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Abstract—This paper presents a new real-time hierarchi-
cal (topological/metric) simultaneous localization and mapping
(SLAM) system. It can be applied to the robust localization of
a vehicle in large-scale outdoor urban environments, improving
the current vehicle navigation systems, most of which are only
based on Global Positioning System (GPS). Then, it can be used
on autonomous vehicle guidance with recurrent trajectories (bus
journeys, theme park internal journeys, etc.). It is exclusively
based on the information provided by both a low-cost, wide-angle
stereo camera and a low-cost GPS. Our approach divides the
whole map into local submaps identified by the so-called finger-
prints (vehicle poses). In this submap level (low-level SLAM), a
metric approach is carried out. There, a 3-D sequential mapping
of visual natural landmarks and the vehicle location/orientation
are obtained using a top-down Bayesian method to model the
dynamic behavior. GPS measurements are integrated within this
low-level improving vehicle positioning. A higher topological level
(high-level SLAM) based on fingerprints and the MultiLevel Re-
laxation (MLR) algorithm has been added to reduce the global
error within the map, keeping real-time constraints. This level
provides nearly consistent estimation, keeping a small degradation
with GPS unavailability. Some experimental results for large-scale
outdoor urban environments are presented, showing an almost
constant processing time.

Index Terms—Global Positioning System (GPS), outdoor simul-
taneous localization and mapping (SLAM), stereovision, vehicle
navigation system.

I. INTRODUCTION

AUTONOMOUS vehicle guidance interest has increased in

recent years thanks to events like the Defense Advanced

Research Projects Agency Grand Challenge and, more recently,

the Urban Challenge. Most of the research has focused on

different location and navigation techniques using a previously

known map [1], [2]. More recently, simultaneous localization

and mapping (SLAM) has become a key component in vehicle

navigation [3]–[5], following the trend of the robotics area,

which has seen significant progress in the last decade. The

interest in SLAM based in cameras has tremendously grown

in recent years.

Manuscript received February 14, 2008; revised October 4, 2008 and
February 25, 2009. First published July 21, 2009; current version published
September 1, 2009. This work was supported in part by the Spanish Ministry
of Education and Science under Grant TRA2005-08529-C02 (MOVICON
Project) and Grant PSE-370100-2007-2 (CABINTEC Project) and in part
by the Community of Madrid under Grant CM: S-0505/DPI/000176
(RoboCity2030 Project). The Associate Editor for this paper was M. Trivedi.

The authors are with the Department of Electronics, University of Alcala,
28805 Madrid, Spain (e-mail: dsg68818@telefonica.net; bergasa@depeca.
uah.es; mocana@depeca.uah.es; barea@depeca.uah.es; elena@depeca.uah.es).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2009.2026317

Cameras have become much more inexpensive than lasers

and provide texture-rich information about scene elements at

practically any distance from the camera. Currently, the main

goal in SLAM research is to apply consistent, robust, and

efficient methods for large-scale environments in real time. On

the other hand, one of the most popular sensors in outdoor

navigation is the GPS. However, their information is not always

as accurate as needed, mainly due to the satellite’s occlusion

because of high buildings, tunnels, etc. To improve the usual ve-

hicle navigation systems mainly in very populated urban areas,

where the GPS information is not reliable, is an interesting goal.

Onboard navigation systems solve this problem by coupling

dead reckoning and GPS positions. Dead reckoning is based

on the use of an onboard low-cost inertial measurement unit

(IMU) and the measurement of the covered distance (available

through ABS wheel speed sensors). Microelectromechanical

system (MEMS) accuracy is a well-known problem [6]. Despite

the many recent improvements in the characterization of accel-

eration and rotation rate, measurement errors due to the thermal

stability of MEMS components cause drifts in pure integration

cycle even with the aid of odometry. Fiber-optic gyrometers

offer more accuracy than MEMS, but their cost does not comply

with the automotive cost requirements. As a consequence, the

behavior of a low-cost GPS and IMU fusion for urban scenarios

with recurrent trajectories is not highly reliable. In addition,

there is no standard access to the onboard sensors, being this

information own and confidential for each manufacturer. On

the other hand, most of the portable navigation systems are

only based on GPS. With this background, our general approach

consists of adapting SLAM strategies from the robotic area to

the vehicle-localization problem.

One of the most popular methods to solve the SLAM prob-

lem is the extended Kalman filter (EKF). As it is well known,

the EKF implementation is limited by the complexity of the

covariance matrix calculation, which quadratically increases in

large-scale maps as a function of the landmarks introduced

into the filter. To deal with that problem, several approaches,

like the so-called FastSLAM [7]–[9] or some others that try to

reduce the complexity of EKF, either by modifying its intrinsic

principles [10], [11] or by dividing the map into smaller ones

using a metric [12]–[14] or topological approach [15], [16],

were presented.

This paper relies on the topological/metric philosophy using

local maps to represent the world and locate the vehicle within.

Our approach basically generates a series of local submaps

taken on an equally spaced basis (low-level SLAM). Each

of them consists of a number of visual landmarks precisely

taken and is handled by using a standard EKF. A topological

1524-9050/$26.00 © 2009 IEEE

Authorized licensed use limited to: Univ de Alcala. Downloaded on April 20,2010 at 13:47:36 UTC from IEEE Xplore.  Restrictions apply. 



SCHLEICHER et al.: REAL-TIME HIERARCHICAL OUTDOOR SLAM BASED ON STEREOVISION AND GPS FUSION 441

map, along with local metric submaps, is built (high-level

SLAM). The topological map is a graphlike map consisting

of vertices and edges. Each vertex represents a topological

place, a vehicle pose that we call fingerprint, and includes a

local metric submap. When a vehicle is traveling between two

vertices, an edge is inserted to connect these two vertices, which

represents a link between two poses. Meanwhile, the edges

store transformation matrices and uncertainties to describe the

relationship between connected vertices. Using this hierarchi-

cal strategy of two levels, on one hand, we keep the local

consistency of the submaps by means of the EKF, and on the

other hand, we keep the global consistency by using the topo-

logical level and the MultiLevel Relaxation (MLR) method of

Frese et al. [17]. The MLR algorithm determines the maximum-

likelihood estimate of all vehicle vertices along the whole path.

Vertex corrections are transmitted to the landmarks of their

corresponding submaps.

Our final goal is the autonomous vehicle outdoor navigation

in large-scale environments and the improvement of the current

vehicle navigation systems based only on standard GPS. This

includes the ability to dynamically improve the vehicle naviga-

tion maps (building new streets where nothing was previously

mapped, correcting their paths, etc.). Our system is particularly

efficient in areas where the GPS signal is not reliable or even not

fully available (tunnels, urban areas with tall buildings, moun-

tainous forested environments, etc.). Our research objective is

to develop a robust localization system based on SLAM using

only a low-cost stereo camera and a standard GPS sensor for

vehicle navigation assistance. Then, this paper is focused on

real-time localization as the main output of interest. A map is

certainly built, but it is a sparse map of landmarks optimized

toward enabling localization. However, this map is enough for

updating obsolete navigator maps in real time as the vehicle

covers new paths.

To obtain vehicle dead reckoning, our system uses visual

information instead of an IMU because our goal is to develop

a low-cost standard system that is independent of the manufac-

turer protocol confidentiality. Moreover, as a difference of IMU

systems, our proposal generates a map and is able to detect

loop closings using visual appearance information. This way,

the accumulated drifts, which are typical of odometry sensors,

are removed from time to time, even with GPS unavailability.

Finally, our hierarchical proposal of two levels (topologic

and metric) works well in large-scale environments, producing

topologically correct and geometrically accurate submaps at

minimal computational cost. On the other hand, the topological

level facilitates the path-planning strategies, the fusion with the

GPS information, and the future generalization of the system to

a multivehicle SLAM.

II. RELATED WORK

In [18], Davison presented an impressive work of real-time

3-D visual SLAM carried out by using a handheld single

camera. It was the main basis of our research. In his recent

paper [19], Davison presented a revision of his method called

MonoSLAM. MonoSLAM is an EKF SLAM system and can-

not be used to map large environments. To solve the covariance

complexity problem, several strategies have been developed

in recent years. We will focus our study in the submapping

strategies.

One possible solution to the large-scale problem is the

Metric–Metric approach, which divides the whole map into

smaller parts using a high-metric-level approach over the metric

submaps. One of the first methods that applied techniques for

map splitting was presented by Tardós et al. [13] and more

recently in [20], where a conditionally independent divide-and-

conquer SLAM is proposed. To extend the MonoSLAM method

to larger environments, a hierarchical visual SLAM is presented

in [12]. One of the last contributions is the work presented

in [14]. A 6-degree-of-freedom (DOF) stereo-in-hand system

based on the commercial Bumblebee stereo system is used

to capture visual landmarks. An EKF submap strategy is also

applied here.

Another alternative to solve the large-scale problem is to

use a high topological-level approach over the metric submaps,

which leads to the topological metric methods. In [21], they

present the decoupled stochastic mapping, where a global map

is divided into smaller cells containing parts of the global

map. The hierarchical local map (HLM) method is presented

in [22]. It consists of a hierarchical set of submaps locally

referenced in this case. The constrained relative submap filter

(CRSF) presented in [23] is essentially equal to HLM but

introduces improvements on the way coupling estimates are

stored. The network-coupled feature map (NCFM) presented

in [24] is based on CRSF as well. The Atlas framework [25]

is also based on the graphs of local frames; however, it lacks

cycle optimization. In [26], Frese presented the TreeMap al-

gorithm. The idea is to build a hierarchical map consisting

of several levels. The measurements are based on landmarks.

The approach of Eade and Drummond [27] is based on the

NCFM method. It consists of a set of interconnected nodes

containing Kalman filter map estimates. A third alternative to

face the large-scale SLAM problem is to only use topological

maps without submaps associated with their vertex. These maps

lack the details of the environments, but they can achieve

good results for certain applications. In [28], a minimalist

visual SLAM for large-scale environments is presented. The

approach is based on a graphical representation of robot poses

and links between poses based on odometry and omnidi-

rectional image similarity. Another approach is presented in

[29], where a topological map that captures and stores images

frame by frame and compares them with the previous images

is built.

Some of the last contributions to large-scale path estimation

using visual sensors have focused on only recovering the es-

timated vehicle local path using visual odometry and adding

a topological level for a globally consistent solution. These

methods avoid the estimation of external features because they

use other strategies for loop closing and global positioning

correction. Some examples are [30] and [31].

Related to sensor fusion for navigation tasks, in [32], a multi-

sensor SLAM and navigation system is presented. It is applied

to a mobile robot to be able to navigate outdoors. It is based

on wheel odometry together with periodic real time kinematic

(RTK)-GPS and laser range finder (LRF) measurements. A
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drawback is the fact that the vehicle must periodically stop to

obtain GPS and LRF measurements. This makes it unsuitable to

perform automatic SLAM and, therefore, to navigate within un-

known environments from the beginning. Another example of

sensor fusion is presented in [33]. In this case, they use a pair of

Bumblebee stereo cameras, an IMU, and a wheel encoder

odometry as relative measurement sensors. On the other hand,

a low-cost GPS is also used as an absolute measurement sensor.

The system was tested outdoors on an open-spaced nonurban

area. Therefore, the GPS accuracy increases, and the availabil-

ity is almost always guaranteed. The fact that there is no large-

scale SLAM management method prevents using the system

for much larger environments, even more if we do not have

either wheel encoder odometry or IMU available. In [34], a

vehicle location estimation method for navigation applications

is presented. It is based on a high-performance GPS sensor

and an INS inertial unit, as well as the odometry information

from the vehicle, fused using an EKF. High-accuracy results

are shown. As a drawback, the high cost of the system can be

highlighted.

In [35], an onboard vehicle pose estimation exclusively based

on a stereo camera is presented. The approach is focused on es-

timating the pose relative to the environment dominant surface

area. In this paper, however, no absolute position coordinates

are estimated; therefore, there is no path estimation performed.

This is the main objective of this paper.

To choose one of the three main alternative approaches

regarding map management, we take into account that, in

one hand, although Metric–Metric methods provide accurate

estimations, they do not keep a topological structure that

helps global optimization in large-scale environments and path-

planning techniques for navigation purposes. Topological ap-

proaches do not provide accurate information of vehicle state

estimations. Therefore, our proposal to solve the large-scale

problem is based on the hierarchical topological-metric ap-

proach. The behavior of our metric level is similar to visual

odometry because a local map is built, but it is a sparse

map of landmarks optimized toward enabling localization. The

main contributions of our method compared with more relevant

proposals presented in this section can be summarized in a more

robust data-association strategy for large loop closing based on

scale invariant feature transform (SIFT) fingerprints, a simpler

node-relation management that is well suited for large outdoor

urban environments, and the fusion of a cheap stereovision and

low-cost GPS sensors to build a precise and real-time vehicle

global-localization system.

This paper is organized as follows: The general structure

of the system is described in Section III. Section IV presents

the low-level SLAM implementation focused on the visual

system, Section V studies the high-level SLAM, and Section VI

describes the fusion process with the GPS data. In Section VII,

a large set of results is given to test the behavior of our system.

Section VIII contains our conclusions and future work. This

paper relies on previous papers presented by the authors at

two conferences [36], [37]. The first paper is focused on the

low-level SLAM development using stereovision. The second

paper introduces a preliminary version of the high-level SLAM,

without the use of the MLR algorithm, for indoor applications.

Fig. 1. General architecture of our two-hierarchical-level SLAM. Each
submap has an associated fingerprint.

Fig. 2. (Bottom) System architecture mounted on a commercial car. (Top left)
Stereo-vision system and low-cost GPS. (Top right) Ground truth RTK-GPS.

III. IMPLEMENTATION

In this paper, we present a real-time SLAM method for large-

scale outdoor environments based on the fusion of stereovision

and GPS. To deal with the covariance-matrix-growing problem

intrinsic to the visual SLAM, we divide the global map into

local submaps. Each of these submaps has its own metric

SLAM process, independent of the other submaps. Over these

local submaps, we define a higher topologic SLAM level that

relates them to keeping the global map consistency (see Fig. 1).

On this task, GPS provides a valuable contribution, because the

positioning error increases over time in visual SLAM systems

unless loop-closing situations take place. On the other hand,

the GPS (when available) errors on estimations are limited but,

at the same time, can locally grow much more quickly than

visual estimation does. Therefore, at the end, both sensors are

complementary.

The visual system is based on a stereo wide-angle camera

mounted on a vehicle in the windshield area and looking

forward of the vehicle (see Fig. 2). For each local submap,

several visual landmarks are sequentially captured using the Shi

and Tomasi operator [36] and introduced on an EKF filter to

model the probabilistic behavior of the system. A measurement

model is used for landmark perception, and a motion model
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is implemented for the dynamic behavior of the vehicle. GPS

measurements contribute to improve both the vehicle and the

map estimation.

We present a hierarchical SLAM implementation that adds

an additional processing level called “high-level SLAM” to the

explained metric SLAM that we will call “low-level SLAM.”

The whole map is divided into local submaps identified by

fingerprints. These fingerprints store the vehicle pose at the mo-

ment of submap creation and define its local reference frame.

The submap generation is periodically performed in space so

that after a certain covered section of the path, a new submap is

created, and a fingerprint is associated with it. When the vehicle

is traveling between two fingerprints, an edge is inserted to

connect these two vertices, which represents a link between two

poses. Meanwhile, the edges store transformation matrices and

uncertainties to describe the relationship between the connected

fingerprints. To optimize the loop-closing detection, when a

significant vehicle turn is detected, an additional fingerprint

called SIFT fingerprint is taken. This adds to the vehicle pose

some visual information to identify the place where it was

taken. Matching between the previously captured SIFT finger-

prints, within an uncertainty area, and the current fingerprints

is carried out to detect previsited zones. In the case of positive

matching, a loop closing is detected, and the topological map is

corrected by using the MLR algorithm [17] over the whole set

of fingerprints.

The MLR determines the maximum-likelihood estimate of

all fingerprint poses. After that, the landmarks of each submap

are corrected as a function of the correction applied to its

associated fingerprint.

Each time a new GPS measurement is available, it is in-

troduced into the system. This is carried out by fusing visual

and GPS 2-D position coordinates and taking into account

the uncertainty covariances from both of them. Orientation is

obtained through an interpolation of the two last updates. The

confidence level of the measurement is taken into account by

estimating its uncertainty area, which is obtained by fusing

both visual and GPS estimation uncertainties as well. This GPS

uncertainty is obtained using the information provided by the

GPS (satellite visibility, geometrical distribution, etc.) and other

error sources assumed constant along time.

IV. LOW-LEVEL SLAM

This level implements all the algorithms and tasks needed

to locate and map the vehicle on its local submap using the

visual information. It is based on the monocular approach by

Davison [18] and its adaptation to stereo developed by the

authors [36]. The GPS sensor contribution will be explained in

Section VI. For clarity reasons, the submap notation is omitted,

so a unique submap for the low-level SLAM implementation is

assumed.

A. EKF Application

To apply an EKF, a state vector X and its covariance

matrix P need to be defined. The purpose of the algorithm

is to continuously estimate the position and orientation of

Fig. 3. Original and current feature measurement vectors.

the vehicle via the linearization of the next state function

f(X) at each time step. The vehicle coordinate system has

been set in camera frame one. Due to the motion model

used for vehicle movement, which will be explained later,

linear and angular speeds are added to the vehicle state vec-

tor Xv = (Xvh qvh vvh ω )T . In this equation, Xvh =
(xvh yvh zvh )T is the 3-D position of the camera relative to

the global frame, qvh = ( q0 qx qy qz )T is the orientation

quaternion, vvh is the linear speed, and ω is the angular speed.

On the other hand, as the whole submap has to be included into

the filter, all feature global positions Yi are added to the state

vector X = (Xv Y1 Y2 · · · )T .

B. Motion Model

To construct a motion model for a camera mounted on

a mobile vehicle only using visual information, a practical

solution is to apply the so-called impulse model. This assumes

a constant speed (both linear and angular) during each time

step and random speed changes between steps in three direc-

tions. Some restrictions have been applied to adapt the 6DOF

generic model to the vehicle’s movement dynamics. According

to this model, to predict the next state of the camera the func-

tion, fv = (Xvh + vvh · ∆t qvh × q[ω · ∆t] vvh ω )T is

applied. The term q[ω · ∆t] represents the transformation of a

three-component vector into a quaternion. Assuming that the

map does not change during the whole process, the absolute

feature positions Yi should be the same from one step to the

next step. This model is subtly effective and gives the whole

system important robustness even when visual measurements

are sparse.

C. Measurement Model

Visual measurements are obtained from the “visible” feature

positions. In our system, we define each individual measure-

ment prediction vector hi = (hix hiy hiz )T as the corre-

sponding 3-D feature position relative to the camera frame.

To choose the features to measure, some selection criteria

have to be defined. These criteria will be based on the feature

“visibility,” that is, whether its appearance is close enough to

the original (when the feature was initialized). This is based

on the relative distance and point of view angle with respect

to that at the feature initialization phase (see Fig. 3), as ex-

plained in [36].

The first step is to predict the measurement vector hi. To

look for the actual measurement vector zi, we have to define

a search area on the projection images. This area will be around
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the projection points of the predicted measurement hi on both

left and right images: UL : (uL, vL), UR : (uR, vR). To obtain

the image projection coordinates, first, we apply the simple

“pin-hole” model, and then, it is distorted using the radial

and tangential distortion models, which are detailed in [36].

To obtain zi, we need to solve the inverse geometry problem,

applying the distortion models as well (see [36]).

Regarding the search areas, they will be calculated based

on the uncertainty of the feature 3-D position, which is the

called innovation covariance Si (see [38]). As we have two

different image projections, Si needs to be transformed into the

projection covariance PUL
and PUR

using

PUL
=

∂UL

∂hi

· Si ·

(

∂UL

∂hi

)T

PUR
=

∂UR

∂hi

· Si ·

(

∂UR

∂hi

)T

. (1)

These two covariances define both elliptical search regions,

which are obtained by taking a certain number of standard

deviations (usually three) from the 3-D Gaussians. Once the

areas where the current projected feature should lie are defined,

we can look for them. At the initialization phase, the left and

right images representing the feature patches are stored. Then,

to look for a feature patch, we perform normalized sum-of-

squared-difference correlations across the whole search region

(see [38]). The path appearance is modified depending on

the vehicle point of view using the Patch Adaptation method

described in [36]. This helps on the search correlation phase in

the sense of extending the tracking of the patch.

In our application, the camera provides a baseline of Tint =
400 mm. We do not make any explicit differentiation between

near and far landmarks, as done in [14]. However, our method

implicitly does that. Far landmarks provide more useful infor-

mation when the vehicle turns, and near landmarks provide

more useful information when the vehicle goes straight ahead.

The reason is due to the innovation covariance Si, which at

the end provides the weight of each landmark within the filter.

In straight movements, distant landmarks appear to be almost

static, i.e., their innovation from frame to frame is relatively

low. However, on the vehicle turns, the innovation on distant

landmarks is higher, increasing their weights on that situation.

As long as landmarks become more distant, their location

errors increase. Nevertheless, the distance information from

far landmarks is almost useless. Therefore, to handle very far

landmarks, we limit the maximum-distance estimation to a

fixed value so that only the angle information is relevant.

D. Feature Initialization

The selected criteria to initialize new landmarks are to always

maintain at least five visible features and four successfully

measured features.

Then, when a new feature initialization needs to take place,

its corresponding patch will be searched within a rectangular

area randomly located on the left camera image. To obtain

the right image feature correspondence, we search over the

Fig. 4. High-level map management.

epipolar line, which is restricted to a certain segment around

the estimated right projection coordinates (see [36]).

V. HIGH-LEVEL SLAM

Our SLAM implementation adds an additional topological

level called high-level SLAM to keep global map consistency

with almost constant processing time. This goal is achieved

by using the MLR algorithm over the so-called Fingerprints.

Therefore, the global map is divided into local submaps iden-

tified by the mentioned fingerprints. There are two different

classes of fingerprints: 1) ordinary fingerprints and 2) SIFT

fingerprints.

The first classes are denoted as FP = {fpl|l ∈ 0, . . . , L}.

Their purpose is to store the vehicle local pose Xfpl

vh and local

covariance P fpl

vh relative to the previous fingerprint, i.e., the

reference frame of the current submap. These fingerprints are

periodically obtained approximately each 10 m of the covered

path, synchronized with the GPS measurements.

The second classes are a subset of the first classes, which

are denoted as SF = {sfq ∈ FP |q ∈ 0, . . . , Q, Q < L}. Their

additional functionality is to store the visual appearance of

the environment at the moment of being obtained. That is

covered by the definition of a set of SIFT features associated

to the fingerprint, which identifies the place at that time Y F q =
{Y fq

m|m ∈ 0, . . . , M}. These fingerprints are only taken un-

der the condition of having a significant change on vehicle

trajectory (see Fig. 4). Each time a new SIFT fingerprint is

taken, it is matched with the previously acquired SIFT fin-

gerprints within an uncertainty search region. This region is

obtained from the vehicle global covariance PG
vh because it

keeps the global uncertainty information of the vehicle. If

the matching is positive, then it means that the vehicle is

in a previously visited place, and a loop closing is identi-

fied. Then, the MLR algorithm is launched to determine the

maximum-likelihood estimate of all fingerprint poses. Finally,
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Fig. 5. Representation of the fingerprint global uncertainties Pc
0

2fpl
increas-

ing along the vehicle path. Solid line ellipses represent SIFT fingerprints
uncertainties. Numbers represent each fingerprint. Fingerprint SIFT feature
matching is shown on the corner image. Outliers are marked as light color lines.

the fingerprint corrections are transmitted to their associated

submaps.

A. Local Submaps

Each time a new fingerprint is taken, an associated submap is

created. The vehicle relative local pose Xfpl

vh and its covariance

P fpl

vh are stored in the fingerprint at that moment. Due to the

need of being aware about the global uncertainty at any time,

we need to maintain PG
vh updated (see Fig. 5). We calculate it

by expressing the current local uncertainty P fpl

vh in the global

reference frame as

PG
vh =

∂X0

vh

∂Xfpl

vh

· P fpl

vh ·

(

∂X0

vh

∂Xfpl

vh

)T

(2)

where X0

vh is the current global vehicle position.

Two different high-level approaches can be done either using

metric submaps [12]–[14] or topologic submaps [15], [16].

Both of them use detailed local maps, but the submaps em-

ployed in the metric approach do not maintain a topological

structure of an environment. On the other hand, in the metric ap-

proach, a global map is built by joining all the local maps. Then,

a process is carried out to identify all the duplicated landmarks,

closing all possible loops inside. Instead, we continuously keep

the accumulated global uncertainty, allowing the global map

correction at any time as soon as a closed-loop situation is

detected.

B. SIFT Fingerprints

Our system identifies a specific place using the SIFT finger-

prints. These fingerprints, apart from the vehicle pose, consist

a number of SIFT landmarks distributed across the reference

image and characterize the visual appearance of the image. The

SIFT features introduced by Lowe and Little [39] are invariant

to image scaling and rotation and partially invariant to change

in illumination and 3-D camera viewpoint. In addition, the

features are highly distinctive, which allows a single feature to

correctly be matched with high probability. This is achieved

by the association of a 128-length descriptor to each of the

features, which will uniquely identify all of them. These SIFT

feature descriptors �δ are loaded in each SIFT feature joint

to the left image coordinates and the 3-D vehicle position

Y fq
m = (uL vL X Y Z �δ ) for the fingerprint match-

ing process.

C. Loop Closing Detection

One of the main issues on SLAM in large environments is the

loop-closing problem. The first issue to solve is the recognition

of previously visited places. Once a new SIFT fingerprint is

generated, it is matched with all stored SIFT fingerprints within

the uncertainty area defined by PG
vh. This matching is carried

out for each pair of SIFT fingerprints (sfA, sfB), taking into

account both the number of recognized SIFT features and their

relative positions within the images to be compared. The overall

process is as follows:

1) The Euclidean distance between the descriptors �δA
i ,

�δB
j of all detected SIFT features on both fingerprints

(sfA, sfB), which is shown as

{∥

∥

∥

�δA
1 − �δB

1

∥

∥

∥ , . . . ,
∥

∥

∥

�δA
1 − �δB

mB

∥

∥

∥ ,

∥

∥

∥

�δA
2 − �δB

1

∥

∥

∥
, . . . ,

∥

∥

∥

�δA
mA − �δB

mB

∥

∥

∥

}

(3)

are computed. Then, we select those close enough as cor-

rectly matched. The trigger value is empirically selected.

2) Lines connecting each pair of matched features are cal-

culated. The corresponding lengths LnA−B
i,j and slopes

SpA−B
i,j are computed as well, as depicted in Fig. 5.

3) Outlier features are excluded from the computation by

using the RANSAC method. The model to fit is defined

as the vector (avg(LnA−B
i,j ), avg(SpA−B

i,j )) containing

the average lengths and slopes of the connecting lines.

RANSAC is applied to the whole set of lines, calculating

the Euclidean distance of all the individual length/slope

pairs to the average. Features whose connecting line pairs

are close enough to the model are considered as inliers;

otherwise, they are declared as outliers.

4) The global fingerprint matching probability is computed

as a weighted function of two parameters: 1) number
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of matched feature probability P (num_matches) =
num_matches/m3 and 2) inliers/num_matches relation,

where (m1,m2,m3) were experimentally obtained as

Pfp_match = m1 · P (num_matches)

+ m2(nI/num_matches). (4)

Obviously, P (num_matches) can eventually be higher

than 1 so that we limited the function to avoid this situation. The

typical values for our experiments are m1 = 2/3, m2 = 1/3,

and m3 = 40.

D. Map Correction

Once a loop closing has been detected, the whole map is

corrected according to the old place recognized. To do that,

we use the MLR algorithm [17]. The purpose of this algorithm

is to assign a globally consistent set of Cartesian coordinates

to the fingerprints of the graph based on local inconsistent

measurements by trying to maximize the total likelihood of all

measurements.

The reasons for using it are its highly efficient implementa-

tion in terms of computational cost and the extremely high com-

plexity allowed for the relations between new and previously

visited places. This provides the ability of closing multiple

loops even in a hierarchical way. On the other hand, as we will

explain later, we can correct the map, not only when closing

loops, but also when GPS has been unavailable for a long time

and it recovers again.

The MLR inputs are the relative poses and the covariances of

the fingerprints. As outputs, the MLR returns the most “likely”

set of fingerprint poses, i.e., the set already corrected. Because

the standard MLR does not provide corrected covariances, we

have modified the MLR to calculate them.

The MLR algorithm only manages 2-D information; there-

fore, we need to obtain the 2-D relative fingerprint pose X
fpl−1

2fpl

and covariance P
fpl−1

2fpl
from the corresponding 3-D relative

fingerprint pose X
fpl−1

fpl
and covariance P

fpl−1

fpl
. First, the 2-D

pose is defined as X
fpl−1

2fpl
= (x

fpl−1

2fpl
y

fpl−1

2fpl
θ

fpl−1

2fpl
)T , i.e.,

the two planar coordinates and the orientation angle. Therefore,

we can relate both 2-D and 3-D poses as

X
fpl−1

2fpl
=

(

x
fpl−1

fpl
z

fpl−1

fpl
2 arccos

(

q
fpl−1

0fpl

))T

(5)

where x
fpl−1

fpl
, z

fpl−1

fpl
, and q

fpl−1

0fpl
are coordinates of X

fpl−1

fpl
.

In addition, we compute the 2-D covariance by using the

corresponding Jacobians.

The MLR algorithm, as explained in [17], is based on

the quadratic error function computation of the fingerprints,

and we then try to minimize it. The expression XM =
(Xc0

fp1
Xc0

fp2
· · · Xc0

fpL
)T represents the total vector

of the whole set of 2-D-corrected fingerprint poses, which are

denoted as states in [17].

Once the 2-D-corrected vector has been calculated, we obtain

the corresponding 3-D-corrected fingerprints. At the step of

obtaining 2-D from 3-D poses [see (5)], we lost the y
fpl−1

fpl

coordinate information (altitude). Therefore, when going back

from 2-D to 3-D again, we have to set this value. We assume a

flat terrain because our system is mounted on a commercial car

driving in a flat urban area; therefore, this value will be taken

as 0. Then, we form the corrected absolute pose vector for each

fingerprint as

X0

fpl
=

(

xc0

fpl
0 yc0

fpl
cos

(

θc0

fpl
/2

)

0 sin
(

θc0

fpl
/2

)

0
)T

(6)

where xc0

fpl
, yc0

fpl
, and θc0

fpl
are the coordinates of the cor-

rected absolute fingerprint poses. As explained before, the

standard MLR method does not provide means to obtain the

corrected global covariances of the fingerprints. The reason is

because this method is uniquely based on the relative covari-

ances between poses. However, our system needs to obtain

them to keep the global uncertainty of the vehicle updated.

Then, the first step is to express the initially estimated relative

covariances in the global frame. This is done, as in (5), by

means of the corresponding Jacobians. Taking the expression

of the measurement function shown in [17], we can find the

relative pose as

X
fpi−1

2fpi
=

⎛

⎜

⎝

x0

2fpi
cos θ

fpi−2

2fpi−1
− y0

2fpi
sin θ

fpi−2

2fpi−1
+ x

fpi−2

2fpi−1

x0

2fpi
sin θ

fpi−2

2fpi−1
+ y0

2fpi
cos θ

fpi−2

2fpi−1
+ y

fpi−2

2fpi−1

θ0

2fpi
+ θ

fpi−2

2fpi−1

⎞

⎟

⎠

(7)

where x0

2fpi
, y0

2fpi
, and θ0

2fpi
are the 2-D global fingerprint

coordinates, whereas x
fpi−2

2fpi−1
, y

fpi−2

2fpi−1
, and θ

fpi−2

2fpi−1
are the

2-D relative previous fingerprint coordinates. The Jacobian

∂X0

2fpl
/∂X

fpl−1

2fpl
is easily calculated from (7). The next step

is to calculate the corrected covariance as a function of the

uncorrected covariance through the corresponding Jacobians.

As we do not have any equation to calculate the corrected

2-D absolute fingerprint coordinates Xc0

2fpl
as a function of the

uncorrected coordinates X0

2fpl
, we cannot obtain the Jacobian

earlier shown. We already know the whole set of both estimated

and corrected fingerprints. Assuming a dense grid of them, we

can approximate the Jacobian as a discrete differentiation

∂Xc0

2fpi

∂X0

2fpi

=

⎛

⎜

⎜

⎜

⎜

⎝

δxc0

fpi

δx0

fpi

δxc0

fpi

δy0

fpi

δxc0

fpi

δθ0

fpi

δyc0

fpi

δx0

fpi

δyc0

fpi

δy0

fpi

δyc0

fpi

δθ0

fpi

δθc0

fpi

δx0

fpi

δθc0

fpi

δy0

fpi

δθc0

fpi

δθ0

fpi

⎞

⎟

⎟

⎟

⎟

⎠

∼=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

xc0

fpi
−xc0

fpi−1

x0

fpi
−x0

fpi−1

xc0

fpi
−xc0

fpi−1

y0

fpi
−y0

fpi−1

xc0

fpi
−xc0

fpi−1

θ0

fpi
−θ0

fpi−1

yc0

fpi
−yc0

fpi−1

x0

fpi
−x0

fpi−1

yc0

fpi
−yc0

fpi−1

y0

fpi
−y0

fpi−1

yc0

fpi
−yc0

fpi−1

θ0

fpi
−θ0

fpi−1

θc0

fpi
−θc0

fpi−1

x0

fpi
−x0

fpi−1

θc0

fpi
−θc0

fpi−1

y0

fpi
−y0

fpi−1

θc0

fpi
−θc0

fpi−1

θ0

fpi
−θ0

fpi−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Finally, the global corrected covariance, which is expressed

in 3-D coordinates, is again obtained by means of the corre-

sponding Jacobians.
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Fig. 6. Detail on the first test path showing landmark global uncertainties
(top) as a result of only the low-level SLAM estimation and (bottom) after
applying high-level SLAM optimization.

After the topological map has been corrected, the associated

global uncertainties of all the fingerprints are expected to be

reduced. This increases the fingerprint search process efficiency

because the number of SIFT fingerprints matched will be lower.

The last step is to transfer the correction performed on the

high SLAM level into the low SLAM level. This is done by

applying the same transformation of the fingerprint pose to all

the landmarks within the submap. By doing this, we keep the

relative positions of the landmarks unchanged with respect to

their corresponding local submap reference frame. Therefore,

the landmark covariances remain unchanged in the frame of

each submap. However, to represent their global uncertainties,

we show in Fig. 6 a portion of one of the paths used for testing

purposes. We represent the global feature covariances using just

the EKF on the local maps (see the top of Fig. 6) and after

applying the MLR optimization (see the bottom of Fig. 6).

VI. GPS SENSOR FUSION

In this section, we explain the way we introduce the infor-

mation provided by the low-cost GPS into the system. This

is carried out on two hierarchical levels: first, at the low-level

SLAM by updating the local state and covariance estimations,

and, second, by updating the fingerprints and correcting the

global map in case of long-term GPS unavailability. Due to the

2-D implementation of the MLR algorithm, we lose the vertical

estimation of the vehicle path. Because of that, it does not make

sense to use the altitude information provided by the GPS.

A. GPS Uncertainty Estimation

To perform sensor fusion, we need to quantify the confidence

level on the GPS measurements. The error sources on GPS

data are multiple (receiver noise, satellite clock, ionosferic

model, etc.), and most of them are difficult or impossible to

quantify. To summarize all of these errors, the statistical user

equivalent range error (UERE) is defined in [40]. We assume

that this UERE is 4 m, which seems reasonable if we look

at the different studies carried out [41]. On the other hand,

the final GPS uncertainty estimation will also depend on the

number of visible satellites and their spatial distribution. This is

quantified by the so-called dilution of probability (DOP), which

is provided in real time by the GPS. This value is used as a

ratio of the positioning accuracy σR, which is defined as the

UERE at the two-sigma level (95% UERE). As we only pay

attention to the horizontal error, we make use of the horizontal

DOP (HDOP). To obtain the x and y standard deviations, we

make use of the following expression defined in [40]:

HDOP =
√

σ2
x + σ2

y/(95% UERE). (8)

As we are not able to know each of the individual σx and σy,

we assume that both of them are equal, and therefore, the final

uncertainty region defined by

PGPS =

(

σ2
x 0
0 σ2

y

)

(9)

will have a planar circular shape.

B. Low-Level Data Fusion

Each time a new GPS reading XGPS = (xGPS yGPS )T is

available, which under normal conditions occur at 1-s period,

we proceed to fuse it with our visual estimation. As GPS

does not provide orientation information, initially, we only

calculate the position, and then, the orientation is estimated,

as explained later. To fuse the two positions, first, we express

the initial visual estimation in a two-component vector XPvh =
(xvh zvh )T . Then, to calculate the final position estimation,

we merge both estimates by making use of their respective 2-D

uncertainty covariances, as we depict in (10). This is obtained

by applying a 2-D statistical approach based on Bayes’ rule and

Kalman filters.

The resultant estimation improves the uncertainty distribu-

tion because it is calculated as the product of the two original

estimations. In [42], an improved way, in terms of computing

time, to fuse these data by using the corresponding covariance

matrices is presented as

X fusion = XPvh + PG
Pvh

(

PG
Pvh + PGPS

)−1
(XGPS − XPvh)

(10)
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Fig. 7. Submap detail showing the vehicle orientation estimation from GPS
data fusion. The local map estimation is represented through local pose estima-
tions (black arrows). The grey arrow indicates the estimated orientation of the
vehicle at the second GPS update point.

where PG
Pvh is the adapted 2-D position estimation covariance

PG
Pvh =

(

PG
xx PG

xz

PG
zx PG

zz

)

. (11)

In the same way, the following estimated covariance is calcu-

lated by means of the following equation:

P fusion = PG
Pvh − PG

Pvh

(

PG
Pvh + PGPS

)−1
PG

Pvh. (12)

Then, we update the global state and covariance as follows:

PG
vh =

⎛

⎜

⎜

⎜

⎝

P fusion
xx 0 P fusion

xy · · ·
0 0 0 · · ·

P fusion
yx 0 P fusion

yy · · ·
...

...
...

. . .

⎞

⎟

⎟

⎟

⎠

;

X = (X fusion
x 0 X fusion

y · · · )T . (13)

To estimate the orientation, each time a new GPS measure-

ment is taken, we obtain the relative position of the current

GPS update related to the previous update. Then, we calculate

the absolute angle of the vector that joints the two positions

and obtain the corresponding estimated quaternion qvh (see

Fig. 7). We also update the linear speed vvh according to the

new estimated orientation.

To obtain the best estimation for the MLR fingerprints, we

generate them in a synchronized way with the GPS updates.

Therefore, when conditions for a new fingerprint generation are

ready, we wait until a new GPS update is available.

C. High-Level Data Fusion

One of the most common problems when using GPS in very

populated urban areas is the complete unavailability. Usually,

this is because of a low number of visible satellites, which

is caused by different circumstances like tunnels, bridges, or

even high buildings. We consider a “long term” GPS loss

when we do not have GPS measurements available for more

than two consecutive fingerprints. In that case, the state cor-

rection implies a global map correction that mainly concerns

the section where the GPS signal was unavailable, as can be

seen in Fig. 8. The way we introduce new fingerprints into

the database when GPS is available is slightly different than

when is not. In the first case, the GPS measurement uncertainty

Fig. 8. Fingerprints MLR diagram (left) before and (right) after GPS recov-
ering. Fingerprints with GPS available are expressed in global coordinates
(19. . .33). Fingerprints without GPS are expressed relative to the previous
coordinates.

is directly referred to the global reference frame; therefore,

there is no cumulative error. Therefore, the fingerprints will be

defined relative to the global frame. However, when GPS is not

available, we only rely on visual information, which, at the end,

only provides local relative information. Then, fingerprint poses

are introduced relative to the previous one (see Fig. 8). At the

time of map correction, these different procedures make that the

relative fingerprint poses are modified in a higher degree than

absolute poses. This makes sense, because in these fingerprints,

the cumulative uncertainty continuously increases over time,

unlike absolute uncertainties, which have a limited absolute

error. Therefore, when losing the GPS signal for a long time and

recovering it again, the new estimated pose will have a lower

uncertainty than the accumulated up to this time.

Therefore, we can exploit this fact to reduce the uncertainty

of the visual-estimated section of the path. Then, to perform

map correction, as soon as the GPS signal is back, we create a

new fingerprint relative to the global frame and add a relation

between the last fingerprint and the current fingerprint (see

Fig. 8). To be able to retrieve the vehicle orientation, because we

do not have a previous GPS update, we must wait for two con-

secutive updates and calculate the new orientation from them.

VII. RESULTS

To test the behavior of our system, several video sequences

were collected from a commercial car manually driven in large

urban areas. The employed cameras for the stereo pair were

the Unibrain Fire-i IEEE1394 with additional wide-angle lens,

which provide a field of view of around 100◦ horizontal and

vertical with a resolution of 320 × 240. The baseline of the

stereo camera was 40 cm. Both cameras were synchronized

at the time the start of the transmission is commanded. The

cameras were mounted inside the car on top of the windscreen.

The calibration was performed offline using a chessboard panel

using the method referenced in [43]. The employed low-

cost standard GPS was GlobalSat BU-353 USB. The metric

coordinates were obtained from the geographic coordinates

taking into account the WGS84 ellipsoid. To refer the global

positions provided by the GPS to our local reference frame, we

subtract the first measurement at the origin to the rest of the

measurements.
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Fig. 9. Aerial view of the path covered by the vehicle. The starting point is
marked with number 1, and the endpoint is marked with number 2. Landmarks
are showed as dots. The loop shown on the lower part of the picture contains
several buildings that still do not appear at that time.

One of the video sequences was taken by covering with a car

the urban path shown in Fig. 9. The average speed of the car was

around 30 km/h. The complete covered path was 3.17 km long.

It contained five loops inside, taking 8520 low-level landmarks

and 281 fingerprints. In Fig. 9, we show the estimation of the

path covered by the vehicle. It can be appreciated that the areas

where high buildings are located contain a higher number of

landmarks (marked as dots). This helps on a more precise loca-

tion provided by the vision system. On the other hand, open-

spaced areas without high buildings do not provide accurate

visual information, whereas the GPS signal has more strength

and provides better location estimation. This shows that both

sensors complement each other, providing good estimations

in different situations. Therefore, combining them in a proper

way, we can obtain better estimations. A perspective view of

the same estimation is shown in Fig. 10, where we appreciate

landmarks distributed on the whole volume. To evaluate the

performance of our system, we compared our results with a

ground truth reference.

This ground truth was obtained with an RTK-GPS Maxor

GGDT, which provides an estimated accuracy of 2 cm. On the

other hand, we collected together car positions obtained by only

using the low-cost GPS to analyze them and compare with our

system. Fig. 11 depicts the estimation of our combined SLAM

system, the standard GPS alone, and the visual SLAM only

compared with the ground truth.

Fig. 10. (Solid line) Perspective view of the path covered by the vehicle.
Low-level landmarks are shown as dots.

Fig. 11. Path estimation using (dotted line) only a standard low-cost GPS,
(dash-dot line) visual SLAM only, (solid line) our combined SLAM method by
means of vision and GPS, and (dashed line) the ground truth. GPS loss sections
are marked with thick lines.

The GPS signal was lost at different moments at the begin-

ning of the path, as shown in Fig. 11. On the longest signal

neglect section, the increased estimation error can easily be

observed; however, we still have a relatively accurate estimation

to be able to locate the vehicle. As can be seen, using visual

SLAM only, the error becomes larger at the end of the long

straight segment. This is as a result of the low amount of

landmarks captured on this area. Then, we have calculated the

X- and Y -axis errors relative to the ground truth using the

visual SLAM only and our combined SLAM implementation

(see Fig. 12 for the X error).

One observation is that, at the moments of total GPS loss,

the error on our system remains quite low. The longest period

of GPS neglect is shown at the beginning of the graph. Within

this period, the system showed the highest error, which on the

Y -axis was around 20 m. However, even at that time, the error

on the X-axis remained quite low. In Table I, we show the

numerical errors obtained on several tests carried out over more

than 20-km urban paths. The mean and standard deviation of

errors at both GPS loss sections and GPS available sections
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Fig. 12. Distance error on the X-axis using (top) visual SLAM only and
(bottom) our combined SLAM system. GPS neglect sections are marked
with bars.

TABLE I
ESTIMATION ERRORS. COMBINED SLAM

TABLE II
ESTIMATION ERRORS. GPS ONLY/VISUAL SLAM ONLY

are shown. As expected, the mean errors are higher on GPS

loss sections. These errors are compared in Table II with the

errors obtained by using either the standard GPS only or the

visual SLAM system only. Both of them are higher than

the errors obtained by the combined SLAM system. With

respect to the processing time, the real-time implementation

imposes a time constraint, which shall not exceed 33 ms for a

30 frame/s capturing rate. All of the results were taken using an

AMD Turion 2.0-GHz CPU. Fig. 13 depicts the total processing

times along the whole vehicle path for the first test.

As we can see, our method is able to work under the real-

time constraint, with the average processing time remaining

constant along the whole path. In Table III, we show the average

processing times for some of the most important tasks in the

process. Focusing on the low-level SLAM tasks, we can see

that the higher time is used on the landmark initialization phase

due to the large search area along the epipolar line, although we

restricted its length for the 1 m → ∞ search range.

Regarding the high-level SLAM, the time dedicated to the

SIFT fingerprint-matching process and the correction of the

map at the time of loop closing, because it has 8520 landmarks,

is significantly higher than real time. The use of SIFT features

Fig. 13. Processing times for the whole tasks. The real-time limit is repre-
sented as a constant in 33 ms.

TABLE III
PROCESSING TIMES

implies an increase of the fingerprint matching computing time

over other appearance-based methods. However, the use of this

kind of feature, besides the high distinctiveness, provides better

accuracy on vehicle relocation, as their 3-D positions are used

to geometrically estimate the actual vehicle pose.

On the other hand, both tasks do not belong to the continuous

self-locating process carried out by the low-level SLAM, and

therefore, there is no need to complete them within a single

frame time slot. Therefore, we can obtain a positive fingerprint

matching result of some few frames after it was really detected.

Then, we can go back and start the loop-closing task. This

implies that both of these tasks can be computed in parallel,

keeping them outside the real-time computation. Regarding the

GPS processing time, it was around 4 ms. Moreover, this task

is executed at no more than 1 Hz; therefore, the impact on the

processing times is negligible.

VIII. CONCLUSION

In this paper, we have presented a two-level (topological/

metric) hierarchical SLAM that allows self-locating a vehicle

in a large-scale outdoor urban environment using a cheap wide-

angle stereo camera and a standard low-cost GPS as sensors.

Using this hierarchical strategy, on one hand, we keep the

local consistency of the metric submaps by means of the

EKF (low SLAM level) and the global consistency by using a

topological map and the MLR algorithm. On the other hand,
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our method is able to work under the real-time constraint,

with the average processing time remaining constant for a

very large scale environment. We have shown the positioning

improvements of our system compared with using a simple

standard GPS, opening the possibility to improve the current

vehicle navigation systems. One limitation of our system is

that a flat terrain is assumed for matching the 2-D map of the

topological level with the 3-D maps of the metric level. This

can cause graceful map accuracy degradation in highly rough

terrains. On the other hand, loop-closing detection strongly

depends on the visual appearance of images taken almost in

the same place.

As a future work, we plan to generalize the MLR algorithm to

manage 3-D characteristics. In addition, we plan to evaluate the

addition of an IMU to improve the estimation from the visual

sensor. Then, we have in mind to develop a vehicle navigation

assistance prototype based in our system. Our final goal is

the autonomous outdoor navigation of a vehicle in large-scale

urban environments with recurrent trajectories (bus journeys,

Theme Parks internal journeys, etc.), where a SLAM system

such as ours can be very useful.
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