm. This allowed to obtain

regions with quite similar colour. The object mask was

determined using Gaussian Mixture Model (GMM) fore-

ground segmentation. Then, a specially developed

procedure (mask-based connected component labelling)

and distance transform were used to remove undesired

areas such as: tires, windows, shadows and reflections. For

colour classification a cascade of two SVM classifiers was

used. As feature vectors, histograms in Hue Saturation

Value (HSV) colour space aggregated to 16 bins were

utilized. The first SVM determined whether the sample was

a chromatic or achromatic one. The second recognized the

exact colour. For the achromatic: white, grey or black; and

for the chromatic: yellow, green, red or blue. The reported

accuracy reached 72.3 %.

In the paper [6] a similar recognition scheme was used:

HSV histograms as features (only H and S components)

and SVM classifier. The authors reported 94.92 % accu-

racy, however, a description how the samples were

obtained was not provided.

In the article [29] seven colours were recognized: black,

silver, white, red, yellow, green, and blue. The HSI (Hue,

Saturation, Intensity) colour space and 3D histograms were

used. The authors analysed the impact of histogram bin

number on the final accuracy. The best result, reaching

88.34 % on 700 test images was obtained for 8, 4, 4 bins

aggregation for hue, saturation and intensity, respectively.

In a recent paper [26] a more advanced approach to

vehicle colour recognition was presented. First a colour

correction scheme was introduced. It allowed to compen-

sate the effects of lightning changes. Furthermore, a vehi-

cle window removal procedure was proposed. The features

were obtained from RGB and Lab colourspaces. For clas-

sification, a tree-based SVM approach was utilized (sepa-

rate classification of grey and colour vehicles). Seven

colours were recognized: red, green, blue, yellow, black,

silver and white. The test set consisted of 16,649 samples.

An overall accuracy of 93.59 % was reported.

No embedded implementations of these type of vision

systems were reported.

SCALING

ADJUSTMENT

FEATURE

EXTRACTION

CLASSIFICATION

sedan | white

Fig. 3 Vehicle type recognition scheme

Table 4 Vehicle colour—summary

Work Sample extraction Colour space Classifier Classes Evaluation

[6] Well-cropped, frontal images

used

HSV (only

H and S)

SVM Black, white, red, yellow,

blue

500 test images, acc. 94.92 %

[29] Well-cropped, frontal images

used

HSI (3D

histograms)

Shape based Black, silver, white, red,

yellow, green, and blue.

700 test images, acc. 88.34 %

[68] k-means clustering to obtain

areas with uniform colour

HSV

(histograms)

Cascade of two

SVMs

Black, grey, white, yellow,

green and blue

1700 test samples, acc. 72.3 %

[65] Hood segmentation algorithm HSV Mamdani Fuzzy

Interference

System

Red, brown, orange, yellow,

green, blue, purple/violet

sequences from ITS systems,

2418 samples, acc. 58.60 %

[26] Window removal, colour

correction

RGB LAB

(advanced

features)

Tree ? SVM Red, green, blue, yellow,

black, silver and white

16,649 samples, acc. 93.59 %
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Summary The above-described algorithms and their

implementations are summarized in Table 4. The following

parameters were considered:

– sample extraction—the used sample extraction

procedure,

– colourspace—the used colourspace,

– classifier—the used classifier,

– classes—the recognized colours,

– evaluation—available information about evaluation,

i.e. used dataset and reported accuracy.

The most important issue in the case of vehicle colour

recognition is the proper sample extraction procedure.

Some of the authors use images with precisely cropped car

images. Others propose algorithms to obtain them auto-

matically. The dominant colourspace is HSV. However, it

should be noted that for reprogrammable systems it is quite

inconvenient due to rather complex conversion from RGB

to HSV. Features involve: single colour samples, his-

tograms or more advanced solutions [26]. Also different

classifiers are used—from simple sample matching to

cascades of SVMs. Typically 5–7 colours are recognized.

The accuracy of the systems is different and ranges from 58

to 94 %. Once again, it should be noted that every team

used a different database, making a reliable comparison of

the methods not possible.

3.5 Summary

The analysis of algorithms used for ITS systems allows to

draw some general conclusions. Firstly, the considered

subject is very popular and the results can be almost

directly applied in industrial applications. The proposed

approaches differ from each other. Some are simple while

other quite advanced. However, due to reasons pointed out

in Sect. 2, in this work, solutions that could be imple-

mented in a pipeline data processing system were pre-

ferred. It is interesting that among many cited work, there

are not many reports on hardware implementations in

reprogrammable devices, i.e. in several papers methods for

vehicle detection and counting were proposed and one

paper addressed the topic of queue length estimation. Other

ITS functionalities were not yet implemented in FPGAs.

Secondly, another characteristic feature is the lack of a

common test sequences database. If the Evaluation column

in Tables 1, 2, 3 and 4 is analysed, it may be noticed that in

each of the works different sequences were used. This is a

serious obstacle in providing reliable comparison of newly

developed algorithm with the ‘‘state-of-the-art’’. The pro-

posal of a reference database appears to be a challenge for

the scientific community involved in ITS vision.

Thirdly, the used algorithms have many common ele-

ments. In addition, most of them can be implemented in

a pipeline data processing system. These features greatly

facilitated the hardware–software implementation of

exemplary algorithms presented in this paper.

4 The proposed embedded vision system

In the previous section the basic functionalities which

should be implemented in an advanced smart camera for

ITS were presented: vehicle queue length estimation,

vehicle detection and counting, as well as vehicle type and

colour recognition. All of these can be implemented in

a heterogeneous vision system based on the Xilinx Zynq

SoC device. In this paper only exemplary algorithms which

implement these functions and their hardware–software

realisations are presented. The possibility of implementing

more advanced solutions is also pointed out.

The proposed vision system has been implemented on

the Zynq SoC device (XC7Z020 CLG484 -1 AP SoC)

available at the ZC 702 evaluation board made by Xilinx.

The video stream, transmitted in HDMI standard, was

supplied to the system via the AES-FMC-DVI-G FMC

(FPGA Mezzanine Card) module. During implementation

the ISE, EDK and ISim software from Xilinx were used.

The general scheme of the proposed system is presented in

Fig. 4.

The algorithm has been divided into hardware and

software part. During this process the assumptions pointed

out in Sect. 2 were used. Therefore, the first choice was

a pipeline processing-based hardware implementation.

Only for parts of the algorithm, which could not be

implemented in the above-described way, a software

application on the ARM processor was used.

In the reprogrammable logic the following modules

were implemented:

– global modules (Gauss, RBG YCbCr, LBP, Sobel, CFD,

Position)—Sect. 8,

– vehicle queue length estimation module (Q_0, Q_X)—

Sect. 5,

– a part of vehicle detection, counting and speed

recognition (VDL_0, VDL_1, VDL_2)—Sect. 6,

– vehicle type and colour recognition (VR_0, COLOUR

RECOGNITION, TYPE_RECOGNITION)—Sect. 7.

A part of the vehicle detection module, as well as speed

estimation algorithm was implemented in software (ARM

processor system). Furthermore, due to the used PetaLinux

operating system, it was possible to realise several other

functionalities, e.g. communication using UART, ssh, ftp

or sftp, a simple database for data logging and a simple

website to display detection results and statistics.

Additional elements of the hardware system, presented

in Fig. 4, are: AXI FIFO buffers used in the data transfer
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between FPGA and the processor system via AXI bus and

HDMI—communication with the FMC module, responsi-

ble for video stream receiving and displaying (DISP).

It is also worth to notice that the Single lane module is

multiplied three times in the presented version of the sys-

tem. This is possible due to the parallelism provided by

reprogrammable logic devices. On the scheme in Fig. 5 the

location of areas (ROIs) used by the system for a three-line

intersection is presented. The used symbols (corresponding

to Fig. 4):

– Q—queue length estimation module (Sect. 5),

– VDL—virtual detection line module (Sect. 6),

– VR—vehicle type and colour recognition module (Sect.

7).

The numbering convention is as follows. The first digit

indicates the lane number and the second the module

number (0—closest to the stop line).

In the next sections, first the proposed algorithm is

described and then the corresponding hardware–software

implementation is presented. In each case, the following

procedure was utilized. First, the so-called software reference

model was created—C?? implementation with OpenCV

library [46], some elements were also prototyped in Matlab

software. Then the corresponding hardware modules were

designed in Verilog HDL (with the use of IP Cores). They

were tested in a simulation tool (Xilinx ISim) and the results

were compared with the software model. Finally, the modules

were evaluated in hardware. Also the required software

application for PetaLinux was developed in C?? and com-

piled with a cross compiler for the ARM architecture. The

integration of the system on the ZC 702 evaluation board with

Zynq SoC device from Xilinx is discussed in Sect. 9.

5 Queue length estimation

The thorough scientific papers analysis presented in Sect. 3.1

showed that an effective vehicle queue length estimation

algorithm is based on vehicle motion and presence detection.

In most cases two methods are used, respectively, consecutive

frames subtraction and edge detection and analysis (Summary

ZC702

HDMI

FMC

DVI

I/O

ZYNQ

FPGA ARM

PetaLinux

AXI

FIFOs

DRIVER

USER

APPLICATION

(ANALYSIS)
LCD
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RAM

PC

HDMI
VDL_2

VDL_1

VDL_0
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Q_0VR_0
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CFD
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YCbCr
LBP
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Single lane

Y
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Fig. 4 Scheme of the proposed hardware–software system
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Fig. 5 Scheme of the ROIs location used in the proposed vision

system (description in text)
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of Sect. 3.1). Therefore, these solutions were also adopted in

this work. The proposed module is based on the fairly rep-

resentative system from the article [55].

5.1 The proposed algorithm

The basic component of the proposed solution is a quadran-

gular detection block (queueROI) defined by four vertices

(ðxTL; yTLÞ; ðxTR; yTRÞ; ðxBL; yBLÞ; ðxBR; yBRÞ): TL—top left,

TR—top right, BL—bottom left, BR—bottom right). For

pixels belonging to the detection area the number of: moving

pixels, edge pixels and ‘‘dark’’ pixels is computed.

Moving pixels are determined by thresholding the dif-

ferential image between two consecutive frames. Edges are

detected using the Sobel algorithm. Both modules are

described in Sect. 8.

In addition, to determine the number of ‘‘dark’’ pixels

(see [55]) it is necessary to calculate the average brightness

within the detection area, which is used to compute a bi-

narization threshold (as a certain % of the mean value).

The mentioned information allows to define two flags:

blockMov ¼
movement movSum[movTh

no movement otherwise

�

ð1Þ

where movSum is the sum of moving pixels in a given

block, movTh is the constant threshold.

blockOcc ¼

occupied if edgeSum[ edgeTh

&blackSum[ blackTh

unoccupied otherwise

8

>

<

>

:

ð2Þ

where edgeSum is the sum of edge pixels in a given block,

edgeTh is the fixed threshold, blackSum is the sum of

pixels recognized as ‘‘dark’’ within a block, and blackTh is

the variable threshold calculated as a certain percentage of

the average brightness of pixels within the given block. An

extensive justification of this approach can be found in the

work [55] (Sections III C and D).

In Fig. 6 an example of the proposed vehicle detection

method is presented. In the initial situation (top part) the

movSum (M) and blackSum (D) values are equal to 0. The

edgeSum (E) is not zero due to presence of edges in the

‘‘background’’—mainly lane markings. When a car approa-

ches (bottom part) all values are significantly higher and,

therefore, the detection is in this case quite straightforward.4

Vehicle queue formation in front of traffic lights has

a certain specificity (i.e. is subjected to certain rules).

When the drivers behave typically (do not leave big gaps

between vehicles) the process is sequential. First, the place

closest to the stop line is occupied. Then, the cars stop at

subsequent places. It is assumed that the queue disappears

when the first car moves (i.e. green light turns on).

This observation can be used to optimize the computing

resources, both in software and hardware implementations.

Rather than implementing a number of detection modules

on a single lane (usually minimum four) only two are

required. One, fixed for the continuous monitoring of the

head of the queue and a second, movable, for queue tail

detection. An example is presented in Fig. 7.

In the initial situation only the first module (row 0) is

active. When a stopped vehicle is detected (no movement

and occupied conditions fulfilled), the second module (row

1) is activated and the queue length counter Q is

4 The movement mask may look like the result of foreground object

detection, but the clear vehicle silhouette is the consequence of its

rather high speed.

edges movement
dark

areas

E = 2105

E=5322

M = 0 D=0

M= 8620 D = 820

TL TR

BL BR

queue ROI
Fig. 6 Vehicle detection

example (description in text)

136 J Real-Time Image Proc (2018) 15:123–159

123



incremented. At the same time the first module constantly

monitors the status of the first vehicle in the queue (to

detect when it will start to move). Once another stopped

vehicle is detected, the module (light grey) is ‘‘being

moved’’ to the next location. When motion is detected at

the beginning of the queue the counter is reset to zero.

The algorithm was evaluated in the C?? software model

on several sequences. It allowed to reliably estimate the queue

length. However, the thresholds had to be selected carefully.

This is related to two issues. First, for some locations at the

intersection edges are also present in background (e.g. lane

markings). Therefore, the threshold value has to be higher.

Second, due to perspective the ROIs have different sizes. This

also should be considered when selecting the threshold.

5.2 Hardware implementation

A scheme of the hardware module which realises the

functionality of a single detection block is presented in

Fig. 8.

The basic element is the logic which allows to determine

whether the currently processed pixel [with coordinates

(x, y)] lies inside a given block (queueROI). In the

scheme it is described as xcos(a)?ysin(a)-d. The

line equation in the normal form is used to avoid problems

with representing vertical lines. At the configuration stage

parameters: cos(a), sin(a), d are computed from the ROI

vertices coordinates. Additionally, the information about

correspondence between the line and the block area is stored

(determines which inequality should be used: greater or

lesser). These parameters are marked as line_params.

The current position is given by coordinates pos_x,

pos_y (obtained in the position computing module—ref.

Sect. 8). The information about the pixels position to the

given ROI is denoted by the inside_ROI flag.

The second component is a set of three adders (SUM_)

connected to thresholding modules (TH). Their task is to

count the number of pixels classified as moving (mov),

edge (edge) and black (black).

The remaining logic is a module which allows to com-

pute the mean brightness in the ROI. It consists of an

accumulate unit SUM_GREY and a divider DIV(ROI).

The divider was implemented as iterative. This is feasible,

Q=0

0

1

2

3

Q=1 Q=2 Q=0Q=3

Fig. 7 Vehicle queue formation example for a single lane. Vertical

axis vehicle detection ROIs. Horizontal axis different time moments.

Q estimated queue length. Dark circle symbol vehicle

clk, ce

grey, edge, mov

pos_x, pos_y

linie_params, bbox 

edgeTh, movTh,

blackTh 

blockMov

blockOcc

pos_x, pos_y

line_params[0]

pos_x, pos_y

line_params[1]

pos_x, pos_y

line_params[2]

pos_x, pos_y

line_params[3]

xcos(a)+ysin(a)-d 

xcos(a)+ysin(a)-d 

xcos(a)+ysin(a)-d 

xcos(a)+ysin(a)-d 

A

N

D

inside_ROI

SUM_EDGE

SUM_MOV

SUM_BLACK

SUM_GREY

movTh
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grey

DIV (ROI)

TH_BLACK

grey

TH

edgeTh
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blackTh
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A

N

D

queue_roi

0.5 mean_grey

Fig. 8 Scheme of the hardware module, which realises the functionality of a single detection block queueROI (detailed description in text)
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as the threshold obtained in iteration i is used in iteration

iþ 1—due to pipeline image processing concept. The

threshold value is used in the module TH_BLACK. Outputs

of the module are binary signals: blockMov and blockOcc.

The scheme of the proposed vehicle queue length esti-

mation module for a single lane is presented in Fig. 9.

It consists of two modules queue_roi. The first

(postfix _0) corresponds to the detection ROI directly in

front of the traffic lights. The second (postfix _X) ‘‘tracks’’

the queue tail. It is controlled by parameters stored in the

queue_roi_params block, which are selected by the

signal active_queue_roi. Situation analysis on a lane

is realized using a state machine. Particular states corre-

spond to the number of blocks with detected stopped

vehicles. The transition to the next state is possible when

blockMov == 0 and blockOcc == 1. The machine is

reset when blockMov_0 == 1 – movement in the first

block. Output of the module is the queue length estimation

expressed as the number of occupied ROIs queue_-

length. The resource usage is summarized in Table 5.5

The DSP module usage is quite high, due to inside_ROI

flag computation. However, in case of insufficient DSP

resources, fabric-based multiplier could also be considered.

The estimated maximum frequency equals 276 MHz after

synthesis and 155 MHz after place and route.

Finally, it should also be noted that in a similar way it is

possible to implement solutions based on the Harris corner

detection [1] or features detector used in the paper [51].

Only the Harr features and AdaBoost algorithm [72] are

quite difficult to implement in a pipeline vision system

because of the large logic resource requirement.

6 Vehicle detection and counting

The presented vehicle detection algorithm was initially

proposed in [33] as the first element of a Zynq SoC-based

smart camera for ITS systems. Several factors were taken

into account while designing the algorithm: accuracy,

computational complexity, the possibility to divide the

computations between hardware and software, resistance to

various lightning conditions (time of the day, shadows) and

camera jitter, as well as the ability to work in conditions

occurring at a crowded intersection. The last factor

requires an extended comment. Some approaches described

in the literature [41, 52] were designed and tested on

sequences recorded by cameras mounted over a road,

where the vehicle movement is usually smooth (e.g.

highway). In such cases methods based on background

subtraction or optical flow can obtain quite good results,

because the road surface is visible for the most of the time

and the vehicle speeds are quite high.

In this work it was assumed that the system should be

able to operate at a typical intersection, where many cars

stop at a red light. This condition, as well as the charac-

teristics described above, led to the conclusion that back-

ground modelling or optical flow methods are not

an adequate solution for the designed application. It was,

therefore, decided to use an approach based on virtual

detection lines (VDL) and time-spatial images (TSI).

To reduce the impact of external lighting conditions and

camera jitter, all operations were performed on two
5 All the presented resource usages, if not stated explicitly, are

estimations obtained by the ISE software after synthesis.

clk, ce

grey, edge, 

mov

pos_x, 

pos_y

queue_lane

queue_roi_params

queue_roi_0

queue_roi_X

STATE MACHINE

Q_0

Q_N

Q_1
blockMov_X

blockOcc_X

blockMov_0

blockOcc_0

blockMov_0 == 0 &&

blockOcc_0 == 1

blockMov_X == 0 &&

blockOcc_X== 1

blockMox_0 == 1

ac�ve_queue_roi

queue_lenght

Fig. 9 Vehicle queue length

estimation module for a single

lane (detailed description in

text)

Table 5 Vehicle queue length estimation module for a single lane

resource usage

Resource Used Available Percentage (%)

FF 393 106,400 0

LUT 1087 53,200 2

DSP 48 20 220 10
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consecutive frames. The concept is based on detecting the

presence of vehicles by analysing only the local neigh-

bourhood of a VDL—this issue is described in details in

Sect. 6.1. As a result, small images (patches) containing

vehicles are obtained. In the second stage, the patches are

analysed to eliminate erroneous (caused by shadow or

other disturbances) or multiple detections—a detailed

description is provided in Sect. 6.2. The idea is schemati-

cally shown in Fig. 10. The evaluation of the proposed

solution is presented in Sect. 6.3. The designed method was

inspired by the approaches described in the literature,

particularly in the works [41, 73], however, it has also new

elements specific for a hardware–software system.

6.1 Vehicle presence detection

The vehicle presence detection is based on identifying

similarities between two successive (in terms of time) VDL

neighbourhoods of size 3 9 VDL width. The scheme of the

proposed solution is presented in Fig. 11. IN and IN�1 stand

for the current and previous VDL context. In the first step

a horizontal Sobel gradient (SOBEL X) and 3� 3 LBP

transform (LBP 3x3) are computed.

The basic LBP transform for a given pixel is formed by

thresholding the 3� 3 neighbourhood with the centre pixel

value as the threshold. It was first introduced by Ojala [44]

and used to describe local texture features. Let ic be the

intensity of the centre pixel and inðn ¼ 0; 1; . . .7Þ pixel

intensities from the neighbourhood. Then the LBP is given

by:

LBP ¼
X

P�1

n¼0

sðin � icÞ � 2
n ð3Þ

where P is the number of sample points and

sðxÞ ¼
1 if x� 0

0 if x\0

�

ð4Þ

In this case the LBP could be interpreted as an 8-bit

integer.

(a) (b) (c)

x

y

t1

t2

t3

t4

t5

t6

t1

t2

t3

t4

t5

t6

Fig. 10 Scheme of the

proposed vehicle detection and

counting system. a VDL located

on the road, b TSI, c obtained

patches [33]
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Fig. 11 Scheme of the proposed vehicle presence detection algorithm

[33]
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As similarity measures are used:

– SAD:

SAD ¼
X

3

i¼0

X

L

j¼0

X

3

k¼0

jIkNði; jÞ � IkN�1ði; jÞj ð5Þ

where i is the line index in the VDL neighbourhood

(vertical), L is the width of the detection line, IN is the

Nth image frame in RGB colour space, k is the par-

ticular colour component {R, G, B}.

– absolute value of differences between edge images

(computed using horizontal Sobel gradient):

dSX ¼
X

3

i¼0

X

L

j¼0

X

3

k¼0

jSXk
Nði; jÞ � SXk

N�1ði; jÞj ð6Þ

where SXN is the horizontal Sobel gradient for Nth

video frame.

– Hamming distance computed for binary 3� 3 LBP

transform result obtained for consecutive frames:

dLBP ¼
X

3

i¼0

X

L

j¼0

X

8

q¼0

LBPNði; j; qÞXORLBPN�1ði; j; qÞ

ð7Þ

where LBPN is the LBP transform result for Nth frame,

q the index in an 8-bit vector (result of the LBP

transform for a 3� 3 window).

The resulting similarity measures: SAD, dSX and dLBP are

subjected to one-dimensional median filtering (window

size 11 samples) (module MEDIAN 11) and thresholded

(module TH). The binary results are combined with the

AND operator and subjected to another binary one-di-

mensional median filtering (window size 11 samples)

(module MEDIAN BIN 11). Finally, a binary flag con-

taining information about vehicle presence is obtained.

Sample TSI images are presented in Fig. 12. The bina-

rization results of the three similarity measures are visu-

alized as light grey (1)/white (0) columns on the right side

of the TSI. The dark grey colour indicates fragments

without car detection (i.e. carriageway). The delay intro-

duced by the used median filtering is compensated later by

extracting shifted fragments (on the presented images

a 10–15 pixel ’’down’’ shift is necessary).

It is worth noting that in the TSI in Fig. 12b (at the

bottom) a part of the dark car is erroneously detected as a

carriageway. On the other hand, in TSI in Fig. 12c (at the

top) the distance between two cars turned out to be too

small, and they could not be separated properly at this stage

of the algorithm. These two issues will be addressed in the

following subsection.

6.2 Patch analysis

Based on the detection results for a number of test

sequences it has been found that in most cases the method

described above can correctly extract individual vehicles.

However, also situations when a patch contains more than

one car or no car at all (in case of shadows) have been

noticed. Furthermore, a slight difference in brightness or

colour between the vehicle and the road, as well as

obstructions, causes serious classification problems. The

latter issue can be partially eliminated by appropriate

positioning of the camera—directly over the road and at

a fairly large angle. Sample patches, with erroneous

detections, are presented in Fig. 13.

Algorithms that allow to determine the number of

vehicles in a given patch were proposed to improve the

overall accuracy of the system. The solution can handle

cases presented in Fig. 13a–d. The other two situations

should be considered as difficult ones and their correct

classification requires further research.

Due to a completely different specificity, separate

analysis procedures for day and night-time were developed.

Analysis during day-time The proposed method consists

of the following steps:

– low-pass filtering (Gaussian)—distortion elimination

and image smoothing.

(a) (b) (c)

Fig. 12 Sample results of the proposed vehicle presence detection

method [33]
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– histogram stretching—a procedure similar to the avail-

able in Matlab software was used. There, 1 % of the

brightest and darkest pixels is saturated, respectively, at

the values 0 and 255.

– another low-pass filtering (Gaussian)—the histogram

stretching operation emphasizes noise present in the

image and it should be removed prior further image

analysis.

– calculation of the horizontal Sobel gradient—informa-

tion about horizontal edges is used to determine the

presence of an object and to eliminate shadows. The

gradient is calculated separately for each RGB colour

component, then the result is thresholded and combined

with an OR operator.

– shadow detection—to detect situations similar to the

shown in Fig. 13c a simple method was proposed that

analyses edges and shadow areas (as a shadow are

regarded pixels with brightness below a certain thresh-

old). The approach is illustrated in Fig. 14. In the first

step areas with horizontal edges and shadow pixels are

determined. Then the bounding box around the edge

area is computed. This allows, in most cases, to divide

the patch into two parts: one containing the object

(edges) and second with the background (no edges).

For these parts greyscale histograms aggregated to 64

values are calculated. Then, the histograms are sub-

tracted from each other, and, in addition, the histogram

part corresponding to the shadow areas (below a given

threshold) is removed. Finally, values present in the

obtained histogram are summed and then normalized

by a number equal to the size of the detection window.

For the case presented in Fig. 14 the resulting value is

quite low (0.0827). If a vehicle is present in the patch,

then the value corresponding to it brightens and will be

visible on the resulting histogram, thus the coefficient

will be high. In addition, two factors are calculated: the

ratio of the number of pixels marked as edges to the

number of pixels marked as a the shadow, and the ratio

of the number of pixels marked as edges and the

shadow to the bounding box area around the edges. For

the patch presented in Fig. 14 these values are,

respectively, 0.74 and 1.29. It was assumed that for

shaded areas the first coefficient should be smaller than

2, i.e. the edge and shadow areas should be similar size

(for vehicles the edge area is usually greater than the

area of the shadow) and the second coefficient should

be greater than 0.6, i.e. the bounding box area is mostly

‘‘filled’’ with points belonging to edges and shadows.

To classify a given patch as containing the shadow all

three conditions should be fulfilled. It is worth noting

that the above conditions are also met by very dark

vehicles, especially in low-light conditions (cloudy

day, rain). One possible solution could be the imple-

mentation of a deep shadow detection procedure—for

example, by analysing the shadow cast by a permanent

element of the scene.

– analysis of patches with multiple vehicles—in the

proposed method it is assumed that the carriageway is

visible between vehicles (see Fig. 12a). The approach is

based on region growing segmentation performed on

horizontal lines, separately for the left and right side,

starting from the patch boarder. The threshold required

to determine if the current pixel is similar to the

previous ones is determined adaptively as 0.25 �

current pixel value and 0.75 � previous threshold

value. The segmentation is performed in RGB colour

space. The resulting masks (for the left and right part)

are subject to morphological dilation and then com-

bined by the AND operator. In this way, portions of the

carriageway are detected. In the final step the number

of separate vehicles is determined. It should be noted

that this analysis is performed only for patches with

a height greater than a specified threshold. The method

is illustrated in Fig. 15. During preliminary research

some other approaches to this issue were evaluated.

First, the possibility of using information about colour

to determine the number of vehicles present on a patch

(a) (b) (c)

(d) (e) (f)

Fig. 13 Patches requiring further analysis: a more than one vehicle in

the patch, b incorrectly detected patch (during night-time), c detected

shadow (cast by a car on a neighbouring line), d very low contrast

between a vehicle and the background, e a vehicle partially

obstructed by a larger one, f a vehicle on adjacent line causes

distortions (in the left image it completely obscures the adjacent lane)

[33]
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was tested. Experiments in HSV, YCbCr and CIE Lab

colour spaces were performed. Unfortunately, analysis

of the obtained histograms revealed that this approach

can work only for vehicles with a very clear difference

in colours (e.g. red and green). In other cases it was

impossible, even ‘‘manually’’, to point out at the

histogram the maximum corresponding to a given

vehicle. The probable cause is the fairly inhomoge-

neous lighting, including reflections and shadows.

Second, local background modelling for a VDL was

evaluated. The information could be very useful in

vehicle segmentation on a given patch. However,

problems similar to those occurring when modelling

the background for the whole scene were noted—

mainly with distortions caused by shadows. The

development of methods able to handle the difficult

cases—Fig. 12e and f should be part of future research.

– estimation of the final number of vehicles—the analysis

described above is supplemented by counting the overall

number of horizontal edges present in the patch. If the

number is less than a given threshold, the patch is

regarded as a false detection (i.e. without a vehicle).

Analysis during night-time The basis of the patch anal-

ysis method during nigh-time is the detection of vehicle

headlights. First, binarization of the greyscale image with

a quite high threshold (200) is performed, followed by a

single-pass connected component labelling. The area and

centroids of detected object are computed. Finally, the

presence of two objects with similar vertical and different

horizontal coordinates is determined.

(a) (b) (c)

(f)(d) (e)

(g) (h) (i)

Fig. 14 Sample shadow

detection: a input image, b

image after histogram

stretching, c horizontal edges, d

shadow areas, e combination of

images c and d with bounding

box around the edges, f part

with the edge area (top) and

without edges (bottom), g

histogram for the non-edge area,

h histogram for the edge area, i

difference between histograms g

and h with removed values

corresponding to shadow areas

[33]
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6.3 Algorithm evaluation

The algorithm was implemented in C?? language using the

OpenCV library as a part of the designed software model and

evaluated on a number of test sequences registered by

a camera located above a busy intersection on one of the

main streets in Krakow. Sequences were recorded under

different conditions: sunny day, cloudy day, rainy day and

night-time. In total over 53,000 frames were analysed (about

30 min). It is also worth mentioning that all the tests were

performed on the same set of parameters, i.e. they were not

fine-tuned to particular sequences or even weather conditions.

During evaluation the total number of detections (actual

and returned by the algorithm), as well as results of par-

ticular patches analysis, were counted. In the second case,

the typical binary classification measures were used:

– TP—true positive—correctly detected vehicle,

– TN—true negative—correctly detected road or

distortion,

– FP—false positive—road detected as vehicle,

– FN—false negative—vehicle detected as road.

The obtained results are presented in Table 6. The mean

accuracy of the proposed system was 96 %.

The main cause for false positives was vehicles stopped

at the VDL, which were sometimes counted more than one

time. Almost all false negatives were caused by black cars

misclassified as shadow. Therefore, the day-time procedure

certainly requires some refinement. In the case of sequen-

ces registered at night-time, all the missed detection were

the result of low brightness of the headlights.

It is worth mentioning that the method allowed to

eliminate many potential false detection, which is indicated

by the quite high number of true negatives.

6.4 Vehicle speed estimation

In the proposed system, due to the fine grain parallelism

provided by reconfigurable resources, it is possible to

easily implement more than one VDL on a single lane.

This has two advantages. First, it increases the accuracy

and reliability of the system, as the vehicle counter is based

on multiple semi-independent detectors.

Second, a rough speed estimation can be implemented.

It is based on vehicle detection time (binary information

from a given VDL)6 and number of frames per second

(fps). This allows to convert the number of frames between

vehicle detection on two consecutive VDLs to time and

after calibration to speed (knowing the actual distance

between the VDLs in meters). In the presented solution

three detection lines are used. They are placed every 3 m.

In case of a vehicle detection, the frame number is stored.

After detecting the same vehicle on all lines the mean

speed is estimated using the above-mentioned relation-

ships. The module was implemented as a part of the soft-

ware application (ARM processor system). The conducted

tests showed that the method allows to roughly estimate the

vehicles speed. However, correct results are obtained only

when the movement is smooth, i.e. there is no traffic

congestion.

6.5 Hardware implementation

All operations that are common to the VDL modules

(colour space conversion from RGB to greyscale (Y

component in YCbCr), Sobel edge detection, Gaussian

filtering, LBP transform) were performed for the entire

video frame—Sect. 8. Preprocessed data are fetched into

a single VDL module, whose scheme is analogous to those

presented in Fig. 11. During development of the module, it

turned out that implementing Bitonic Merge Sorting based

median filtering is very resource consuming. Therefore,

contrary to our previous work [33], this operation was

moved from hardware to the software part.

All modules were implemented in Verilog hardware

description language. The hardware modules results

were compared with those obtained from the software

application (C??) in the ISim simulation tool.

Resource usage for a single VDL module is summarized

in Table 7. The estimated maximum frequency equals

549 MHz after synthesis and 257 MHz after place and

route. A single VDL transmits RGB pixels values (after

Gaussian low-pass filtering), as well as computed simi-

larity measures and detection results to the software

part.

(a) (b) (c) (d)

Fig. 15 Sample multiple vehicles detection. a Input image, b and c

region growing segmentation results, the procedure started for the left

and right edge of the patch (additional morphological dilation was

performed), d combination of images b and c—AND operator [33]

6 In the solution the time measure corresponds to the frame number.
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6.6 Software part

The analysis algorithm, described in Sect. 6.2, was

implemented as a user application. It was divided into

three parts:

– patch creation using data obtained from the hardware

part, patch saving,

– analysis in day-time conditions,

– analysis in nigh-time conditions.

The user application displays informations about detec-

tions, as well as other diagnostic data on a console.

Additionally, it is possible to connect to the system using

secure file transfer protocol (SFTP) and download the

obtained vehicle patches.

7 Vehicle type and colour classification

At the concept phase of the vehicle classification module

design it was assumed that it should work only in case of

smooth vehicle motion. As it was stated earlier, the

correct analysis in a traffic congestion situation is quite

difficult (e.g. problem with separating particular

vehicles).

Vehicle type and colour recognition is based on the

analysis of an image patch (ROI) of size 160� 224 pixels.

In the test setup this parameter allows to capture images of

virtually every passenger car. An example is presented in

Fig. 3. For larger vehicles: minibuses, buses and lorries

only the front part is captured. However, this has no sig-

nificant influence on the recognition, as the middle and

back parts of those vehicles are usually not very

informative.

An alternative solution would require the implementa-

tion of a reliable vehicle end detection algorithm. Then the

ROI should be cut out and rescaled to a defined size. Due to

high variability of sizes, a pipeline hardware implementa-

tion of such a solution seems to be quite cumbersome. Also

the alternative approach of multi-scale image processing is

resource consuming.

Using the above-described mechanism two approaches

are possible. In the first, computations are performed all the

time, i.e. for every frame irrespective of the ROI content. In

the second, the module operates only when a vehicle is

detected. It should be noted that in the first variant the

information about vehicle presence is also essential,

because only the ‘‘valid’’ detector responses should be

analysed.

The proposed vehicle presence detection mechanism is

described in Sect. 7.1, vehicle type and colour recognition,

respectively, in Sects. 7.2 and 7.3.

7.1 Vehicle presence detection

In the initial research, the vehicle presence detection was

based on the prior described VDL approach (Sect. 6).

Unfortunately, it turned out that due to the quite significant

delay imposed by the detector (resulting from the used

median filtering) and the dependence of the detection

moment on vehicle speed, this mechanism could not be

used. The obtained vehicle location inside the ROI was

quite variable, which is undesirable in standard recognition

algorithms: HOG ? SVM, LBP ? SVM.

Therefore, another approach was used. Since it was

assumed that only moving vehicles will be analysed, it was

decided to use a movement based presence detection pro-

cedure. The idea is shown in Fig. 16. There, two separated

zones marked as A1 and A2 , each 8 pixel high, are visible.

Within them, moving pixels obtained by consecutive frame

differencing (Fig. 16b) are summed and stored as CA1 and

CA2. A vehicle is detected when the CA1 value is greater

than CA2 and CA1 exceeds a certain threshold. To avoid

multiple detections of the same vehicle, also the vehicle end

must be located. This is done using ‘‘symmetrical’’ condi-

tions, i.e. CA2 greater than CA1 (CA2 greater than a certain

Table 6 Evaluation of results

of the proposed vehicle

detection and counting

algorithm

Sequence Cars—actual Cars—detected No. of patches TP TN FP FN

Sunny 82 83 96 76 2 11 7

Cloudy 179 166 210 163 28 3 16

Rainy 123 116 151 116 28 0 7

Night-time 93 88 116 88 23 0 5

Overall 627 601 765 587 114 22 42

Table 7 Virtual detection line resource usage

Resource Used Available Percentage (%)

FF 570 106,400 0

LUT 396 53,200 0

DSP 48 3 220 1

BRAM 2 140 1

144 J Real-Time Image Proc (2018) 15:123–159

123



threshold, CA1 smaller than a certain threshold) . In addition,

no moving vehicle is present if CA2 ¼¼ 0 and CA1 ¼¼ 0.

The hardware implementation of the described module

is quite straightforward. It is based on two counters CA1 and

CA2 and a mechanism to determine whether the currently

considered pixel is located inside the area A1 or A2. On this

basis, using the above-defined conditions, the binary value

vehcileDetection is computed.

7.2 Vehicle type classification

In the described vision system vehicle classification is

based on the scheme LBP and SVM . It is a compromise

between ease of implementation usage and efficiency of the

classification. However, it is worth stating that both used

features and the classifier could be replaced depending on

the application requirement. For example, HOG could be

used. Hardware realisation of such a vision system is pre-

sented in one of our previous works [30].

In the sample design, three vehicle classes are recog-

nized: estate, sedan and minibus (they were present at the

used test sequences).

Local binary patterns The LBP descriptor can be used to

describe local texture features (compare Sect. 6). However, it

also turned out to be useful in face detection and recognition,

pedestrian detection and other pattern recognition tasks. The

main advantages of the LBP are low computational com-

plexity and invariance to local illumination changes.

The basic LBP feature, described by Eq. (3) can take

256 values. In the literature also other variants were pro-

posed. In [45] the concept of uniform LBP was proposed.

Only patterns with up to two transitions between 0 and 1

are considered. In this way ULBP describes simple texture

features: edges, curves, etc. For a 3� 3 context in can take

59 values.

In the work [43] non-redundant LBP concept was

introduced. In this case LBP patterns and its complements

are considered as the same (e.g. 10010011 and 01101100).

This, combined with ULBP for NRULBP gives maximal

30 different values for a 3� 3 context.

Generating basic LBP patterns in uniform image patches

could lead to unreliable results as the absolute differences

between the centre pixel and its neighbourhood are rela-

tively small. One possible solution is to modify the

threshold by:

– adding a bias to the threshold,

– using as the threshold the mean of the 3� 3

neighbourhood,

– using as the threshold the median of the 3� 3

neighbourhood.

These three approaches were evaluated in the proposed

system.

Object recognition with LBP In the proposed system,

vehicle recognition takes place in predetermined locations.

This is a significant simplification with respect to a typical

sliding widow mechanism, where the entire frame is

searched (also in multiple scales). The detection window,

separate for each lane, has a size of 160� 224 pixels and is

located at the beginning of the lane (Fig. 10).

In the first step, for each pixel inside the window an LBP

descriptor is computed. In the next step, the window is

divided into K separated blocks (e.g. 4� 4, 8� 8 or 16�

16 pixels) in which a histogram is computed:

hkðiÞ ¼
X

x2k

TðLBP ¼¼ iÞ; i ¼ 0; 1. . .B� 1 ð8Þ

where hk is the histogram of the block k, TðzÞ ¼ 1 when z is

true, else TðzÞ ¼ 0, B the number of histogram bins (de-

pending on the used LBP variant, respectively, 30, 59 or

256).

The histogram values are normalised to the [0–1] range

by dividing the bins by the sum of all elements.

hnkðiÞ ¼
hkðiÞ

m � n
; i ¼ 0; 1. . .B� 1 ð9Þ

where m� n is the block size. The histogram from a given

block is formed into a vector:

A2

A1

(b)(a)

(d)(c)

A2

A1

Fig. 16 Vehicle presence detection example: a and b detection of the

vehicle front: CA1 ¼ 130, CA2 ¼ 0, c and d detection of the vehicle

end CA1 ¼ 0, CA2 ¼ 359
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Vk ¼ hnkð0Þ hnkð1Þ . . . hnðkÞðB�1Þ

�

�

�

�

�

� ð10Þ

The vectors from all blocks within a window form the

feature vector:

F ¼ V1 V2 . . . VKj j ð11Þ

The obtained feature vector is an input for the classifier. In

this work, the SVM classifier is used, which proved to

provide good detection results in our previous research [32]

and also is widely used in classification applications. The

SVM theory was presented in the work of [58]. The SVM

in this form is based on dividing the feature set by a hy-

perplane and therefore able to do a binary classification

(negative/positive). It is given by the following equation:

r ¼ signðw � xþ bÞ ð12Þ

where w � x ¼
P

i wixi and xi is the ith feature in the feature

vector and wi is its corresponding weight, b is a bias term.

The values of wi and b are obtained during the training

process in which training images are divided into two

groups, one containing only images with objects of a class

that should be positively classified (e.g. dogs), the other

objects that do not belong to this class (cats, giraffes,

snakes, etc.).

The above-described SVM is linear and, therefore,

suitable only for problems where the positive and negative

samples can be separated by a hyperplane. If this is not the

case, the so-called kernel trick should be used. It allows to

transform the feature space to a higher dimensionality,

with a non-linear transformation. The frequently used

kernels involve: polynomial, Gaussian radial basis func-

tions and hyperbolic tangent.

Once trained, thanks to the large amount of training

data, the SVM classifier becomes tolerant to shape differ-

ences and viewpoint changes. Unfortunately, it is not very

tolerant to scale differences. However, in the proposed

application the vehicle sizes are rather constant due to fixed

setup.

The SVM is a binary classifier, i.e. able to separate only

two classes. In the described system at least three object

classes should be recognized. A common approach to this

problem is the use of multiple SVM. Each of them sepa-

rates one class from the others. In this case:

– SVM_1—(estate) vs. (sedan, minibus),

– SVM_2—(sedan) vs. (estate, minibus),

– SVM_3—(minibus) vs. (sedan, estate).

During classification the r value (Eq. (12)) for all SVMs is

computed. As the final recognition the class corresponding

to the maximum r value is chosen (often r should exceed a

threshold to avoid uncertain classifications).

The proposed algorithm In the first stage of designing the

algorithm an image database of vehicles was collected.

Initial experiments showed that it should be possible to

recognize three vehicle types: estate, sedan (a characteris-

tic edge in the back) and minibus (characteristic front).

Image samples are presented in Fig. 17.

In total in the experiments 102 samples of class estate,

39 sedans and 25 minibus were used. They were divided

randomly into training and test set (approximately 50 %).

(a) (b) (c)

Fig. 17 Car samples: a estate, b

sedan, c minibus
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In the initial tests the impact on accuracy of the following

parameters was evaluated:

– threshold determining method for LBP method,

– LBP variant: basic LBP, ULBP, NRULBP,

– block size: 8� 8; 16� 16; 32� 32,

– C parameter of the SVM algorithm (penalty weight in

the soft-margin SVM).

For the used test set the following impact of parameters on

the classification was observed. For different threshold

selection methods no significant differences were noticed.

Usually, the best result was obtained with threshold as

central value.

The block size has direct impact on the final feature

vector size. For example, the typical LBP (256 possible

values) with an 8� 8 block results in 143,360 features,

a 16� 16 in 35,840 features, and a 32� 32 in 8960 fea-

tures. In the experiment the best results were obtained for

the variant 32� 32.

A similar impact on the feature vector size has the used

LBP variant. For block size 32� 32 and ULBP the feature

vector is 2065, and for NRULBP 1050. However, the use

of these variants results in deterioration of classification

performance. The C parameter of the SVM classifier was

set to C ¼ 100. Results of the performed experiments are

summarized in Table 8.

On that basis, the following algorithm option was

selected: NRULBP block size 32� 32, central pixel

value used as threshold, C ¼ 100 which gave 71 %

accuracy on the test set. The LBP option with higher

accuracy required a much longer feature vector and was

therefore not considered. It is worth noting that neither

the selection of best parameters nor the design of a

reliable recognition system were the primary objective

of the presented study. The proposed subsystem only

demonstrates the possibilities of heterogeneous com-

puting platform in realising this task. In future research,

the experiments should be repeated on an extensive

database. Also a vehicle size and position normalization

procedure should be considered.

Hardware implementation The proposed vehicle type

recognition subsystem consists of two main modules.

In the first, the feature vectors are calculated, i.e. the

corresponding LBP histograms. This module is separate for

each lane. The 160� 224 pixel window is divided into 35

blocks. For each block, the maximal histogram value

equals 32 9 32 and, therefore, it requires 11 bits ð211Þ. In

total 30 9 35 9 11 = 11,550 bits are needed.

For histogram computation the best solution is the Dual

Port Block RAM (BRAM) available in the reconfigurable

logic. Then, one port is used for data read and the second

for write operations. For the above parameters, it is

required to use 2 BRAM memory blocks for a single lane.

The scheme of the proposed solution is presented in

Fig. 18. The module has three operation modes. The first is

histogram calculation. The required memory address is

Table 8 Detection results of different LBP variants

LBP var. Block size Acc. (train) (%) Acc. (test) (%)

LBP 32 100 81

LBP 16 100 71

LBP 8 100 66

ULBP 32 100 60

NRULBP 32 100 71

clk

pos_x, pos_y

compute_hist

lbp

clear_hist

read_addr

lbp_hist_ready

feature_vectorBRAMaddr_a

addr_b

INC

lbp

read_addr

compute_hist

clear_hist

pos_x, pos_y

LBP ADDR

clear_addr
D

PORT A

(READ)

PORT B

(WRITE)

clear_hist

data_b

0

Fig. 18 LBP feature generation

module (description in text)
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determined using the lbp value and pixel to block

assignment (determined using pos_x and pos_y)—

module LBP ADDR. Then the value stored in RAM is read

and incremented—module INC. Due to the BRAM mem-

ory, where read and write operations are delayed by one

clock cycle to instructions, it is necessary to implement

additional logic in the INC module. This should handle the

situation, when consecutive lbp values are equal. The new

value (incremented) is stored at the same address in the

memory (the required address delay is done in module D).

After the histogram is generated, the flag lbp_hist_-

ready is set to one.

The second mode is histogram read (i.e. feature vector

read). In this case, the address is generated outside the

module (read_addr) and data are transmitted to fea-

ture_vector. The third mode is histogram reset

clear_hist—values of all cells are set to 0

(clear_addr—internally generated address counter).

Resource utilization for a single module is given in

Table 9. The estimated maximum frequency equals 267

MHz after synthesis and 177 MHz after place and route.

The second module is the realization of the SVM clas-

sifier. Due to the specificity of the application, i.e. the

classification is performed only when a vehicle was

detected, it is possible to use only one classifier module.

The scheme is presented in Fig. 19.

The state machine (CONTROLLER) analyses signals

from feature computation modules (lbp_hist_ready).

If a histogram is ready, then the classification is launched

(if there are more than one signals, then the classifications

are executed sequentially). In the case of SVM the classi-

fication process is rather simple. The feature vectors are

multiplied by weights (stored in three BRAMs) and the

result is accumulated (MAC modules). Finally the bias b is

added (compare Eq. (12)) in the ADD_b_X modules. From

the three obtained values r, the greatest is selected and if it

exceeds a predetermined threshold, then the vehicle

belongs to the particular class (MIN TH). Resource uti-

lization of the described module is presented in Table 10.

The estimated maximum frequency equals 563 MHz after

synthesis and 394 MHz after place and route.

7.3 Vehicle colour classification

The performed scientific literature analysis, as well as

preliminary experiments, revealed reliable vehicle colour

recognition to be a very difficult issue. This is due the

following factors: high lightening variability (time of the

day, weather conditions), uneven lightning of the vehicle,

light reflections, as well as the large variety of car colours

used by manufacturers. Also the impact of shadows should

Table 9 LBP feature histogram for a single lane resource usage

Resource Used Available Percentage (%)

FF 49 106,400 0

LUT 128 53,200 0

BRAM 2 140 1

FEATURE_0

BRAM

FEATURE_1

BRAM

FEATURE_2

BRAM

FEATURE_3

BRAM

SVM_w_0 SVM_w_1 SVM_w_2

MAC MAC MAC

MIN TH

vehicle_class

CONTROLLER

lbp_hist_ready[3:0]

addr

addr

select

clear_hist[3:0]

ADD b_0 ADD b_1 ADD b_2

r_0 r_1 r_2

Fig. 19 Vehicle type classification module (description in text)

Table 10 Vehicle type classification resource usage

Resource Used Available Percentage (%)

FF 85 106,400 0

LUT 101 53,200 0

DSP 48 3 220 3

BRAM 3 140 1
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be mentioned, because often a whole side of the car can be

shaded.

When designing a colour recognition module, two fac-

tors should be taken into account: the sample acquisition

procedure and the used colour model (colour space and

representation).

Sample acquisition The first step in the colour samples

acquisition procedure is to obtain the vehicle silhouette.

This can be done on the basis of edge analysis or so-called

background subtraction.

In the first approach it is assumed that all edges between

the roadway and the car are quite distinct. Unfortunately, in

many cases this is not entirely true and the segmentation

requires complex edge analysis, which is not suitable for a

pipeline vision system. On the other hand, background

subtraction in a proven method for foreground object

segmentation. However, as discussed in Sect. 6, the situa-

tion at an intersection is quite specific—the background

(i.e. road surface) is not visible for long periods and stan-

dard approaches tend to fail.

In the described vision system, the second approach was

used. However, the model is updated periodically. It is

done, when in the given ROI only the road surface is vis-

ible. To detect presence of vehicles, an approach similar to

the described in Sect. 5 is used.

The background model is stored in the BRAM memory.

The Simple Dual Port RAM is used, wherein one port is

available for writing and one for reading. The update

occurs in the case where no vehicle is detected in the ROI.

The memory is read only in the case when a car is detected

(enable flag). This allows to avoid unnecessary operations

for every frame.

The model can be stored as colour or greyscale. The first

solution requires 3 times larger memory resources. If the

maximal ROI size is assumed as 160� 224, then for

greyscale (8-bits per pixel) 9 BRAM and for RGB colour

(24-bits per pixel) 22 BRAM modules are required. Due to

limited resources on the target platform XC7Z020 (in total

140 BRAMS) the greyscale variant was used.

In the next stage, the foreground object mask is calcu-

lated. It is obtained by thresholding the absolute difference

between the current pixel and the background model. In the

experiments the threshold was set to 20. An example is

shown in Fig. 20.

A comment is required on the area marked as green. The

background update mechanism has some delay, which may

result in the presence of small parts of cars in the model.

Therefore, during colour recognition, the upper area of the

ROI is not analysed.

In addition, only pixels on a given lane are considered

(cf. mask in Fig. 20c). Because the used sample video

sequences were obtained from a camera that was not

placed directly over the road but slightly to the side, it

caused the omission of certain pixels in the analysed car

images. However, for a typical setup, where the camera is

mounted exactly above the lane, this problem will not

occur or will be marginal.

Analysis of the mask presented in Fig. 20d reveals three

problems related to vehicle colour recognition. The first are

shadows around the vehicle, especially in the front and on

the left side. Unfortunately, despite huge research effort,

there are no simple methods of detecting such areas. The

authors used colour and texture information, but with only

moderate results in previous research. In this example of

vision system, the shadow is treated as a separate colour

and excluded from analysis using a simple heuristic (de-

scribed below).

A similar difficulty is caused by shadows present on the

car (on the used test sequences on its right side). It is well

segmented, in the example it differs even more from the

background than other car elements. However, samples in

this area can be misinterpreted in the colour classification

procedure. This issue requires further research.

The third problem is caused by windscreens. Regardless

of the vehicle colour, this area is usually light grey and can

(a) (b)

(c) (d)

Fig. 20 Foreground object detection example: a current frame ROI, b

corresponding background model, c mask for a particular lane, d

object mask
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heavily influence the colour recognition. In the proposed

solution, a separate colour model for these areas is used.

Furthermore, another issue are reflections from the wind-

screen. They could be misinterpreted as white colour.

However, due to they relative small number of such pixels,

they had no big impact on the colour recognition.

Hardware implementation The scheme of the proposed

foreground object segmentation (in this case cars) is pre-

sented in Figure 21. As already stated, the background

model for a single lane is stored in dual-port block RAM

memory. The write port has the following inputs: pixel_

grey—pixel value in greyscale, addr—address based on

the pixel location in the frame, we—write enable flag,

which is the logic product of: de—pixel valid, inside_

bbox—flag indicating that the pixel is inside a given ROI

and performBackgroundUpdate—flag indicating

that the background model should be updated (set to 1

when in the given ROI no movement and vehicle presence

is detected). The read port has inputs: the same address and

re, flag (de & inside_bbox & performVehicle

Analysis—set to 1 when a vehicle is detected using the

method described in Sect. 7.1). Then, the signal

pixel_grey is delayed (module D) and the absolute

difference is computed and thresholded. Finally, the object

mask is obtained ob_mask. It is then used to gather the

colour samples. Resource utilization of the designed

module is presented in Table 11. The estimated maximum

frequency equals 263 MHz after synthesis and 145 MHz

after place and route.

Sample classification When designing a colour classification

system, two important decisions should be made. The first

relates to the used colour space. The most widely used are:

RGB, YCbCr, CIELab or HSV. In this exemplary solution,

the YCbCr space is used, as it provides fairly good classi-

fication results and the transformation from the RGB space

is very simple (unlike, e.g. RGB-HSV conversion).

The second concerns the representation of the colour

model. The model could be in the form of:

– mean values (classification similar to k-means

approach),

– Gaussian distributions (independent components),

– Gaussian distributions (dependent components—com-

putationally more complex),

– Gaussian mixture model (GMM),

– three 2D histograms,

– 3D histogram.

In the presented sample application the simplest k-means

based approach was used. The recognized colours are black

(also shadow), silver, white, red, yellow, green, blue and

‘‘windscreen’’. It should be noted, however, that in a sim-

ilar way any of the above solutions could be implemented.

The Gaussian-based models require appropriate arithmetic

and histogram-based larger memory resources (especially

the 3D histogram).

The proposed algorithm was evaluated on several test

sequences (covering over 30 min). The total number of car

samples was 300. The colour recognition accuracy was at

the level of 88 %. The errors resulted mainly from incor-

rect segmentation, especially due to the presence of the

shaded areas. This issue should be certainly addressed in

future work.

Hardware implementationTo optimize the resource usage one

colour classification module is used. This is possible because

the pixels are always in distinct locations and, therefore, no risk

of conflict exists (simultaneous access to the same modules).

The scheme of the module is presented in Fig. 22.

Input signals are: ce—logical product of foreground

object mask, inside ROI flag, analysis flag (i.e. vehicle

detection inside the analysis ROI) and de, star-

t_recogni -tion—signal to start the recognition

(product of the analysis and last pixel in ROI flags),

lane_id – lane label, pixel_ycbcr—pixel in YCbCr

colour space.

In thefirst step, the distances between the current sample and

all colour models are computed in parallel (modules DIST).

Subsequently the minimum distance is determined (min_-

value) and the corresponding colour label min_idx. The

minimum distance is checked against a threshold (module

TH)—it is possible that a pixel does not correspond to any

recognized colour class. In the next step the corresponding

counter is incremented. Its selection is a two-step procedure.

BRAM

128 x 128 x 8

WR

RD

pixel_grey

addr

addr

bg_grey

we

re

D

| * | > TH

ob_mask

Fig. 21 Foreground object detection module (description in text)

Table 11 Vehicle silhouette segmentation module for a single lane

resource utilization

Resource Used Available Percentage (%)

FF 104 106,400 0

LUT 188 53,200 3

BRAM 9 140 6
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First, the demultiplexer DLANE determines the lane (i.e. a

particular ROI). Then, a second demultiplexer using

min_idx determines the required register (e.g.black_r). If

the signal ce == 1, then the register value is incremented.

In the case when the start_recognition signal is

asserted, the corresponding register bank is selected using

the multiplexer MLANE. Then, the colours, except black

and ‘‘windscreen’’ are added and also the maximum is

found—module MAX SUM. The ‘‘windscreen’’ colour is

omitted in this analysis. The black colour usually also

belongs to shadow areas (under the car). This property can

be used to implement a simple heuristics (module

SELECT). First the pixels classified as the ‘‘remaining’’

colours are summed up. If this sum is two times greater

than the sum of black pixels, as the recognition result the

most common colour among the ‘‘remaining’’ ones is

considered. Otherwise, the car is regarded as black. After

recognition, the register for the given lane is reset to 0.

The output of the module are colour index—car_-

colour and done flag, which indicates that the recog-

nition procedure is finished. Resource utilization in

presented in Table 12. The estimated maximum frequency

equals 157 MHz after synthesis and 97 MHz after place

and route.

8 Global modules

In the proposed systems some operations are common to all

pixels, and therefore they are implemented as global.

8.1 Consecutive frames differencing

Consecutive frame differencing is used for motion detec-

tion. The absolute difference in RGB colourspace is used:

dI ¼ jRi � Ri�1j þ jGi � Gi�1j þ jBi � Bi�1j[ th ð13Þ

where RGBi is the pixel from the frame i, RGBi�1 is the

pixel from frame i� 1, a th binarization threshold (con-

stant). The whole operation requires only a few arithmetic

operations, the resource usage is presented in Table 13. The

estimated maximum frequency equals 357 MHz after

synthesis and 222 MHz after place and route.

The size of the image frame in RGB colour space is

larger than 1MB. This means that the previous frame

cannot be stored in internal BRAM resources, but must be

buffered in external DDR3 RAM memory. Thanks to the

Zynq device architecture, the memory can be shared

between the ARM device running Linux operating system

and the FPGA fabric.

Up to four DMA channels can be configured and used

by FPGA-based IP cores. The AXI VDMA [69] IP Core

provided by Xilinx is employed in the described system. It

allows a streaming access to the image frame data, which

means that pixels can be stored and read in the same way as

they are provided by the camera. The random access to

a particular pixel is not allowed, but it is not needed for

frame differencing. The estimated (Xilinx EDK tool)

resource usage for VDMA IP core is presented in Table 14.
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Fig. 22 Vehicle colour recognition module (description in text)

Table 12 Vehicle colour classification module resource utilization

Resource Used Available Percentage (%)

FF 657 106,400 0

LUT 1847 53,200 3

Table 13 Consecutive frames differencing module resource usage

Resource Used Available Percentage (%)

FF 79 106,400 0

LUT 116 53,200 0
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8.2 RGB to YCbCr colour space conversion

The YCbCr colour space is used in the vehicle colour

classification. Additionally, the Y component (luminance,

brightness) is used in Sobel edge and LBP descriptor

modules. The following equation was implemented:

Y
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The required arithmetical operations were realised with the

use of hardware DSP modules available in the Zynq device.

The resource utilization is presented in Table 15. The

estimated maximum frequency equals 707 MHz after

synthesis and 429 MHz after place and route.

8.3 LBP 3� 3 module

The LBP feature module is based on the delay line

approach, which allows to generate a 3� 3 context. Then,

using the central pixel value and the neighbourhood the

LBP is computed. Two LBP outputs are supported: basic

LBP and non-redundant uniform LBP. They are used,

respectively, for vehicle counting (VDL) and type recog-

nition. The resource usage of the module is summarized in

Table 16. The estimated maximum frequency equals 395

MHz after synthesis and 299 MHz after place and route.

8.4 Sobel edge detection module

The Sobel edge detection module is based on the delay

line approach, which allows to generate a 3� 3 context.

Then, convolution with two kernels vertical and hori-

zontal is performed. The operation is performed sepa-

rately for R, G and B colour components and then the

results are integrated. Finally, the sum of absolute values

of the computed gradients are compared with a fixed

threshold. The resource usage of the module is summa-

rized in Table 17. The estimated maximum frequency

equals 564 MHz after synthesis and 259 MHz after place

and route.

8.5 Gaussian filtering

The Gaussian filtering module for RGB frame (each colour

component independently) is also based on the delay line

approach. A convolution with a 3� 3 kernel is performed.

The resource usage of the module is summarized in

Table 18. The estimated maximum frequency equals 404

MHz after synthesis and 312 MHz after place and route.

8.6 Position computing module

The module allows to calculate the pixel position in the

frame using synchronization signals de, h_sync,

v_sync of the video stream and resolution of the anal-

ysed image. In addition, it generates a flag eof, which

indicates the end of the frame. The resources usage is

shown in Table 19. The estimated maximum frequency

equals 404 MHz after synthesis and 380 MHz after place

and route.

Table 14 VDMA core resource usage

Resource Used Available Percentage (%)

FF 3487 106,400 3

LUT 3151 53,200 6

BRAM 4 140 3

Table 15 RGB to YCbCr module resource usage

Resource Used Available Percentage (%)

FF 101 106,400 0

LUT 78 53,200 0

DSP 48 9 220 4

Table 16 LBP feature module resource usage

Resource Used Available Percentage (%)

FF 66 106,400 0

LUT 75 53,200 0

BRAM 1 140 0

Table 17 Sobel edge detection module resource usage

Resource Used Available Percentage (%)

FF 423 106,400 0

LUT 388 53,200 0

BRAM 3 140 0

Table 18 Gaussian filtering module resource usage

Resource Used Available Percentage (%)

FF 402 106,400 0

LUT 271 53,200 0

BRAM 6 140 2
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9 System integration and evaluation

The described in the previous sections vision system has

been implemented on the Zynq SoC device (XC7Z020

CLG484 -1 AP SoC) available at the ZC 702 evaluation

board made by Xilinx. In Table 20 the resource utilization

for the hardware part of the described image processing

system is presented (without communication logic). The

estimated maximum frequency equals 261 MHz after

synthesis and 166 MHz after place and route.

Two rows of this table require additional comments.

Firstly, the resource utilization of DSP 48 modules is quite

high. This results from three reasons: the multiplications

used in RGB to YCbCr conversion, coefficients scaling in

a single VDL and logic designed to determine the current

ROI in the queue length estimation subsystem. These

operations should be further optimized in future work.

Secondly, the internal BRAM resource usage is also quite

high. It is the consequence of storing parts of the image,

both in a single VDL, as well as in vehicle segmentation

module (for vehicle colour recognition). Particularly in the

latter case, a modification of the design should be consid-

ered. The used 160� 224 pixels ROI could be reduced for

example by a factor of 2 (e.g. 80� 112). This would also

simplify the realization of vehicle colour and type recog-

nition modules.

In Table 21 the resource utilisation for the entire hard-

ware system is presented. It includes the designed image

processing module, as well as HDMI video signal input/

output, AXI bus communication (PL-PS) and external

RAM communication (VDMA). The estimated maximum

frequency equals 141 MHz after place and route.

Analysis of the presented data leads to some general

conclusions. First, the maximum operating frequency of the

designed vision system reaches 140 MHz. This is more than

enough to enable real-time processing for the target reso-

lution, i.e. 720� 576 @ 50 fps (pixel clock 27 MHz). It is

also possible to process more than 250 frames of this reso-

lution per second. However, this information is rather the-

oretical. In practise, such video sources are not used,

especially for ITS vision system where there is no need for

high frame rate analysis. Much more interesting would be

the possibility of processing a high-definition video stream

(1920� 1080 @ 50 fps—148 MHz pixel clock). After some

modifications and optimizations this should be possible and

is undoubtedly an interesting direction for further research.

Secondly, even in a relatively small device Z-7020

a system for a three or four lane intersection can be

implemented. This should be sufficient for many real-life

applications. Besides, the resource usage could be further

optimized or a slightly bigger device used (Z-7030,

Z-7035).

9.1 PL-PS communication

The data transfer between the two parts was handled by the

AXI bus. Particularly, the pixels from the VDL, values of

three similarity measures SAD, dSX and dCEN, queue

length on a lane and vehicle type, as well as colour

recognition results were transmitted. Each VDL data were

stored in a separate FIFO buffer. Both the FIFOs data lines

and control signals (empty and read flags) are mapped in

the ARM system as registers in the processor memory

space. The buffers state was pooled by the operating sys-

tem driver (to check if there are data available) and the data

from non-empty buffers were transferred to operating

system memory space. The used PetaLinux OS enables

multitasking, and therefore this solution is not affecting the

whole system performance. Furthermore, the patch analysis

thread should wait until next data arrives (another patch is

ready for analysis). The rest of the OS is working inde-

pendently and, for example, it is possible to communicate

with the system at the same time.

In the software part the PetaLinux operating system was

used. The communication with the hardware part was

realised with an AXI bus driver. The entire analysis was

performed in a single user application.

Table 19 Position computing module resource usage

Resource Used Available Percentage (%)

FF 21 106,400 0

LUT 48 53,200 0

Table 20 Resource utilisation for the hardware part of the image

processing algorithm

Resource Used Available Percentage (%)

FF 8678 106,400 8

LUT 9244 53,200 17

DSP 48 99 220 45

BRAM 60 140 42

Table 21 Resource utilisation for the hardware part of the entire

system

Resource Used Available Percentage (%)

FF 16,591 106,400 15

LUT 16,029 53,200 30

DSP 48 99 220 45

BRAM 101 140 72
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Tests showed that the communication between the ele-

ments of the system works correctly, and the ARM pro-

cessor was efficient enough to analyse patches and perform

other tasks in real time. In the first test scenario sixteen, 64

pixel wide VDL (32 bit data) were evaluated. No pro-

cessing delays were observed in the ARM core. In the

second test, the maximal data transfer via the AXI bus was

estimated. A maximum throughput of 27 MB per second

was obtained. During this experiment the ARM was only

responsible for capturing the data stream (no

computations).

9.2 Comparison with similar hardware solutions

Comparison of the proposed solution with others repor-

ted in the literature is possible on two levels: the accu-

racy of the algorithms and parameters of the hardware

system. Unfortunately, in both cases the issue is quite

difficult. First, as mentioned in Sect. 3, no single ITS

video database exists. Therefore, a fair accuracy bench-

mark is very difficult and time consuming, as it requires

the implementation of all the considered algorithms.

Besides, the presented in this article algorithmic solu-

tions are only exemplary, although fully functional.

Their main aim is to demonstrate the possibilities of a

hardware–software architecture.

Secondly, to our best knowledge, the presented here

ITS solution is the only one for the Zynq platform (be-

ginning of 2016). Other similar systems have been

implemented on various FPGA devices (from Xilinx and

Altera). In such a case, the resource utilisation compar-

ison is not fully adequate, as with advances in technology

the devices change their parameters (e.g. LUT size). The

only simple and informative parameters are: the used

image processing algorithms and the supported video

stream (resolution, fps), which are summarized in

Table 22. It clearly shows that the proposed system is

superior to other proposals in terms of supported func-

tionalities and video stream parameters.

9.3 Comparison with software model

An experiment involving the comparison of the proposed

hardware–software system with a software application was

also conducted. The software model (i.e. an application

with the same functionalities as the hardware system) was

implemented in C?? programming language based on the

OpenCV image processing library [46]. Two platforms

were used: a standard PC with Intel i7-4790 quad-core

processor @ 3.6 GHz and an ARM Cortex-A9 @ 866 MHz

processor available in the considered Zynq device. In both

cases the GCC compiler was used.

It should be emphasized that the presented results are

only indicative. On one hand, for the image processing

module implemented in PL, a performance of 50 frames

per second for 720� 576 resolution was assumed. The

actual maximum performance of the module was not ver-

ified experimentally, as it would require a video source

capable of providing more than 50 fps. However, the

estimated maximal clock frequency of the integrated sys-

tem (140 MHz) indicates that HD resolution support should

be possible after some optimizations.

On the other hand, for the software implementation it is

also possible to achieve significant improvements. How-

ever, this would require a number of optimizations. The

software model was designed as a functional model of the

used algorithms and a reference for the hardware modules.

Therefore, during its implementation no multi-threading or

special instruction sets were used (i.e. MMX, SSE).

Additionally, some operations that are implemented in the

hardware model for the entire image frame (motion

detection, edge detection) could be realized only for some

parts of the image (in particular ROIs). This would allow to

increase the overall performance.

During the evaluation the average number of frames

(720� 576 pixels) processed in one second was measured.

A 400 images test sequence was used. On the Intel i7

processor the release mode and maximum speed opti-

mization of the GCC compiler were used (Debain 8.2 OS

Table 22 ITS algorithm implemented in FPGA/SoC devices

Work Functions Video stream parameters Device

[21] Vehicle detection, counting 786 � 576 @ 25 fps Virtex II (XC2V6000-4)

[38] Vehicle detection, counting Not provided Cyclone II (not provided)

[9] Vehicle detection, counting, classification Not provided Virtex 4 (XC4VFX60)

[57] Vehicle detection, counting 128 � 128 @ 32 fps Virtex 4 (XC4VLX60)

[67] Vehicle detection, counting 128 � 128 @ 32 fps Virtex 4 (XC4VLX60)

The proposed system Vehicle detection, counting, speed

estimation, classification (type,

colour), queue length estimation

720� 576 @ 50 fps Zynq SoC (XC7Z020-1)
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was used). On the ARM processor similar parameters were

used. The results are summarized in Table 23.

It can be assumed that further improvement of the i7

implementation would allow to obtain real-time processing

for a standard resolution (i.e. 720� 576 @ 50 fps), but for

HD stream it would be rather a significant challenge.

However, such a solution is very energy inefficient and

virtually unacceptable in embedded systems (only the

considered processor can consume up to 84 W). For the

ARM processor a 3.5 frames per second processing speed

was obtained. It does not seem likely that even the most

advanced optimizations and use of both processor cores

would allow to achieve the desired processing capability,

even for the standard resolution.

Additionally, a profiling of the software model was

performed. The GNU gprof tool [22] was used. The

results showed that the most time-consuming operations

are those carried out for the whole image frame, i.e. LBP

descriptor, Sobel edge detection or consecutive frame

subtraction. In addition, quite a lot of calculations are

required for operations related to queue length estimation

or vehicle type or colour recognition. It is worth noting that

the patch analysis (the part of the algorithm implemented

on the ARM core in the proposed system) is not high in the

GPP usage ranking.

The presented results confirm the validity of the

assumptions described in Sect. 2 and then realised in the

proposed hardware–software system. Implementing the

a large part of the application in PL is fully justified, as it

easily allowed to obtain real-time image processing for a

720� 576 @ 50 fps video stream. On the other hand, it

also has some drawbacks. The most important one is the

fairly time-consuming process of implementation, testing

and running individual hardware modules, as well as of the

whole system. However, in the case of embedded systems,

particularly used on a large scale (traffic analysis at inter-

sections, smart-cities, etc.), this approach seems quite

reasonable. It is worth mentioning that the fine-tuning of a

reliable software solutions also requires careful code

analysis and testing in terms of reliability, even when

writing purely functional code is relatively little time

consuming. Of course, a further analysis of the design to

determine the optimal HW/SW partitioning is possible and

should be considered as a separate future research

possibility.

10 Future work

The main goal of this study was to develop a system lar-

gely implemented in programmable resources of the Zynq

device. Nevertheless, on the occasion, an overview,

detailed analysis and selection of algorithms used in earlier

works has been done. These solutions have been improved

and adapted so that they could be implemented in a hard-

ware–software system. This analysis also pointed out some

shortcomings of the described algorithms. From the per-

spective of system implementation in Zynq, the selection

can be seen as illustrating the potential of the system.

Therefore, it is possible to continue their improvement,

and even replace some of them with more effective

approaches. This especially concerns vehicle type and

colour recognition, which is very challenging. For exam-

ple, instead of LBP features, the HOG could be used. In

addition, it seems necessary to propose better algorithms

for the analysis of patches to improve the overall accuracy.

Proper identification of large vehicles (buses, trucks)

makes serious difficulties in the current version of the

algorithm. It is also worth carefully examining all the

parameters and thresholds used in the algorithms and make

an attempt to optimize them or create good configuration

procedures. What is more, the system would be able to

perform better if an effective shadow detection and elim-

ination procedure was used.

The system could be further optimized, e.g. by sharing

computing resources by modules operating on separate

lanes or by replacing some multiplications by add/shift

approximations. Moreover, the dual-core ARM processor

system could be used for more advanced image processing

tasks, data analytic, storage and presentation. Different OS

configurations described is Sect. 2 should be considered,

e.g. the use of both ARM cores.

One possibility is to run Linux OS on one and a real-

time operating system on the second core. In this con-

figuration the following computing task division could

be applied. The Linux OS would execute high-level

image analysis and recognition routines, as well as

statistic and communication with the smart camera (e.g.

via Ethernet)—in a similar manner as in the above-de-

scribed version. The ROTS (e.g. the supported Free-

RTOS) would be used to directly control the traffic

lights—mainly using information about vehicle presence

and queue length (both computed in PL). This solution

would certainly improve the reliability of the proposed

vision system.

Table 23 Comparison of the proposed system with software model

performance

Platform FPS

HW/SW system Min. 50

Intel i7-4790 @ 3.6 GHz 43

ARM Cortex-A9 @ 866 MHz 3.5
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New functionalities could also be added to the system.

These could involve: abnormal situation detection (colli-

sions, breakdowns, wrong driving direction), vehicle

tracking, red light crossing detection, licence plate recog-

nition or vehicle make and model recognition. However,

the latter two would require a high-quality, high-resolution

image. Therefore, HD or even UltraHD video stream pro-

cessing should also be considered in further research. Also

the topic of optimal HW/SW implementation of the algo-

rithms seems to be very interesting and should be consid-

ered in future research. Furthermore, a camera calibration

and perspective correction module could also be included

to the system.

What is more, new SoC device generations (e.g. Zynq

UltraScale? MPSoC) could allow to significantly improve

and extend the proposed system. These devices contain

more logic resources, a new internal RAM memory

resources, H.265/H.264 hardware video codec, a quad-core

ARM processor, a dual-core ARM processor and GPU.

Therefore, more advanced and computing intensive ITS

algorithms could be implemented.

11 Summary

The article demonstrates the usefulness of heterogeneous

Zynq SoC to build an embedded vision system for a smart

camera dedicated to traffic surveillance in ITS. To achieve

this, the following issues have been resolved: hardware–

software architecture required to control the acquisition of

the HDMI video signal to the system, the AXI bus-based

communication between the FPGA and ARM processor,

AXI bus driver for the PetaLinux system and configuration

of the operating system itself. To demonstrate the capa-

bilities of the developed architecture the following algo-

rithms were implemented, tested and evaluated on test

sequences: vehicle queue length estimation, vehicle

detection, counting and speed estimation, as well as vehicle

type and colour recognition.

The algorithms were implemented partially in hardware

(FPGA) and software (ARM with PetaLinux) and were

positively verified on the ZC 702 platform from Xilinx.

The system allows to process 50 frames with a resolution

of 720 � 576 pixels per second. An estimate of the max-

imum operation frequency of the designed modules, as well

as the whole hardware system indicates the possibility of

pipelined processing of the video stream at 140 MHz fre-

quency. This leads to the conclusion that after further

improvement of the project, it would be fairly quickly

possible to achieve real-time processing of a HD stream

(i.e. 1920� 1080 @ 50 fps).

The obtained results demonstrate that Zynq SoC provide

a good basis for the implementation of advanced video

algorithms and building smart cameras, as they combine

the advantages of reconfigurable circuits and general pur-

pose processor system with Linux OS support.
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