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Abstract: Automated methods of real-time, unobtrusive, human ambulation, activity,  
and wellness monitoring and data analysis using various algorithmic techniques have  
been subjects of intense research. The general aim is to devise effective means of 
addressing the demands of assisted living, rehabilitation, and clinical observation and 
assessment through sensor-based monitoring. The research studies have resulted in a large 
amount of literature. This paper presents a holistic articulation of the research studies and 
offers comprehensive insights along four main axes: distribution of existing studies; 
monitoring device framework and sensor types; data collection, processing and analysis; 
and applications, limitations and challenges. The aim is to present a systematic and most 
complete study of literature in the area in order to identify research gaps and prioritize 
future research directions. 

Keywords: sensor-based monitoring; sensor placement; monitoring device framework; 
data collection and processing; gait assessment/fall risk estimation 

 

1. Introduction 

The proportion of the population requiring healthcare services and assisted living is increasing due 
to population aging resulting from higher life expectancy [1]. This has catalyzed increase in research 
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studies focused on automated monitoring of mobility, Activities of Daily Living (ADL), and 
physiological (vital) signs of elderly adults living independently in their homes. The traditional 
monitoring method is physical observation, which is costly and increasingly infeasible in view of 
population aging. It places a huge burden on service providers. Consequently, sensor-based  
real-time monitoring has been a subject of recent research studies. The general aim is to devise 
effective and automated means of addressing the demands of assisted living, rehabilitation, and 
wellness evaluation through sensor-based monitoring. The acquired sensor data are often processed 
and analyzed for various applications including gait assessment, fall risk estimation, fall detection, 
ADL recognition/classification and energy expenditure estimation.  

The methods and mechanics of human ambulation are collectively referred to as gait which consists 
of a cycle of ‘controlled falls’ [2]. Gait assessment is a method and assistive clinical tool used to 
systematically measure and characterize human locomotion. It is applied in rehabilitation and 
diagnosis of medical conditions [3]. Gait dysfunction is listed as a fall risk factor such that fall risk 
estimation often involves measurements of gait parameters such as imbalance, postural sway, and 
functional reach, etc. Fall risk factors are mostly either of environmental or physiological sources. 
One-third of falls by elderly adults involve environmental hazards in the home, the most common 
being tripping or stumbling over objects [4]. Environmental fall risk factors are generally detectable by 
physical observation, while physiological factors are traditionally assessed with clinical instruments 
and scores. A current trend is assessment of physiological risk factors from sensor data. The activation 
of a fall risk factor(s) precipitates a fall. Human fall is defined in this context as unintentional and 
uncontrolled downwards motion. 

Activities of Daily Living (ADL) encompass a set of activities and tasks, which subjects undertake 
routinely in their everyday life. The initial set of ADL (IndexADL) was developed in [5] for a study of 
results of treatment and prognosis in elderly and chronically ill. Another set, the Physical  
Self-Maintenance Scale (PSMS), was proposed in [6] for functional assessment of elderly adults. The 
PSMS, which is only marginally different from IndexADL, was complemented by the Instrumental 
Activities of Daily Living (InstrumentalADL) proposed in [7]. These have evolved into standard sets 
of activities used by medical professionals and healthcare service providers to assess well-being and 
the need for assisted living and rehabilitation [8].  

ADL performance generally entails Energy Expenditure (EE). The daily EE of a subject consists of 
three different separately estimable components: Basal Metabolic Rate (BMR, the minimum amount of 
energy a body requires when lying in physiological and mental rest), Diet Induced Thermogenesis 
(DIT), and Physical Activity (PA). EE is used to estimate the effect of healthcare interventions and for 
the prevention and management of certain diseases (e.g., degenerative diseases) based on the notion 
that physical activity may prevent or delay the onset or progress of the disease. EE is also used  
to assess patients’ healthy daily lifestyle such as metabolic requirements, fuel utilization, thermic  
effect of foods, drinks, drugs, and emotional state [9]. Energy expenditure is also theorized to be 
physiologically related to mechanisms of diabetes. 

Research studies on sensor-based monitoring of subjects for these various applications have resulted 
in a large amount of literature including survey study reports [10–15]. The existing survey study reports 
are mostly based on a review of relatively small numbers of literature items. In addition, those survey 
studies are limited in scope and details, and with focus areas that are different from those presented in 
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this paper. This paper presents a holistic articulation of literature on sensor-based monitoring of mobility 
and activities of daily living and offers comprehensive insights along four main axes: applications, 
monitoring device framework and sensor types; distribution of existing studies with respect to 
applications and sensor types; data collection, processing and analysis; and research gaps, limitations and 
challenges. The aim is to present a systematic and the most complete study of literature in the area in 
order to facilitate the identification of research gaps and prioritize future research directions. 

The rest of the paper is organized as follows: Section 2 details monitoring device platform and 
sensor types; Section 3 presents the distribution of existing studies with respect to different 
applications and sensor types; Section 4 addresses sensor placement and data collection; Section 5 
addresses data processing for feature extraction and selection; Section 6 details the various application 
areas; Section 7 highlights research gaps and possible future research directions; Section 8 articulates 
the challenges and ethical issues; and Section 9 concludes the paper. 

2. Monitoring Device Platform and Sensor Types 

Figure 1 presents a monitoring device framework combining features from existing platforms and 
consisting of a microcontroller, sensors, memory card, energy harvester and communication interfaces. 
The microcontroller is the processing unit and integrates power and communication management 
functions. It also hosts the necessary software. The communication interface could be based on any of 
the four basic communication standards (Zigbee or Xbee, Bluetooth, USB, and WiFi). Memory and 
Energy Harvester are optional. Energy Harvester is used to extend the finite uptime of the monitoring 
devices, which commonly use batteries with limited operational time. It transforms user movements 
and body heat into energy to charge the batteries. 

Figure 1. Monitoring device platform. 

 

Often, the design aim of a monitoring device is to meet the requirements of small size, 
unobtrusiveness, light weight, wearability, multi-sensor platform, low power consumption, and wired/ 
wireless communication. The USB (wired) interface is generally used for connecting the device to a 
computer in order to program the microcontroller. The platform facilitates the synergy of different 
sensors in order to extend the spatial and temporal sensing coverage for sensor fusion [16]. The type of 
sensor(s) used depends on the selected monitoring technique, which can be visual and non-visual. 
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Visual monitoring often uses cameras installed in fixed positions in the monitored environment with or 
without markers placed on the subject. This poses a number of challenges. According to [17], twists 
and rotations of the human skeleton could introduce inconsistencies in motion estimation. Furthermore, 
cluttered scenes and/or variable lighting could distract visual attention. Rotated joints or overlapped 
body parts may not be detected, and markers can shift positions or come off completely [17]. The 
advantages of this technique include conciseness and objectivity. Its main disadvantages are high level 
of intrusiveness (privacy violations) and line-of-sight problem. The authors in [18] stated that “there is 
strong resistance from older people against the deployment of cameras in homes due to privacy 
concerns”. The authors in [19] proposed a privacy preserving visual monitoring approach using RGBD 
cameras with data analysis based on 3D depth information. The system is such that if the subject is out 
of the range of the 3D camera, the RGB camera is employed to continue monitoring. The release of 
software development kit (SDK) for Kinect cameras [20] by Microsoft has in recent years catalyzed 
research studies on ambulation and activity events recognition based on depth images [21–23]. The 
SDK facilitates skeletal tracking, “the ability to track the skeleton image of one or two people moving 
within the Kinect field of view” [20]. Visual monitoring will not be addressed further in this context as 
older people are deeply concerned about privacy issues with cameras. Also, there are space limitations 
and ethical issues (as highlighted in Section 7.3). 

Non-visual monitoring employs a wide range of sensor types including kinematic/inertial  
(e.g., accelerometer, gyroscope, inclinometer, pedometer), mechanical force (e.g., ball/tilt/foot switch, 
sole pressure switch, force sensitive resistor), acoustic/audio (e.g., a microphone), optical (e.g., infrared 
sensors), radio frequency (e.g., RFID, Ubisense Real-Time Location Systems (RTLS)), atmospheric 
(e.g., barometer, humidity), electrical (e.g., Electromyogram (EMG), Electrocardiogram (ECG), 
Electrooculography (EOG)), magnetic (e.g., magnetometer), photoelectric (e.g., oximeter), and 
chemical/electrochemical (e.g., actinometer) sensors. These sensors have been used individually or in 
combination for various applications. Accelerometers provide x (vertical axis), y (sagittal axis), and  
z (frontal axis) linear motion sensing. Gyroscopes sense the rate of change of orientation (angular 
velocity). Inclinometers and tilt sensors give a measure of tilt angle, elevation, or depression with 
respect to gravity. Acoustic sensors measure vibration and sound signals, and may be ineffective in 
noisy environments. The Radio Frequency sensors, RFID and Ubisense RTLS, are tag-based. RFID 
tags are often located on target items within the monitoring environment, while the reader is usually 
worn on a hand (in a glove) by the subject [24,25]. The reader detects a tag’s unique identifier when in 
contact or within close proximity. Ubisense tags can also be worn by the subject, while the Receivers 
(located within the monitoring environment) receive UltraWideBand (UWB) pulses from the tags in 
order to determine the location of the subject using 3D trilateration. The electrical sensors, EMG and 
ECG, measure the intensity of muscle activity in the lower extremities and the electrical activity of the 
heart over a period of time, respectively. EOG sensors (electrodes usually placed on the skin on either 
side of the eyes) measure eye position and movements. Analyses of EOG signals yield eye movement 
features, such as saccades, fixations, and blinks, as well as deliberate movement patterns [26]. Passive 
Infrared (PIR) sensors measure changes in infrared energy levels radiated by a human body often with 
a wavelength of between 9 and 10 µm [27]. A Pressure Mat (PM) acts as a switch generating a binary 
signal when pressure is applied. Its sensitivity ranges from 0.14 to 2.2 kg/cm2 of pressure with an 
active area of up to 0.21 m2 [27]. The use of both PIR and PM is based on mobility, where PIR can 
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monitor the occupancy of a particular location (such as a room), while PM indicates the use of 
furniture and movement across doorway thresholds. The distribution of existing studies with respect to 
the different applications and sensor types is presented in the next section.  

Sensors characteristics could contribute to study limitations and challenges if not mitigated. For 
instance, accelerometers are subject to fluctuation of offsets and measurement noise, while gyroscopes 
suffer from zero bias drift. Magnetic objects interfere with magnetometer signals, while vector 
magnetometers are subject to temperature drift and the dimensional instability of the ferrite cores. 
Barometric sensor measurements depend on temperature, weather, and height. As a result, each station 
pressure measurement needs correction to its equivalent barometric pressure at sea level. Acoustic 
signals are degraded by noise in the monitoring environment. Sensor efficiency is proportional to its 
active surface area, which makes larger devices more desirable [17]. Acoustic sensors also have range 
limits and are considered highly intrusive. PIR sensors work best when motion is within the 
circumference of the sensors’ field of view, and most poorly when the movement is towards the 
sensor. This makes mounting of PIR sensors on the ceiling a requirement for effective monitoring, 
because motion is rarely towards the ceiling [15]. Also, heated air degrades PIR-acquired signals and 
can result in false detections [28]. Pets could trigger false alarms (this is also true for Pressure Mats). 
Pressure Mats also have limited operational surface area. Switches require a subject to open and close 
doors/windows and will give a false negative if a subject fails to close a door and the required 
displacement does not take place [28]. 

3. Distribution of Existing Studies 

For the purposes of the work presented in this paper, the sets of ADL from [5–7] have been merged 
and grouped into categories as shown in Table 1.  

Table 1. Categories of ADL. 

Category ADL 
Food Preparation cookMeal, micorwaveMeal, roastMeal, makeHotDrink, makeColdDrink
Feeding eating, drinking 
Selfcare bathing, dressing, grooming, toileting, medicating 
HouseKeeping tidying, vacuuming, laundry, cleaning, washingUp 
Ambulation walkingLevel, walkingUpStaircase, walkingDownStaircase 
Transfer sit-to-stand, stand-to-sit, lie-to-sit, lie-to-stand, stand-to-lie, sit-to-lie 
Posture lying, sitting, standing, tripod 
Communication makingPhoneCall, receivingPhoneCall 
Leisure reading, watchingTV 

The categories encompass most of the ADL listed by the authors (except shopping, transportation, 
and handling finances) either as a category or as an element of a category. The set of ADL included in 
each category are limited to the activities that older adults living independently in their homes and in 
need of assisted living and rehabilitation could possibly undertake. Categorization of ADL facilitates 
the articulation of the distribution of existing studies as in Figures 2 and 3, which show graphically the 
distribution of the reported research studies based on the type of sensor used (wearable or fixed) and 



Sensors 2013, 13 12857 
 
the application. The figures indicate that research attention has focused on the different application 
areas with varying intensities. 

Figure 2. Distribution of research studies based on wearable sensors.  

 

Figure 3. Distribution of research studies based on fixed sensors. 
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A wide range of sensor types (24 different types: twenty used as wearable and nine as fixed sensors) 
has been used in different research studies. The acquired sensor data have been used for studies in 
different application areas including gait assessment, fall risk estimation, fall detection, location 
determination, ADL recognition/classification, physiological (vital) signs assessment for health and 
wellness evaluation and energy expenditure estimation. Table 2 details the distribution of studies 
indicating that 88.73% of research across the 13 different application areas (as highlighted in the table) 
was based on the use of wearable sensors and 11.27% on the use of fixed sensor. 

Table 2. Distribution of existing research. 

S/No Application Area 
Number of 
STUDIES 

Number of Studies 
Based on WSMD 

Number of Studies 
Based on FSMD 

1 Gait Assessment/Fall Risk Estimation 21 19 2 
2 Fall Detection 74 60 14 
3 Location Determination 13 8 5 
4 ADL (Food Preparation/Feeding) 

classification 
11 7 4 

5 ADL (Selfcare) classification 17 12 5 
6 ADL (Housekeeping) classification 19 12 7 
7 ADL (Ambulation) classification 76 70 6 
8 ADL (Transfer) classification 17 15 2 
9 ADL (Posture) classification 60 55 5 

10 ADL (Communication/Leisure) 
classification 

10 5 5 

11 Physiological (Vital) Signs 
Assessment 

20 20 0 

12 Energy Expenditure Estimation 121 121 0 
13 Diabetic Foot Ulceration Prediction 29 29 0 
 TOTAL 488 433 55 

Accelerometers and ECG/Heart Rate Monitors (ECG/HRMs) are the most commonly used 
wearable sensors. Accelerometers were found applicable in both wearable and fixed capacity and their 
use spans across 76.92% (10) of the 13 highlighted application areas. The use of ECG/HRM has 
mostly concentrated in the area of Energy Expenditure Estimation (EEE). EEE is the most studied area 
followed by ADL (Ambulation), fall detection, and ADL (Posture) with the other areas receiving much 
less research attention. Some application areas have been totally neglected by research studies, 
including behaviour trends (patterns) profiling and analysis, affective state detection, and fall context 
determination. These research gaps are presented in Section 8. 

4. Sensor Placement and Data Collection 

4.1. Sensor Placement  

Placement locations of monitoring sensors vary based on the type and application. Fixed sensors are 
generally located within the monitored environment and are most suited for indoor use. For example, 
the use of PM will entail the placement of a sensor on the floor by the target object (e.g., a toilet seat, a 
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chair, or a doorway). Wearable sensors are placed on in positions on the body that would facilitate the 
acquisition of data yielding the highest events classification accuracies. Literature highlighted various 
body placement positions including chest (sternum), forehead, ear lobe, hip (iliac crest), waist (iliac 
spine), neck, ankle, thigh, wrist, toe, under heel, elbow, knee, shoulder, armpit, sacrum and trunk. 
Sensors have been placed under the heel and on the toe because those positions play crucial roles in the 
gait cycle [29]. The authors in [30] placed the monitoring device under the foot to acquire data for 
classification of the stepping patterns of elderly people and recovering patients. Monitoring devices 
have also been sewn into garments [31,32]. Different body placement positions result in different 
signal patterns and classification accuracies [33]. For example, according to [34], incorporating sensors 
in garments did not prove effective as it resulted in 100% false positives for 155 trial scenarios.  
Table 3 highlights different placement positions and corresponding classification accuracies from the 
use of accelerometer data to classify fall, ADL ambulation, posture, and transfer events. The choice of 
these events and accelerometer for highlighting the impact of placement position on classification 
accuracy was informed by Figure 2 which indicates that accelerometer is the most common sensors 
used for studies that addressed these events. The classification values in Table 3 may not necessarily 
give a completely true picture because the different studies employed different filters for signal  
pre-processing, extracted different sets of features, and used different data segmentation window 
lengths and classification approaches. However, the values are based on studies that used 
accelerometer for monitoring and data acquisition either singly or in fusion with other sensor types. 

Table 3. Placement positions vs. accuracy. 

Sensor Placement Position 
Classification Accuracy (%) 

Fall Detection ADL Ambulation ADL Posture ADL Transfer
Waist/Hip 100.00 98.00 94.60 94.10 

Wrist/Watch 75.00 90.00 92.86 97.10 
Chest 99.10 95.90 95.50 - 

Trunk/Torso 100.00 100.00 100.00 100.00 
Head 100.00 100.00 100.00 100.00 
Ankle 93.30 89.71 94.60 16.70 
Thigh 95.00 95.10 94.60 84.30 
Arm 97.20 89.71 95.67 - 

Shoulder - 90.00 94.60 - 
Knee - 85.00 90.00 - 

Armpit 94.00 - 97.96 - 
In pocket - 95.00 99.70 - 

Cell phone 98.00 92.90 94.80 70.00 

On the one hand, the waist has been acknowledged as a more effective and acceptable placement 
position for fall detection. According to [35], “the placement site at the waist has been suggested to be 
the most efficient since at this site the acceleration signal is similar and evenly distributed between 
different fall types”. “The origin of the human body model is the waist” [36]. “The placement at the 
waist is more acceptable from the user point of the view since this option fits well in a belt and it is 
closer to the centre of gravity of the body” [37]. On the other hand, the authors in [35] found the head 
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to be a better placement position for fall detection applications because the features extracted from 
head worn sensor data could be used to accurately distinguish between falls and ADL. The data 
acquired with head worn sensors resulted in highest fall event detection accuracy compared to those 
acquired with hip and wrist worn sensors [33]. The wrist is not considered an optimal placement 
position because the measured signals vary widely making it difficult to distinguish between falls and  
ADL [35]. The wrist is subject to many high acceleration movements that would increase the number 
of false positives [37]. However, arm worn devices yielded appropriate information for the detection of 
a set of ADL including cooking, eating, and cleaning [37].  

Investigation of optimal sensor placement position in [38] resulted in the following groupings: very 
low-level activities (e.g., laying down)—wrist and ear; low-level activities (e.g., eating, drinking, 
reading, and getting dressed)—waist; medium level activities (e.g., walking, vacuuming, and 
cleaning)—chest and wrist; high level activities (e.g., running and cycling)—ear; and transitional 
(transfer) activities (e.g., sit-to-stand, laying down-to-stand)—ear. The ideal scenario would be to wear 
as many sensors as possible on different body positions to track subtle changes in gait and activity in 
order to improve classification results. This, however, is not practical and minimizing the number of 
devices worn is of significant practical importance because body worn monitoring device placement 
raises the issue of wearability and usability.  

According to [37], usability strongly affects the effectiveness of the monitoring system. A device 
worn on the head may afford an excellent impact detection capability but raises high usability 
concerns. For example according to [39], in a study with waist-mounted monitoring device, users 
transferred the device from one body location to another due to bruising and discomfort. This implies 
the need to design wearable monitoring systems that are comfortable to wear and are independent of 
location and orientation. Also, subjects may take the device off (e.g., to shower) and may not 
remember or be inclined to wear it, especially at night time (e.g., going to and from the toilet) and, 
therefore, may not be wearing it when a fall occurs [40].  

Also, the wearable monitoring device could be damaged by the impact of a fall, rendering it 
dysfunctional [39]. In addition, the location of the sensor on the human body relative to the point of 
impact may modify the “signature” of the signal recorded at the time of the impact [41]. This implies 
the need for impact proof sensor-based monitoring devices. Furthermore, the device could slip from its 
placement position and change its calibrated orientation, with respect to the body axis [42]. 
Calibration, in this context, refers to the alignment of the sensor axis with respect to a reference axis. 
The axis parallel to the human upper body often constitutes the vertical reference axis. For example, 
the authors in [42] mounted their monitoring device on the subject’s pelvis but did not state the reason 
for the choice of the alignment angle to the vertical axis, while the researchers in [14] aligned the  
y-axis of their accelerometer with the reference vertical axis. Orientation of the axes of an 
accelerometer sensor impacts on the measurements [35]. Calibration is one of the three sources of error 
in signal acquisition and analysis. The usefulness of acquired data depends on the calibration of the 
sensor [43]. 
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4.2. Data Collection 

Data sampling process entails that an analog signal, x(t), is periodically measured every T seconds, 
such that time is discretized in units of the sampling interval T: t = nT, n = 0, 1, 2, . . . N, which results 
in a stream of samples [44]. Essentially, the sampling process represents a chopping operation on the 
original signal, x(t). Researchers acquired data at a wide range of frequencies for similar measurement 
scenarios using the same sensor types. For example, for the measurement of human ambulation and 
ADL scenarios using accelerometers, samples were acquired and recorded at frequencies of 7 Hz [45], 
10 Hz [46], and 50 Hz [37], which were deemed to be a good trade-off between saving energy and 
acquiring enough signal data. Accelerometer signal samples obtained at 10 Hz should be fast enough 
to capture the necessary amount of data, yet slow enough not to capture unnecessary noise and 
anomalies [47]. In [48], the authors sampled their accelerometer signals at 50 Hz, while researchers  
in [33] obtained their accelerometer samples data at the frequency of 200 Hz. Sampling rate set to  
120 Hz exceeds the characteristic response of human movement [49]. Other sampling frequencies for 
accelerometer data include 40 Hz [50], 16 kHz [51], 512, 76.25, 64, and 5 Hz [8,52–54].  

The two basic questions are: how best to choose the sampling frequency, fs, for a measurement 
scenario; and what is the impact of sampling frequency on classification accuracy? The first question is 
addressed by sampling theorem [55], which states that for accurate representation of a signal, x(t), by 
its time samples, x(nT), two conditions must be satisfied: x(t) must be band-limited and fs must be at 
least twice the maximum frequency, fmax, in x(t). That is, fs = 2fmax (referred to as the Nyquist rate), is 
the ideal sampling rate. Essentially, the value of fmax and hence T = 1/fs depends on the application. “T 
must be small enough so that signal variations that occur between samples are not lost. If T is too small 
there would be too many samples to be processed, if T is too large too few samples would be obtained 
which might lead to the loss of information” [44]. That is, a rapidly varying signal needs sampling at a 
higher rate and a slowly varying signal needs sampling at a lower rate. According to [34,42], all 
measured body movements are contained within frequency components below 20 Hz, and in gait 99% 
of the energy is contained below 15 Hz. Also according to [53], the sampling frequencies can be as 
low as 10 Hz for posture. As shown in [56], human activity frequencies are between 0 and 20 Hz, and 
that 98% of the FFT amplitude is contained below 10 Hz. The typical bandwidth of kinematics of 
normal gait is between 4 and 6 Hz and spectral power analysis from barefoot walking across a force 
plate shows that 98% of the spectral power is below 10 Hz and over 90% below 5 Hz [57]. In addition, 
the authors in [58] asserted that it has been demonstrated that 99% of the acceleration power in gait is 
concentrated below 15 Hz, and that the frequency range of daily activities (performed on a force 
platform) was shown to be between 0.3 and 3.5 Hz.  

To address the second question, we empirically investigated the effects of sampling frequency (fs) on 
classification accuracy using a set of six frequencies (10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz) and a 
set of 10 machine learning classification algorithms [naïve Bayes, Bagging, Support Vector Machine 
(SVM), Decision Tree, Kstar, ZeroR, Multi Class Classifier (MCC), J48 (C4.5), AdaBoost, and Random 
Forest]. It was found that for the eight out of the ten classifiers that yielded meaningful classification 
accuracies (≥93%) their classification accuracies peaked at the 20 Hz sampling frequency and remained 
relatively stable without significant increase/decrease with increases in sampling frequency as shown in 
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Figure 4. The lowest classification accuracies from AdaBoost and ZeroR were 65.97 (at the 10 Hz 
sampling frequency) and 38.93 (at the 30 Hz sampling frequency), respectively. 

Figure 4. Sampling frequency vs. classification accuracy. 

 

The results indicate that ADL classification improves with higher sampling rates between 10 Hz 
and 20 Hz, but only marginally improves or even decays with increases in sampling rates above 20 Hz. 
Statistically insignificant very weak negative relationship was found between sampling frequency and 
classification accuracy. Data sampled at 20 Hz is adequate for classifying ADL [59]. The typical fs 
values for sampling audio, speech, and biomedical signals are often set at 40 kHz, 8 kHz, and  
2 kHz respectively [44]. 

5. Data Processing for Feature Extraction and Selection 

The sensor data processing and analysis stages include pre-processing (e.g., filtering), 
segmentation, feature extraction, and feature selection as highlighted in Figure 5. Acquired sensor 
measurements are often pre-processed to remove noise and artifacts, because signals are easily 
corrupted by instrumentation noise, random noise, electric and magnetic noise, etc. Pre-processing 
generally entails the use of various filters, which are sometimes arranged into a network. According  
to [60], noise reduction techniques need to be adapted to the signals and depend on the features to be 
extracted from the signal. For example, “development of de-noising algorithm for 3D acceleration 
signals is essential to facilitate accurate assessment of human movement” [61]. According  
to [61], the typical filters for acceleration signals are median, Butterworth low-pass, discrete wavelet 
package shrinkage and Kalman filters. 
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Figure 5. Sensor data processing and analysis (based on [62]). 

 

The effects of these filters in terms of signal-to-noise ratio (SNR) and correlation coefficient (R) on 
3D accelerometer human mobility and ADL monitoring data were investigated in [61], and the 
following findings were reported:  

1. Kalman filters showed the largest SNR and R values, followed by median filters, discrete 
wavelet package shrinkage, and then Butterworth low-pass filters.  

2. Performance of Butterworth low-pass filters marginally improved over that of Kalman filters 
after correcting waveform delay for Butterworth low-pass filters. 

3. Performance of median filters is related to their window length.  
4. Decomposition level influenced real-time performance of discrete wavelet package shrinkage.  
5. Filter order and cut-off frequency, if not properly selected, could result in large waveform 

delay for Butterworth low-pass filters.  

A median filter changes the absolute peak value of a signal window and needs to be used  
cautiously [35]. “In some applications such as falls detection and prevention for elderly people,  
real-time performance and waveform delay are two important factors that must be considered when 
developing acceleration filtering algorithms. As a Kalman filter only uses previous data to estimate 
current state, it has good real-time performance and short delay. A median filter has little waveform 
delay, but its real-time performance closely relates to its window length N as it needs to wait for about 
N/2 future data points in order to perform filtering. Wavelet package shrinkage also has little 
waveform delay, but it needs to wait for at least 2J future data points to filter noise, J refers to 
decomposition level” [61].  

Other pre-processing techniques include Wiener filters (WF), wavelet de-composition (WD), and 
principal component analysis (PCA) [60]. The use of one or the other depends on the nature of the 
signal, the statistics of the information, and the noise signal. Sensor data could also be pre-processed to 
separate the different components of the signal. For example, accelerometer data consist of two 
components: the linear acceleration component due to body motion (also referred to as the  
high-frequency, AC, or Body Acceleration (BA) component) and the gravitational acceleration 
component due to gravity [also referred to as the low-frequency, zero-frequency, DC, or Gravitational 
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Acceleration (GA) component] [63]. Where the data is processed depends on the available resources, 
application and feature extraction requirements. 

5.1. Processing Location 

A one-way communication often takes place from monitoring device to base station and what is 
communicated depends on where the acquired data are processed: on-board the monitoring device or 
on a base station. Some or most of the stages of data processing can be done on-board the device 
before data and/or processed information are transmitted to the base station. For example, in [46] only 
pre-processing of data is done on-board before transmission to the base station, while in [10,27,42,64] 
pre-processing, feature extraction, and fall events detection algorithms are all run on-board the 
monitoring device. On-board sensor data processing poses challenges due to hardware constraints, 
which limit the amount of data that can be buffered, the robustness of classification algorithms, and the 
range of events that can be classified [42]. For instance, ADL classification involves a set of relatively 
complex algorithms. According to [42], classification of some ADL such as walking requires a Fast 
Fourier Transformation (FFT) of at least 3 seconds of data in order to obtain a magnitude spectrum of 
the signal. The hardware used in [42] and [34] suffered storage limitations and could not buffer up to  
3 s of acquired data on-board. The computational costs, storage requirements, and precision (data 
representation format) of various feature metrics for accelerometer data in different domains (time, 
frequency, and discrete) have been quantitatively assessed in [65] in order to determine those that are 
suitable for on-board implementation. According to [65], the computational cost of a feature extraction 
algorithm is: 

1. very low if it requires only a number of operations that have a linear relation to the number of 
input samples, and the operations are mostly arithmetic additions and subtractions.  

2. low if it requires a number of operations that are linearly related to the number of input samples, 
which include multiplications and divisions, and a fixed number of the operations can be 
advanced arithmetic operations such as square-root or logarithm. 

3. medium if the metrics include those that are quadratic in terms of the number of input samples, 
such as simple addition/subtraction or multiplication/division operations and a fixed number of 
advanced arithmetic operations which can be square-root or logarithm.  

4. high if the metrics require a number of operations larger than an asymptotic quadratic bound, 
but where the individual operations are simple arithmetic additions/subtractions or multiplications/ 
division. This category requires a linear number of advanced operations such as sin or log. 

Other issues associated with on-board data processing are energy consumption of the monitoring 
device and communication bandwidth. A typical sensor-based monitoring device consists basically of 
a microcontroller, sensor(s), and communication interface(s) (see Figure 1—Memory, Clock and 
Energy Harvester are optional). According to [42], accelerometers are a major source of power 
consumption as they are always operational with continuous current supply (even in the idle state as 
shown in Table 4). The authors in [42] suggested the use of optical-based accelerometers with current 
rating of 0.4 mA, instead of MEM (micro electromechanical systems) accelerometers with current 
rating of 4 mA. The available bandwidth limits the data transmission rate. 
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Table 4. Accelerometer current consumption. 

State of the Accelerometer-Based Monitoring Device Current Consumption (mA)
Idle state 7.91 

Sampling + ADC + update of variables 8.31 
Transmitting data 29.8 

Table 4 indicates that it is the communication aspect that consumes the highest amount of  
energy [15]. A Wearable Sensor-based Monitoring Device (WSMD) based on 10 degrees of freedom 
provided by accelerometer, gyroscope, magnetometer, and barometer was constructed in the course of 
the study presented in this paper. The WSMD was tested for communication related energy 
consumption. A current draw of approximately 75 mA was measured with the Bluetooth wireless 
module attached, when the WSMD was on and had no connection to any other device via any of its 
communication interfaces (USB and Bluetooth). A current draw of 55 mA (still high compared to 
value in Table 4) was measured when the device was connected to a smart phone via the Bluetooth 
interface. The drop in current consumption in communication mode is possibly due to the reduced 
power consumption of the Bluetooth module when connected and not searching for a device to connect 
to. Though Bluetooth has the same footprint as ZigBee (also referred to as XBee), ZigBee is better for 
extending the battery life, but Bluetooth is often used because of its versatility as it facilitates 
connection to other devices (base stations, smartphones, tablets).  

Acquired data are streamed to the base station via a communication channel for storage and 
processing. A downside is that data can be lost or corrupted during transmission, and the base station is 
required to be within the communication range. An advantage of processing data on the base station is 
the abundance of storage and computing resources on the base station [37]. This makes it practically 
possible to run computationally intensive algorithms such as segmentation, feature extraction and 
selection, and classification algorithms. Also, the issue of power consumption does not arise and filters 
of much higher order could be implemented. 

Summarily, trade-offs between on-board and base station processing will include power 
consumption and battery lifespan, storage requirements, and complexity of algorithms. Battery lifespan 
is a major challenge of long-term monitoring. Subjects could forget to place the device on charge. 
Therefore, there is a need to implement power saving and renewal techniques on the monitoring 
hardware (e.g., energy harvesting). 

5.2. Data Segmentation 

Sensor data requires careful segmentation in order to facilitate effective feature extraction. 
Inappropriate segmentation will result in the extraction of features without discrimination power, 
which would cause the classification algorithm to yield meaningless results [66]. The segmentation 
problem is stated as follows: given a time series, T (a finite set of samples characterized by time 
points), partition T into segments (windows) of t consecutive samples between two time points a and b 
that are internally homogeneous with respect to the application. There are different segmentation 
techniques including Fixed-size Non-overlapping Sliding Window (FNSW), Fixed-size Overlapping 
Sliding Window (FOSW), Top-Down (ToD), Bottom-UP (BUp), Sliding Window and Bottom-up 
(SWAB), and Variable-size Sliding Window (VSW) [67–70]. The use of window-based segmentation 
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technique for event classification was criticized because the technique does not facilitate recognition of 
every single movement/action a subject makes/takes [53]. The set of measurement instances describing 
an event cannot be classified together, but only a group of instances (a window) can be classified 
together. The authors in [53] asserted that short duration activities, such as StandingUp, cannot be 
recognized, because window-based segmentation approach requires bigger sample windows for the 
classification of longer duration activities. Many classification errors in activity recognition are due to 
poor window size selection [70]. The window could be too short and not cover the span of an activity, 
or the window could actually overlap two different unrelated activities. The authors also pointed out 
that a constant sliding window could generate identical features for different activities, which will not 
improve the classification task. A Variable-size Sliding Window (VSW) segmentation technique 
aimed at improving classification outcome was proposed in [70]. The VSW is based on the premise 
that best results could be achieved with a different window size for each activity to be classified, such 
that the size of each window is large enough to contain the target activity only. 

The authors in [68] compared the performance of different segmentation algorithms from a data 
mining perspective and found that: the FNSW and FOSW segmentation approaches generally produce 
very poor results; the ToD approach produces reasonable results, but does not scale well; the BUp 
approach produces excellent results, and scales linearly with the size of the dataset; the SWAB 
approach scales linearly with the size of the dataset, requires only constant space, and produces high 
quality approximations of the data. Feature extraction based on FOSW segmentation technique is 
effective and results in successful outcome [71].  

We investigated the effectiveness of window-based segmentation techniques to determine the 
optimal segmentation approach with respect to the window length and the percentage of adjacent 
windows overlap for feature extraction resulting in the highest event classification accuracy [72]. 

It was found that sliding window segmentation techniques are generally effective for human activity 
classification from sensor data as shown in Figures 6–8. Figure 6 shows the classification accuracies 
for different window sizes for the algorithms with outcomes greater than 82%, while Figure 7 shows 
outcomes of the same experiments for algorithms with lower performance outcomes.  

Figure 6. Classification accuracies of NaiveBayes, SVM, MCC, Bagging, Decision Tree, 
J48, and RandomForest for different window sizes using the FNSW segmentation technique. 
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Figure 7. Classification accuracies of Kstar, AdaBoost, ZeroR, and SLP for different 
window sizes using the FNSW segmentation technique. 

 

Figure 8. SVM classification accuracies for different window sizes and different window 
overlaps using SVM classifiers. 
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Figure 8 highlights SVM classification accuracies for different window sizes and different 
percentage window overlaps, because SVM is the most commonly used classification algorithm 
(usually because it is the best performing algorithm). The results show that the length (in seconds) of 
the window impacts significantly on the classification accuracy, and that the strength of the impact (in 
terms of increases in accuracy) depends on how much (percentage-wise) the windows overlap during 
segmentation. Table 5 gives the highest accuracies for window overlap size and peak window size 
combinations when using SVM classifiers. 

Table 5. The highest accuracies for window overlap and window size combinations using 
SVM classifiers. 

Sliding Window 
Segmentation Approach 

Window Overlap 
Value (%) 

Window Size 
Highest Classification 

Accuracy (%) 
No Overlap 0 4.5 96.12 

Overlap 25 6 96.97 
Overlap 50 6 97.30 
Overlap 75 8 98.13 
Overlap 90 12 98.38 

5.3. Feature Extraction 

The different applications require the extraction of different sets of discriminatory features from the 
same or different sensor datasets using different metrics. The metric used depends on the required 
features and representation domain of the dataset (time, frequency, or discrete). Figure 9 highlights 
different types of features that can be extracted from accelerometer data for different domains of 
representation.  

Figure 9. Features from accelerometer data (based on [65]). 
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standard deviation (STD), minimum (min), maximum (max), range, Root Mean Square (RMS), 
correlation, and cross-correlation [65]. STD represents the probability distribution of data and is less 
useful for noisy data, because spurious values can distort results [65]. Other time domain metrics 
include sample differences, angle (tilt angle), zero-crossings, Signal Magnitude Average (SMA), and 
Signal Magnitude Vector (SMV). Accelerometer data in the frequency domain have two components: 
DC and AC. The DC component constitutes the first coefficient in the spectral representation of the 
signal and its value is often much larger than the remaining spectral coefficients, while the AC 
component is the dominant frequency component [65]. These components are the basis for the 
extraction of most of the time and frequency domain features. Accelerometer signal can also be 
transformed into strings of discrete symbols (discrete domain representation). String represented data 
can be analyzed for string similarity and pattern discovery using exact or approximate matching and 
edit distance techniques [65]. 

In addition, various other metrics have been used for feature extraction from accelerometer data 
including Shock Response Spectrum (SRS) transform metric from fall vibration signals. The SRS 
transform [73] likens a fall event to the mass-spring system with respect to the systematic impact of the 
human body on the floor during a fall event [51]. The SRS is the peak acceleration response of a large 
number of single degrees of freedom (SDOF) systems each one with a different natural frequency, and 
it is calculated by convolution integral of the measured signal (input) with each one of the SDOF 
systems [74]. Full details of the SRS metric and the extraction processes of its temporal features are 
given in [74]. According to [51], the SRS transform has a total of 133 features and in the very low 
frequencies their values are close to zero. For example, 93 features of the of the SRS parameter from 
the frequency bandwidth of 10.1–2,048 Hz of a fall vibration event were extracted and used in [51].  

Data acquired with sensors other than accelerometer yield different types of features. For example, 
temporal features (e.g., sound event length and energy) and spectral features (e.g., Mel Frequency 
Cepstral Coefficients (MFCC)) are extractable from acoustic sensor data. According to [73], MFCC 
represent audio signals with frequency bands that are positioned logarithmically and approximate the 
human auditory system’s response more closely than the linearly spaced frequency bands obtained 
directly from the FFT of the signal. Table 6 highlights features that have been extracted from different 
sensor data for events classifications and their uses.  

Table 6. Classified event, parameters/features and data source. 

Classified Event Sensor Data Parameters/Features Classification Approach Accuracy 

Fall Detection Accelerometer, 

Barometer [34] 

Accelerometer, 

Barometer [46] 

Accelerometer [42] 

Microphone [75] 

Accelerometer (as a 

vibration or impact 

sensor) [27] 

SMV, SMA, Tilt angle, Differential pressure 

Magnitude of a moving-window standard deviation, 

Standard deviation of the vector magnitude, ratio of 

the polar angle calculated in consecutive windows of 

20 samples, difference in the values of the polar angle 

in consecutive windows,  

SMA, SMV, Orientation 

Mel Freq. Cepstral Coefficients (MFCC), Sound event 

length, Sound event energy, Steered response power 

(SRP) (A12) 

Vibration event length, Vibration event energy, Shock 

response spectrum, 

Threshold-based algorithm 

Not stated 

Threshold-based algorithm 

kNN 

Not stated 

1. 96.9% 

2. 94.12%  

3. 95.6% 

4. 95% 

5. 100% 

Sensitivity, 

And 100% 

Specificity 
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Table 6. Cont. 

Classified Event Sensor Data Parameters/Features Classification Approach Accuracy 

Gait Assessment 

and 

Fall Risk Estimation 

GaitShoe [76]: 

accelerometer, bend 

sensor, gyroscope, Force 

Sensitive Resistor (FSR), 

Polyvinylidine Flouride 

stripe, and electric field 

sensor. 

Stride length, Stride velocity (integration of 

acceleration); orientation; force distribution under foot, 

heel-strike timing, and toe-off; heel-strike timing, toe-

off timing; Plantar flexion/dorsi-flexion, Flexion at 

metatarsals; Height of foot above ground 

Not stated Not stated 

ADL Food 

Preparation & 

Feeding 

RFID [24] Object touch Not stated 81.2% 

ADL Selfcare RFID [24] 

Accelerometers, RFID 

[77] 

Object touch 

Acceleration, Object touch 

Not stated 

Proprietary algorithm 

1. 81.2% 

2. 92.95% 

ADL House Keeping RFID [24] 

Accelerometers, RFID 

[77] 

Object touch 

Acceleration, Object touch 

Not stated 

Proprietary algorithm 

1. 81.2% 

2. 100% 

ADL (Ambulation, 

Transfer, Posture) 

Accelerometer [38] Averaged variance over three axes, RMS of signal 

derivative, mean of signal derivative, average entropy 

over three axes, average cross correlation between each 

two axes, average range over three axes, average main 

frequency of the FFT over three axes, total signal energy 

averaged over three axes, energy of 0.2 window around 

the main frequency over total FFT energy (three axes 

average), Averaged skewness over three axes, Averaged 

Kurtosis over three axes, Averaged range of cross 

covariance between each two axes, Averaged mean of 

cross covariance between each two axes. 

k-Nearest Neighbour (kNN,  

k = 1 − 5, 7); BN with 

Gaussian priors 

Not stated 

ADL 
Communication and 
Leisure 

1. EOG [26] 
2. Accelerometers, 

RFID [77] 

1. Sacade (mean, variance, max amplitude, etc.), 
Saccade duration, fixation (mean, variance, 
amplitude, etc.), Fixation (time between each two 
saccades) duration, Average blink rate blink (mean, 
variance, max amplitude, etc.). 

2. Acceleration, Object touch 

1. SVM 
2. Proprietary algorithm 

1. precision of 
76.1% and 
recall of 70.5%
2. 93.02% 

Energy Expenditure Accelerometer [78] Coefficient of Variation (CV) for six 10s epochs within 
a 1min period, Vo2, average CV and the average counts 
per minute were calculated for minutes 4–9 of each 
activity 

Two-regression model 95% 

Location 
Determination 

 Orientation, tilt angle,   

Subject Active or 
Inactive) 

1. Accelerometer 
2. Accelerometer [42] 

1. Mean, SMA, Variance, STD. 
2. SMA 

1. Not stated 
2. Threshold-based algorithm 

1. 100% 
2. 100% 

Movement or 
Activity Intensity 

Accelerometer 
[42,65] 

Sample differences, Integral of RMS, Mean of Minmax, 
SMV, Cross correlation 

  

Checking and 
Comparing Signals 

Accelerometer [65] Correlation coefficients, Sample differences, Signal 
Correlation, Cross correlation, Dynamic time warping 
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For example, the Mean metric has been used to recognize the ADLs “sitting” and “standing” [38,79–81], 
to discriminate between periods of activity and rest [42,82], and as an input to classifiers for  
multi-activity classification [53,83,84]. RMS has been used to distinguish walking patterns [38,42,52] 
and as an input to classifiers for multi-activity classification [53,85,86]. SMA has been used to 
distinguish between periods of activity and rest in order to identify when a subject is mobilizing and 
undertaking activities, and when they are immobile [34,42,59,87]. Energy and Entropy have been used 
to discriminate between types of ADL [53,88]. SMV was used to indicate the degree of movement 
intensity and as an essential metric in fall detection [34,42]. STD has been used for activity 
classification in [53,81,89]. 

The authors in [11] compared 14 different metrics for the extraction of features for ambulation 
events classification based on wavelet transform, time and frequency domain signal characteristics, 
using accelerometer datasets of ambulation ADL collected from 20 subjects. The accelerometers were 
worn on three different body positions. They assessed the discrimination power of the features 
extracted using classification accuracies for each feature set using K-Nearest-Neighbor (KNN) 
classifier. Their findings showed that although the wavelet transform approach can be used to 
characterize non-stationary signals, it does not perform as accurately as frequency-based features when 
classifying dynamic activities. Overall, the best feature sets achieved over 95% inter-subject 
classification accuracy. The authors suggested that future studies should consider using an FFT feature 
set derived from an ankle-mounted accelerometer for ambulation ADL classification. 

5.4. Feature Selection 

The type and number of features required to successfully perform a given classification task 
depends on the discriminatory qualities of the features. Thus, feature selection is a search problem 
which finds an optimal subset of n features out of the extracted set of N features that best discriminate 
between classes. The aim is to reduce the dimension of the feature vector in order to improve 
performance and at the same time increase classification accuracy. According to [66], the choice of’ 
features is more important than the selection of a specific classifier because the use of features without 
discriminant power will degrade classifier performance. There are many different feature selection 
algorithms which differ according to the criterion function used in searching for good features. An 
overview of existing feature selection methods in the period from the 1970s to 1997 is presented  
in [90], identifying the strengths and weaknesses of different methods, while the authors in [91] 
presented a taxonomy of feature selection techniques and their uses. Commonly used feature selection 
methods were evaluated in [92], and recommendations were made for which feature selection methods 
should be used under different research study conditions. A chronological review of literature on 
feature selection is conducted in [93]. The authors categorized some feature selection algorithms based 
on the three ways the feature space is searched (complete, heuristic, and random). The results are 
summarized in Figure 10. The Figure does not give an exhaustive list of feature selection algorithms. 
For example, Sequential Forward Floating Search (SFFS), Correlation-based Feature Selection (CFS) 
and K-best algorithms are not listed. 
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Figure 10. Categories of feature selection algorithms. 

 

The use of feature selection can improve accuracy [92]. As illustrated in [94], a large number of 
features can be eliminated without a significant loss of classification performance. The activity 
classification performance of the following three classification algorithms, Naive Bayes, Hidden 
Markov Model (HMM) and Viterbi algorithm (a variant of HMM), have a strong relationship with  
the features used [95]. After evaluating the performance of over ten different feature selection 
methods, the Sequential Forward Floating Search (SFFS) method was found to be the most powerful 
algorithm for feature selection [94]. This result was corroborated in [96]. According to [51], the SFFS  
algorithm [97] has three major steps: inclusion, test, and exclusion. It begins with the inclusion process 
to select features with the best performance. A test is then conducted on every selected feature in the 
same iteration to identify the features that will reduce the overall performance of the algorithm. If such 
a feature exists, SFFS would then exclude this feature from further cycles. The iterations are continued 
until all features have been examined. SFFS was used to rank the discriminatory powers of a set of 110 
features from accelerometer and acoustic sensor data (that is, vibration and sound signals) for fall 
detection application and the algorithm chose a set of 17 top performing features which yielded 
classification performance of 97.5% sensitivity and 98.6% specificity [51]. The authors in [96] found 
the worst performing feature selection algorithm to be K-best. Correlation-based Feature Selection 
(CFS) is another feature selection technique commonly used by researchers [98,99]. It is inbuilt in 
WEKA is based on the assumption that discriminatory features should be highly correlated with the 
given class, but uncorrelated with each other [12].  

6. Applications 

There are different application areas as highlighted in the introduction including gait assessment, 
fall risk estimation, fall detection, ADL recognition/classification, energy expenditure estimation, 
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diabetic foot ulceration prediction, physiological (vital) signs, and location determination. Research 
studies employed a wide range of classification algorithms (such as threshold-based and machine 
learning) and sensors. The most commonly used classification algorithms include Support Vector 
Machine (SVM), K-Nearest Neighbour (KNN), C4.5 (implemented as J48 in WEKA), Artificial 
Neural Networks (ANN), Dynamic Bayesian Networks (DBN), Bayesian Networks, Hidden Markov 
Models (HMM), and Gauss Markov Models (GMM), among others. Figure 2 indicates that fall 
detection, ADL (ambulation, transfer, and posture) classification are the most studied application areas 
in literature.  

Table 7 highlights some classification accuracies in literature for these four most studied 
applications and events based on different classification approaches. 

Table 7. Accuracies of common classification approaches for the four most studied applications. 

Classification Approach 
Classification Accuracy (%) 

Fall Detection ADL Ambulation ADL Transfer ADL Posture
SVM 92.30 93.00 68.00 99.63 

C4.5/J48  89.71 93.80 97.10 
Naïve Bayes 97.30 84.00 93.30 94.60 

Decision trees 80.00 90.80   
ANN  95.00 89.30  
KNN 84.44 90.00 78.70 90.00 
DBN 80.00 98.00  98.00 
BN 93.00 94.00 91.30 99.00 

HMM 82.00 87.05   
Fuzzy Logic 80.00 99.90 97.00 98.70 

GMM 41.00 91.30   
Threshold-based algorithms 100.00 100.00 100.00 100.00 

Ensembles  90.00  90.00 

6.1. Fall Detection 

Figures 2 and 3 indicate that accelerometer (in both fixed and wearable capacity), inclinometer/Tilt 
sensor/switch, and PIR sensors are the most commonly used sensors for fall detection applications. 
Other less used sensors include gyroscope, pressure mat, Ubisense RTLS, and microphone (in both 
fixed and wearable capacity), barometer and magnetometer. The precision of Ubisence RTLS with 
respect to the tag position estimation is not considered high [100]. Accelerometer is superior in its 
ability to yield multiple features that facilitate high event classification accuracy.  

There is no standard fall detection technique or algorithm. Researchers generally implement and use 
their own proprietary threshold-based algorithms or machine learning classification algorithms among 
others. Literature highlighted eight main characteristic attributes of fall events highlighted in Table 8. 
Each attribute yields parameters and features assessable from different sensor data. 
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Table 8. Fall characteristic attributes and sensor data source. 

Characteristic Attribute 
Sensor Data for Extraction of  
Relevant Parameters/Features 

Inactivity (post-fall period of inactivity) Accelerometer (wearable) 
Acceleration peak (high movement intensity) from 
impact with the fall surface 

Accelerometer (wearable) 

Rotation of body trunk Gyroscope (wearable) 
Change in body position (orientation and tilt angle) Accelerometer, Magnetometer 
Change in postural height or altitude Barometer (wearable) 
Vibration from impact with the fall surface Accelerometer (fixed) 
Sound from impact with the fall surface Microphone (wearable or fixed) 
Direction of fall (backward, forward, etc.) which  
could reveal its cause 

Accelerometer (wearable) 

Fall detection is generally centered on these characteristic attributes, but any one fall event may not 
necessarily exhibit all of them. For example, a hard impact on a fall surface may cause sharp peaks in 
acceleration magnitude and high amplitude floor vibrations that can be sensed. Soft impacts may not 
be easily sensed [37,51]. Body impacts with the fall surface may or may not generate detectable 
sounds [51]. 

The Signal Magnitude Area (SMA), calculated according to Equation (1), is used to derive a 
measure of a subject’s level of activity in order to distinguish between periods of activity and inactivity 
(rest) [42]:  
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where n is the total number of samples in a sample data window and xj, yj, and zj represent the jth data 
sample in the sample data window for each of the accelerometer axes. It is evaluated from the BM 
component of the accelerometer signal. Test for post-fall inactivity is based on the premise that for 
“serious” falls, subjects will most likely remain immobilized in posture and place [41]. A subject is 
deemed inactive if the SMA value is less than a given estimated threshold value. The literature, 
however, has not highlighted any benchmark SMA threshold values. That is, researchers determine 
and use their own proprietary values, often without stating the value used. 

Acceleration peak or movement intensity is the most common feature for fall detection using upper 
and/or lower acceleration threshold values. The assumption is that most fall events are characterized by 
impact on the fall surface causing sharp peaks in acceleration magnitude [37]. The Signal Magnitude 
Vector (SMV), also referred to as Sum Vector (SV), is used to evaluate the degree of movement 
intensity and is the most commonly used parameter for deriving acceleration peak thresholds. The 
feature is generally estimated from the BM component of accelerometer signal using the Signal 
Magnitude Vector (SMV) or Sum Vector (SV) metric in Equation (2): 

2 2 2SMV x y zi i i= + + (2)



Sensors 2013, 13 12875 
 
where xj, yj, and zj represent the jth data sample in a window of the BM component of the accelerometer 
data. Table 9 highlights some SMV threshold values that have been used in different studies, the 
sensor placement position for data collection, and classification accuracies achieved.  

A challenge for peak acceleration threshold-based fall detection approach is the calculation of the 
optimal threshold value(s) that will yield the highest classification accuracy. Currently, there are no 
standard values, as Table 9 indicates. It is worth noting that if the threshold value is too high, the 
system may miss some fall events (sensitivity < 100%), but it will never generate false positives 
(specificity = 100%). If the threshold value is too low, the system will successfully detect all fall 
events (sensitivity = 100%), but may generate some false positives (specificity < 100%) [37]. The peak 
acceleration value depends on the placement position of the wearable sensor-based monitoring device 
on the subject’s body (e.g., wrist, hip, ankle, etc.) [35]. The accuracy is also affected by the fact that 
there are ADL characterized by acceleration peaks similar to those of fall events. The authors found 
that the type of the filter used for pre-processing the data could impact on the peak acceleration value 
(e.g., median filter changes the absolute peak value of the signal). The literature indicated that different 
fall scenarios yield different peak accelerations. There is a need to investigate the optimal value 
bearing in mind that there are activity events characterized by acceleration peaks similar to those of 
real fall events. 

Table 9. Fall characteristic attributes and sensor data source. 

SMV Threshold Value (g) Fall detection Accuracy (%) Sensor Placement Position Reference
1.8 95.6 Waist [32] 
1.8 - Waist [101] 
2 100 Waist [35] 

3.5 - - [102] 
3.52 100 (specificity) Trunk [103] 
2.74 83.33 (specificity) Thigh [103] 

3 100 (sensitivity) Waist [37] 
6.5 41/100 (sensitivity/specificity) Wrist [35] 
1.7 100 Head [35] 

3.09 99.1 Chest [32] 
3.35 97.9 Under arm [32] 
1.8 96.9 Waist [34] 

The pose (posture) of a static object is its position (orientation relative to a frame of reference) and 
attitude (inclination or tilt) [104]. Fall events can be classified on the basis of (post-fall) postural 
orientation and rotational speed of the trunk [34]. According to [15], “strictly related to a fall is the 
posture, which can be determined by monitoring the tilt transition of the trunk and legs and the angular 
coordinates”. Body tilt angle is generally taken to be the angle between the positive  
z-axis (the axis parallel to a human’s upper body) and the gravitational vector, g, of accelerometer GF 
component.  

According to [42], “if tilt angle is 0 to 60 degrees, it is classified as upright, whereas values of 60 to 
120 indicate a lying posture; any greater a tilt angle and the user is classified as inverted”. Change in 
postural height (altitude) is evaluated from pre-processed barometric sensor data the target being to 
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assess altitude changes per data window of n samples [34,105]. The metric in Equation (3) is used to 
evaluate changes in postural height: 

( 1) 11 k j n k j
H hi k kk j k j n
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= + − = −
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= = −

⎡ ⎤⎛ ⎞ ⎛ ⎞
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(3)

where hk is the kth data sample in a converted barometric signal window, n is the window size, and j is 
the window index. Essentially, ∆Hi gives a measure of the altitude trend calculated by subtracting the 
average altitude of the previous corrected barometric data window from that of the current window. 

Fall events are also classified on the basis of changes in orientation of the body trunk [34], referred 
to as angular displacement [106]. Gyroscope measures the rate of change of orientation in 3D and the 
derivative of the angular position over time for each coordinate is assessed as shown in Equation (4): 
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the sampling period. The issue with this approximation is that if the gyroscope data change faster than 
the sampling frequency (drift), errors will be introduced, which may not be detected, and the integral 
approximation will be incorrect [106]. Drift, which is a major problem of gyroscopes, increases  
with time. 

According to [46], the direction of a fall can be determined from pre-processed accelerometer  
data by evaluating the azimuth angle φ (the angle between the x-axis and a line from the origin to the data 
point projected on the same plane as the reference direction) for the kth data sample as in Equation (5). The 
assumption is that the z-axis of the sensor is aligned with the subject’s body vertical axis. 

arctan 2( / )k ky xϕ = (5)

Fall events have also been classified on the basis of spectral features from fall surface vibration and 
sound data. This is based on the assertion that for a fall event, the body impact with a fall surface 
generates detectable sound and repeated shock (vibration) signals. That is, the repeated impacts of a 
body part with the fall surface generate vibrations that are likened to a mass-spring system which are 
transmitted throughout the fall surface [51]. According to [27]: 

1. The vibration signature of a floor impact generated by a human fall is significantly different 
from that generated by normal daily activities like walking and tapping.  

2. The vibration signature of a floor impact generated by a human fall is significantly different 
from that generated by objects falling on the floor.  

3. Different floor surface types (for example, a concrete floor covered with linoleum and a 
concrete slab floor) produce different amplitudes in the vibration signals at equivalent distances 
from the sensor, requiring different detection thresholds for different floor types.  

4. Different floor types have different vibration ranges for detection (for instance, 5 m for 
concrete slab floors, and 7 m for mezzanine concrete floor covered with linoleum).  

These differences in the response of different floor types to different excitation activities have been 
exploited for fall detection [27]. Accelerometer taped to the floor in a monitored environment has been 
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used to measure fall vibration patterns [51]. An acoustic sensor also taped to the floor was used to 
measure fall sound signals. The issue is that “hard” fall events cause high-amplitude floor vibrations 
that can be easily sensed, while “soft” fall events may not be as easily sensed. Also, there are different 
kinds of vibration sounds from human motion that can vary in strength and duration depending on the 
type of motion event, such as short events (e.g., steps) and long events (e.g., falls) [51]. In view of 
these, the authors in [51] suggested that if a surface (e.g., a floor) produces high amplitude vibrations 
>10 g RMS at the measurement point, a relatively low sensitivity (10 mV/g) sensor may be preferable, 
but if the vibration is <10 g RMS, a high sensitivity (100 mV/g) sensor may be more appropriate. 
Furthermore, the performance was not significantly affected by the different floor treatments tested 
(linoleum, carpet, and carpet with foam padding). It was also found that the sensor-based monitoring 
devices should be placed no closer than 1.5 m to walls on mezzanine concrete floor, and no closer  
than 1.2 m on concrete slab floor to minimize false alarms from any fall event in a neighboring  
apartment [27]. The features that are most commonly extracted from vibration and sound signals for 
fall classification, as detailed in [51], are summarized in Table 10.  

Table 10. Fall vibration and sound features. 

Category Parameter per Signal Window
Possible Number of  

Extractable Features 
Source Signal

Temporal parameters Vibration event length 1 Vibration 
Vibration event energy 1 Vibration 

Sound event length 1 Sound 
Sound event energy 1 Sound 

Spectral parameters SRS 93 Vibration 
MFCC 13 Sound 

These features have been used to achieve fall event classification accuracies of 100% sensitivity 
with 100% specificity, and 97.7% sensitivity with 98.6% specificity in [27] and [51], respectively. The 
main issue with this fall event classification approach is that acoustic sensors are considered highly 
intrusive, raising privacy concerns among monitored subjects. 

6.2. Gait Assessment 

Traditionally, there are two methods of undertaking gait measurement: automated and manual. 
Automated motion laboratories with highly accurate computer-based force and optical tracking sensors 
(e.g., OptoTrack), instrumented walkways (e.g., GAITRite system), piezodynamometric platforms, and 
instrumented floors are used to analyze the motion of body segments in order to measure various 
characteristic parameters, such as stride length, stride frequency, and instantaneous walking  
speed [76]. Though these systems produce well-quantified and accurate results, they are often 
restricted to clinical laboratory settings due to size and cost considerations, and have limited applications. 
Manual measurement involves a series of tests including Timed “Up and Go” (TUG), functional reach 
tests, and visual observations to assess the gait of monitored subjects [76,107]. TUG is a simple 
mobility test during which the subject is asked to stand up from a chair with an armrest, to walk for a 
distance of 3 m, to turn around, to walk back, and to sit down [108]. The time required to complete the 
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test is measured. If it is below 20 s, the subject is considered to have no mobility issues, and if it is 
above 30 s, the subject is taken to have serious mobility challenges. Times between 20 s and 30 s 
require further assessment [108]. The clinical score STRATIFY (see [109,110] for details) is also used 
to derive measures of gait parameters. These manual methods are inexpensive, but the results are 
qualitative, unreliable, and difficult to compare across multiple measurement [76]. Moreover, the 
scores are intended for hospital use and have to be assessed by experienced medical professionals and, 
therefore, may not be suitable for home-based monitoring [108]. 

Currently, sensor-based approaches to gait assessment are being increasingly adopted as they 
facilitates quantitative and repeatable analysis over extended time periods [76]. Gait analysis using 
wearable sensors is an inexpensive, convenient, and efficient way of providing useful information for 
multiple health-related applications and it shows great potential [3]. Gait assessment using wearable 
sensors could enhance the comprehension of gait strategies [111]. The authors in [112] used 
measurement data from a footswitch to quantify temporal and distance aspects of gait, while data from 
“GaitShoe”, a sensor suite consisting of accelerometer, gyroscope, Force Sensitive Resistor (FSR), 
Polyvinylidine Flouride stripe, bend sensor, and electric field sensor, were used for quantitative gait 
analysis [76]. Other studies have also used these different sensors for gait assessment. These include 
estimation of temporal characteristics of gait using data from body-worn accelerometers and  
inside-footwear pressure sensor [57,113,114], and quantification of the differences between shuffling 
and walking using force-sensitive resistor (FSR) measurements of pressure distribution beneath the 
foot [115,116]. Patterns in gait were also analyzed using data from two FSRs positioned under the heel 
and in the general area under the toes [117,118]. During gait most body motion occurs in the lower 
limbs, so most studies attached the sensors on the thigh, shank, ankle, foot, heel, and toe of the 
subjects. Essentially, the sensor data measurements yield parameters and features that characterize 
human locomotion, such as velocity, cadence, stride length, heel-strike timing, toe-off timing, Planthar 
flexion, gait phases, and orientation. Table 11 highlights parameters/features extracted from the 
GaitShoe sensors data in [76]. 

Table 11. Parameters/features extracted from the GaitShoe sensors data. 

Sensor Parameters/Features Sensor Output 
Accelerometer Stride length and stride velocity, 

and other velocities and 
displacements 

Voltage change corresponding to acceleration: single 
integration of acceleration yields velocity, double integration 
yields distance (integration done after correcting for 
gravitational component) 

Gyroscope Orientation Voltage change corresponding to angular velocity: single 
integration yields angle of rotation 

Force sensitive 
resistors 

Force distribution under foot and 
heel strike timing, toe-off timing 

Resistance change corresponding to applied force across the 
sensor, resulting from change in compression of the sensor 

Polyvinylidene 
fluoride stripe 

Heel strike timing and toe-off 
timing 

Voltage change corresponding to dynamic pressure across the 
sensor 

Bend sensor Planthar flexion/dorsi-flexion, 
flexion at metatarsals 

Resistance change corresponding to flexion angle, resulting 
from strain on the sensor 

Electric field 
sensor 

Height of foot above floor Capacitance corresponding to distance 
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Algorithmic techniques for gait classification include Artificial Neural Networks (ANN) and 
Principal Component Analysis (PCA), among others. Pattern recognition algorithms were used to 
define gait cycle transitions for triggering functional electrical stimulation (FES) in patients with 
incomplete spinal injury [119,120]. However, neural nets seem to be the most commonly used and 
efficient. Out of a set 36 studies, 42% (n = 15) used neural nets (see Figure 11) [121]. The authors  
in [122] used four different algorithms (neural nets, fuzzy inference, self-organizing map, and  
neuro-fuzzy algorithms) with the same set of data features from EMG sensor worn on a lower limb, 
and found neural nets to be the most effective for gait classification. The accuracies for these 
approaches were 94%, 56%, 91.4%, and 76% respectively. 

Figure 11. Algorithmic techniques for gait classification. 

 

6.3. Fall Risk Estimation 

One third of falls by elderly adults involve environmental hazards in the home, the most common 
being stumbling or tripping over objects [4]. Environment related fall risk factors are generally 
detectable by physical observations, while physiological related fall risk factors are traditionally 
assessed with clinical instruments and scores (such as STRATIFY, Tinetti, geriatric team score and 
TUG), which identify fall risks and their gait related assessable parameters. The current trend is to 
assess these parameters from sensor-based motion measurements data. The use of wearable inertial 
sensors was investigated in [101] to provide objective data for fall risks estimation and to compare the 
predictive performance of sensor-based methods with conventional and established clinical methods. 
The authors found that among clinical instruments and scores for fall risk assessment, the geriatric 
team score outperforms STRATIFY and TUG, while the sensor-based model was able to identify more 
persons at risk of fall than the clinical instruments and scores. The authors concluded that sensor-based 
measurements with wearable device may contribute significant information to conventional methods 
and are feasible in unsupervised settings. 

Sensor-based measurements have been used to distinguish between high and low fall risk subjects 
based on gait parameters and changes in trunk posture [123]. The gait-related parameters of the fall 
risk factors identified by the STRATIFY score have been extracted from sensor data measured during 
TUG tests [108]. Walking patterns have been assessed from foot switch and mercury trigger sensor 
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data in order to predict future falls [30]. Data acquired with FSRs positioned under the heel and toes 
has been used to find patterns in gait for fall risk assessment [117,118,124]. Several types of wearable 
sensors are suitable for the acquisition of mobility data for gait and fall risk assessment including 
accelerometers, gyroscope, force resistive sensors, inclinometers, goniometers, magneto-resistive and 
Electromyography (EMG) sensors, each of which can give various characteristic measures of the 
human gait and phases [108,125]. It was concluded that a single tri-axial accelerometer worn on the 
trunk at the level of the pelvis was the most suitable because it is small, unobtrusive, has low power 
consumption and delivers well-interpretable data [108,126]. A single inertial sensor was suitable for 
identifying stride, step, and stance duration, and it provides the opportunity to measure other gait 
parameters outside of the traditional laboratory [102]. Figure 2 indicates that the most commonly used 
sensors for gait assessment and fall risk estimation are accelerometer, gyroscope, and sole pressure or 
foot switch. 

Although the analysis of gait stability may allow the identification of subjects at risk, the definition 
of gait stability is still fuzzy with many direct and indirect measures for quantification of gait being 
proposed in literature [103]. Measures of trunk accelerations are crucial in the assessment of gait 
stability for risk estimation as the trunk segment is known to play a critical role in regulating  
gait-related oscillations in all directions [103]. According to [103], falls in older adults often occur 
during walking, and the trunk position is known to play a critical role in the balance control. Therefore, 
the analysis of trunk kinematics during gait could present a more viable approach to fall risk estimation 
based on such parameters as harmonic ratio (HR), index of harmonicity (IH), multiscale entropy 
(MSE), and recurrence quantification analysis (RQA) of trunk accelerations. Their parameters are not 
dependent on step detection (the metrics for these features are given in [103]). The authors in [103] 
investigated the association between these parameters and fall history, and found that univariate 
associations with fall history for MSE and RQA parameters in the AP direction gave the best 
classification results. MSE and RQA were found to be positively associated with fall history and could, 
hence, represent useful tools in the identification of subjects for fall prevention programs [103]. 

The latest results in fall risk estimation are presented in [127] and focus on the dynamic imaging of 
human footprints based on fibre-optic sensors embedded in the carpet. This work showed “the 
capability of such imaging technology to study variations in gait and walking patterns, as well as the 
footprint of a human body lying in various positions” [127]. According to [108], “a wearing position 
close to the body’s center of mass might be reasonable to measure gait and may also be accepted by 
older people: an unwieldy wearing position or multiple sensors should be avoided for a future 
everyday use”. 

6.4. ADL Classification 

ADL classification uses data from a wide range of monitoring sensors and classification algorithms. 
The category and level of granularity of an ADL impact on the choice of sensors for its monitoring. 
For example according to [24], activities characterized by the manipulation of objects during their 
performance can be recognized from sensor data about object touches (object-based activity 
classification). RFID is well suited for the monitoring of object-based activities whereby the RFID 
reader is fitted in the subject’s hand glove, while the tags are positioned on the target objects that the 
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subject uses (touches). RFID antennae are able to discriminate among specific instances of objects that 
are otherwise the same (e.g., two different spoons) with 0% false positive rate [24]. The Selfcare and 
HouseKeeping ADL categories are mostly object-based as they are disambiguated by key objects and, 
therefore, could be monitored with RFID. Fusion of RFID and accelerometer data facilitates the 
recognition of an activity and the subject’s posture while undertaking the activity. Examples include 
subject standing while ironing, standing while brushing teeth, sitting while reading [77]. The ADL 
“eating” and “drinking” (while sitting at the table) were classified in [128] using data from wrist worn 
accelerometer and RFID (the reader was installed under the table surface). However, RFID-based 
monitoring is tag intensive. For instance, over 14 tags were deployed in [129].  

Some of the elements of an ADL category can be broken down into constituent sub-ADLs, while a 
sub-ADL can further be broken down to Atomic ADL (tasks) in order to facilitate recognition and 
classification. According to [7], “complexity varies widely within each level, so that specific activities 
can be arranged in the hierarchy only with knowledge of both the within- and among-levels complexity 
of the activity. A functioning subject may thus be assessed by measuring instruments designed to tap 
into representative behaviour at each level and within the range of competences appropriate to the 
individual”. That is, an ADL can be abstracted into hierarchies with the highest level of abstraction 
referred to as the goal and the lowest level of abstraction consisting of task events (as demonstrated in 
Figure 12) and recognition of an ADL can be based on recognizing its constituent task events [129]. 
The number of levels of sub-goals between a task and its associated goals depends on the complexity 
of the goal. 

Figure 12. Hierarchical abstraction of ADL for recognition/classification. 

 

Classification of ADL ambulation, posture, and transfer relies heavily on the extraction and 
selection of appropriate features from sensor data and often entails distinguishing between periods of 
activity and inactivity. Accelerometer data is deemed the most suitable for these events since during 
inactivity only the GA component is recorded, while both the GA and BA components are recorded 
during activity. Figure 2 indicates that accelerometer is the most common wearable sensor used for the 
classification of these ADL with the waist and hip being the most common placement positions. 
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Ambulation ADL (mobility) classification aims to differentiate different walking patterns and types 
(walking on level ground and walking up/down a stairway). According to [130], “while walking, 
acceleration oscillates, and the peak amplitude varies according to the road condition, but the peak 
interval remains constant”. Walking patterns can be differentiated based on acceleration signals in the 
vertical and anteroposterior directions [52]. 

According to [52], “Level walking has three peaks in a walking cycle, and stairway walking has one 
or two peaks”. Table 7 indicates that up to 99.9% accuracy has been achieved for ADL classification 
using fuzzy logic classification technique. The posture ADL has been classified with 100% accuracy 
using threshold-based algorithms. Posture ADL, standing and sitting, have been successfully 
distinguished from accelerometer data using the SMV and DSMV features from accelerometer  
data [80]. Accelerometer data give relatively high error rate when differentiating between standing and 
sitting, because the angle of tilt from the vertical axis varies by a non-significant margin between the 
two ADL and is particularly sensitive to the placement of the device [39]. Also, the data acquired with 
gyroscopes have been proven more accurate for distinguishing between sitting and standing. 
Furthermore, differentiating between lying due to a fall and lying as an ADL event is challenging [39]. 
This is where the assertion that fall events exhibit high acceleration peaks is supposed to be useful. 
However, not all fall events are characterized by an impact [46]. 

Table 12. Optimal features for ambulation, posture and transfer ADL classification. 

Feature number Description 
1 Averaged variance over three axes 
2 RMS of signal derivative 
3 Mean of signal derivative 
4 Average entropy over three axes 
5 Average cross correlation between two axes 
6 Average range over three axes 
7 Average main frequency of the FFT over three axes 
8 Total signal energy averaged over three axes 
9 Energy of 0.2 Hz window around the main frequency 

over the total FFT energy (averaged over three axes) 
10 Averaged skew over three axes 
11 Averaged Kurtosis over three axes 
12 Averaged range of cross co-variation between two axes 
13 Averaged mean of cross co-variance between two axes 

Using a set of feature metrics and three feature selection algorithms, the authors in [38] sought to 
provide answers to the following two questions: what is the ideal sensor placement location for a given 
group of activities; and which time and frequency domain features in wearable accelerometer data are 
most relevant for discriminating different activity types? The authors found that the features listed in 
Table 12 (not necessary in any particular order) proved the most effective for differentiating between 
the ADL ambulation, posture, and transfer. According to [38], averaged entropy over three axes was 
highly ranked by all the three feature selection algorithms used for the investigation, especially the one 
extracted from an ankle worn sensor. Averaged mean of cross covariance between each two axes) was 
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also highly ranked, especially for the one extracted from ear and chest worn sensor data. Frequency 
features, particularly the energy of 0.2 Hz window around the main frequency divided by the total FFT 
energy, were also ranked highly for the knee, ankle, and ear worn sensors, as they reflect repetitive 
walking patterns [38]. 

Figure 2 shows that the few studies that addressed the ADL communication and Leisure used RFID 
and wrist worn accelerometer [76,77], EOG [26] and ECG/Heart Rate Monitor. RFID based 
classification is generally based on object touch. Assessment from EOG data was based on the analysis 
of repetitive eye movement patterns by estimating eye movement and position parameters, saccade, 
fixation, and blink based on the features that were extracted and selected (see Table 13). According  
to [26], the EOG features highlighted in Table 10 constitute a representative set for the classification of 
much broader range of communication and leisure activities in daily life including such activities as 
copying a text, reading a printed paper, taking hand-written notes, watching video, browsing the web, 
and periods of no specific activity. 

Table 13. Selected optimal features for the classification of the ADL communication and 
leisure from EOG data. 

Parameter Features 
Saccade Mean, variance, and maximum of signal amplitude or rate of small or  

large positive or negative saccades in horizontal or vertical direction 
Fixation Mean and variance of horizontal and vertical signal amplitude within a  

duration of a fixation or rate of fixations 
Blink Mean and variance of the blink duration or blink rate 
Workbook Workbook size, maximum and the difference between maximum and  

minimum, mean, variance of all occurrences in the workbook 

6.5. Energy Expenditure Estimation  

Activities of daily living are often associated with Energy Expenditure (EE) but according to [131] 
“the energy cost of physical activity may not necessarily be equivalent to body movement”. The 
validity and reliability of energy expenditure estimates have been established in [132]. Different 
methods of estimating EE by a subject include room calorimetry, doubly labeled water, indirect 
calorimetry, heart rate, inertial sensors, and self-report. The authors in [133,134] reviewed the different 
tools for measuring physical activity and total energy expenditure and addressed the advantages and 
limitations of the tools. The level of precision and ease of EE assessment with these methods are 
shown in Figure 13. The figure indicates that the room calorimetry method has the highest precision, 
but is not easy to use, while inertial sensors and self-report are the easiest to use, but do not give  
high precision. 
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Figure 13. EE estimation tools. 

 

The self-report method (the traditional instrument of choice especially when large populations are 
to be assessed) uses questionnaires, activity diaries, and recall interviews, and is somewhat limited in 
objectivity. “Supplementing questionnaires with a personal interview does elicit more detailed data, 
but activity monitors provide a more objective measure of activity that can be used as an adjunct to 
questionnaires” [133]. “Doubly-labeled water is considered the gold standard to measure energy 
expenditure over time. It is a method of indirect calorimetry, in which carbon dioxide production is 
tracked from metabolism of specific isotopes in the labeled water. The technique is expensive and 
requires specific expertise” [132]. Objective activity monitors have been increasingly used to 
overcome the limitations of self-report and the high precision measures. “Several models of activity 
monitors are capable of collecting and storing data for many days, weeks, or even months. More 
importantly, the internal real-time clocks of these monitors allow the discrimination of activity 
patterns” [133]. Figure 2 indicates that ECG sensors, heart rate monitor, accelerometer, and EMG are 
the most commonly used sensors for EE estimation studies. According to [131], there is a “linear 
relationship between heart rate and energy expenditure during steady state work load with large muscle 
groups”. Heart rate monitors are inexpensive, but energy expenditure estimates can be confounded by 
other factors that increase heart rate such as caffeine or stress [132].  

“Accelerometer data, commonly expressed as the dimensionless unit, “counts,” are inherently 
neither meaningful nor interpretable” [135]. The accelerometric counts need to be translated into 
quantitative estimates of caloric expenditure. “In general, the approach to translate accelerometer 
counts into energy expenditure has been to compare activity counts and oxygen consumption measured 
during performance of a series of activities that reflect activities of daily living” [135]. “After the 
simultaneous counts and oxygen consumption are obtained, regression methods are applied to 
determine the relationship between the two measures, and an equation to predict energy expenditure 
from accelerometer counts and/or a count threshold for a particular intensity of activity is determined. 
In most studies, a single linear regression is the analytic approach” [135]. For example, two-regression 
approach was used to estimate energy expenditure from accelerometer data [78]. The choice of 
regression was based on the observed Coefficient of Variation (CV) among 10 second accelerometer 
counts. According to [135], this approach helps to address the disparities in the relationship between 
counts and energy expenditure related to activity type. “Regular rhythmic accelerations as observed in 
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walking and running result in a low CV that leads to the choice of one regression equation, whereas 
more variable activities with a resulting larger CV lead to use of the other equation. The combination 
of the estimates from the two regressions results in more accurate and more precise energy expenditure 
estimates for the activities examined. The utilization of the CV to determine regression selection is an 
appropriate and unique response to the problem of discriminating locomotion from more mixed 
movement activities” [135]. 

There is a strong association (r > 0.75) between EE and activity accelerometer measurement counts 
in controlled settings. EE prediction equations and activity intensity levels differ depending on the 
calibration activities performed and the settings of these activities. Prediction equations established in 
the laboratory are not valid for free-living activity EE estimation. The authors in [136] compared 
accelerometer-based EE estimation algorithms and platforms, and found high correlations between the 
accelerometer-regressed EE estimates and the reference dataset. Assessing agreement between EE 
estimation from accelerometer data and from self-reports showed that the magnitude of the association 
was not significantly affected by age or weight status, but was significantly higher in males than in 
females [137]. Also, self-report underestimated activity EE in overweight/obese and older adolescents. 
The authors in [137] concluded that assessment of activity EE is complex and may require a 
combination of methods. Future studies should combine the use of sensor-based monitors with suitable 
questionnaires [133]. According to [138], the use of accelerometers along with questionnaires may 
yield more reliable and accurate measurements. There are existing off-the-shelf products, such as 
SenseWear WMS armband, that combine accelerometry with other physiologic measures (e.g., heart 
rate, galvanic skin response). According to [58], there was a large variability in accelerometer output 
and their validity to assess daily physical activity. So far, there is little evidence that adding other 
physiological measures, such as heart rate, significantly improves the estimation of energy expenditure. 

The EE of an activity may be underestimated depending upon the placement of the sensor-based 
monitoring device [132]. EE studies have been done with multiple accelerometers worn on a number 
of body placement positions including the trunk and extremities. The waist or hip is the most common 
sensor placement position for EE estimation [132,135–138]. According to [132], positioning of 
monitors is a potential source of error in studies, as it was found that a uniaxial accelerometer yielded 
significantly different results depending on which of three parts of the hip it was worn on. Also, 
wearing the monitor on the right versus the left hip is an issue of consideration as wearing a monitor on 
different hips generated significantly different activity measurements. Having a snug fit between the 
monitor and the subject has been recommended to limit extraneous movement [132].  

Also, “accelerometers can be used to approximate energy expenditure, however, they do not capture 
the full energy cost of certain activities, such as walking while carrying a load or walking uphill, 
because acceleration patterns do not change under these conditions” [132]. According to [135],  
waist-mounted accelerometers cannot accurately detect upper body movements or the effort related to 
lifting or carrying loads. 
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6.6. Diabetic Foot Ulceration Prediction, Physiological (Vital) Signs, and Location Determination 

The application areas of diabetic foot ulceration prediction, physiological (vital) signs, and location 
determination seem to be increasingly gaining research attention. Diabetic patients are said to be at risk 
of lower extremity skin breakdown, foot deformities, and imbalances, which could cause repeated high 
pressures and pain under the forefoot during ambulation. These pressures and pain have temperature 
and moisture (humidity) implications inside the shoe [139,140]. Research is focused on the use of  
in-shoe sensors (accelerometer, sole pressure and foot switch—see Figure 2) to measure plantar 
pressures inside the shoe during walking and ADL by patients with diabetes mellitus and peripheral  
neuropathy [141,142]. For example, an insole-based electronic system can monitor temperature, 
pressure, and humidity, storing the data in a battery-powered device [139,143]. The pressure sensors 
were located at the heel and under three metatarsal heads. Temperature sensors were located under the 
medial metatarsal head and under the heel. The humidity sensor was located in the toe of the shoe. The 
data was used to quantify the conditions inside shoes in order to predict the progression of skin 
breakdown and ulceration. A battery powered sensor-based device was used to monitor peak plantar 
pressures during gait and successfully identified “steps” that indicated peak plantar pressure for an 
extended period of time [144]. The authors in [142–145] also used in-sole pressure sensors to measure 
plantar pressure during activities of daily living by diabetic patients. It was found that pressures during 
other activities were not always well predicted by walking pressures, and measurement during level 
walking alone cannot be considered to fully define the plantar pressure affecting a foot in a particular 
shoe during ADL [142]. 

Physiological (vital) signs monitoring studies used ECG/HRM, EMG, body temperature, skin 
conductivity sensors and oximeters. A feature extraction algorithm for ECG signal is presented in [66] 
that is based on string representation of the signal. The string representation is then analyzed to extract 
the optimal feature set that would facilitate ECG recognition. Morphological changes in the shape of 
the waves of the ECG signal become visible signs of an illness of the heart muscle, and in almost all 
diagnosis, recognition is based on wave analysis. This includes amplitude and durations of the QRS 
complex, the P and T waves, the ST-T deformation, the P-P and R-R intervals. Evaluating these 
parameters requires that the onsets and ends of the waves are fixed [66]. Other studies that detailed 
feature extraction from ECG data include [146–148]. 

7. Research Gaps and Possible Future Research Directions 

Behaviour Trend (pattern) profiling and analysis from monitoring sensor data is an area of study 
that has been neglected. Trend analysis would facilitate the detection of behavioural deviations and 
anomalies that could indicate health related issues. Short-term monitoring aids the generation of 
labeled datasets, which facilitates event classification. Long-term monitoring sensor data may be more 
suitable for trend profiling and analysis for the detection of unusual (atypical) behavioural events. 
However, long-term monitoring poses a number of challenges including data labeling, which raise the 
issue of profiling and analysis with integrity. Short term monitoring, in this context, is within 
designated finite time period, which could range from seconds to days, mainly for the purposes of 
evaluation study of the event(s), while long-term monitoring involves recording measurements for 
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weeks to years, which provide a trend. “Short-term monitoring also provides essential information for 
interpreting long-term monitoring studies” [149]. 

Affective States detection is another area that seems to have been overlooked. Affective states (e.g., 
emotions of pain, happiness, sadness, anger, fear, disgust, and, surprise, intents, desires, and moods), 
which comprise both conscious and unconscious reactions, can be detected in both verbal and  
non-verbal expressions [150]. Affective states can be indicated by vocal features (e.g., speech rate, 
intonation, or pitch) and body/facial gestures (e.g., eye movements, facial expressions, head gestures, 
or body gestures). Affective states can reveal information regarding the psychological and 
physiological state of a subject in addition to context-related cues and non-verbal displays. Affective 
states can be causes of behaviour and, thus, can be used to explain and predict subjects’ behaviour. For 
example according to [150], combined measurements of heart rate variability and speech analysis 
could give insights into a subject’s emotions. Three speech variables pitch, intensity, and energy could 
enable discrimination of different emotions and arousal. Also, galvanic skin response and heart rate 
sensor data could provide a good indication of stress levels. This indicates that the monitoring of human 
physiological parameters could contribute significantly to behaviour trend analysis. According to [151], 
the best approaches for inferring affective states from non-verbal expressions in speech include: 
creation of a general framework that can handle a variety of affective states and their expressions rather 
than a system that is specific to predefined emotions; recognition of affective states that often occur in 
everyday life (rather than strong expressions of basic emotions that are rarely experienced or seen); and 
handling of various affective states that occur simultaneously in a speaker-independent manner. 

Fall context determination is another area that demands research attention. Context has been defined 
by [152] as “any information that can be used to characterize the situation of an entity (person, place, 
or object)”. For example, fall context could be the vector of pieces of information that characterize the 
circumstance within which a fall event occurred, subject’s pre-fall activity, and the post-fall state. Most 
existing fall detection techniques are focused on the detection of isolated fall events under clearly 
defined conditions and generation of a notification signal in the form of an alarm. Thus, they provide 
little or no information about the event itself, the event(s) leading to it, and subject status after the 
event. These pieces of information could prove vital for post-fall subject management, prevention of 
future falls, and improvement of fall detection strategies. “Context information can play a significant 
role in improving fall detection accuracy” [153]. 

Furthermore, more research efforts are required in the areas of Gait Assessment/Fall Risk 
Estimation, ADL(FoodPreparation/Feeding), and ADL(Selfcare) recognition and classification. These 
are vital for independent living by elderly adults, but they were considered in only 21 (4.3%), 11 
(2.25%), and 17 (3.48%), respectively, out of the 488 research studies across 13 different application 
areas. Falls are preventable fall risks are estimated. Possible causes of falls are referred to as fall risk 
factors [4]. Fall risk factors for elderly adults include, in addition to environmental hazards, medication 
and physiological factors, most of which precipitate gait variability. Hence, fall risks could be detected 
through posture, physiological (vital) signs, visual, and gait assessment. No single risk factor causes all 
falls, but the greater the number of risk factors to which a subject is exposed, the greater the 
probability of a fall [4]. Estimation of fall risk factors is more desirable than a retrospective 
classification of the specific precipitating causes, because by identifying the risk factors early 
appropriate preventive strategies can be devised and instituted [154].  



Sensors 2013, 13 12888 
 

Also, the perceived advantages of fixed sensor based monitoring over wearable sensor based 
monitoring is that the issues of wearability, damage from fall impact, and integrity of the acquired data 
(as it may be difficult to determine if the device is being worn or is being manipulated), do not arise. It 
is therefore imperative that future research focus is geared more towards fixed sensor based monitoring 
based monitoring using a wider range of non-intrusive fixed sensors. For example, the use of ubisense 
RTLS ADL (Transfer) in gait assessment/fall risk estimation is yet to be explored. A system that could 
sense and classify the activities of multiple subjects simultaneously is also desirable. 

8. Challenges and Ethical Issues 

8.1. Challenges 

8.1.1. Data Collection 

The most common data collection method by researchers is the use of healthy adults to simulate 
different fall and ADL scenarios in controlled laboratory environments. Falls are simulated onto floors 
with cushions, such as mattresses and sponge mats [42,46], and on hard surfaces and crash mats with 
participants wearing protective gear to avoid injuries [37,49,155]. Falls have also been simulated using 
dummies, mannequins, and human-sized dolls [27,51]. Some studies have elicited the participation of 
elderly adults (mostly healthy elderly adults not needing monitoring) living independently in their 
homes to simulate ADL scenarios [108,156−0]. Simulation tasks are often initiated independently and 
voluntarily or based on prompts, with scenarios repeated a number of times. 

These simulated falls and ADL do not necessarily represent real events, and the falls being 
performed on cushioned floors alter the characteristics of the fall impact [39]. It is not clear to what 
extent the classification procedures and results correspond to real fall and ADL events by elderly 
adults in need of monitoring. Also, most of the studies are based on short-term monitoring because 
long-term monitoring poses challenges. In addition, eliciting the participation of a set of real subjects 
(elderly adults who actually require monitoring and living independently in their homes) is a 
significant challenge. Where subjects are available, ethical approval has to be obtained. There are also 
issues of subjects’ understanding and willingness. Participants may not always have deep 
understanding of required simulation outcomes and inadvertently vary their execution of the same 
ambulation and ADL (mixing steps, forgetting steps, executing the task faster or slower than  
required) [159]. This results in data without integrity. Also in real life, subjects tend to interleave two 
or more ADL (e.g., tidying and washing up while cooking). Different ADL could share common  
sub-tasks (e.g., “cookMeal” and “makeHotDrink” may both require using the kettle to boil water). 
Moreover, activities can be interrupted (e.g., phone call can interrupt the preparation of a meal), which 
would postpone the current task or cause it to be forgotten, or both activities could be done in parallel. 
In addition, an elderly adult could be sharing a house with other people or pets. This will most likely 
introduce “noise” in the sensor data. In view of these, it was suggested in [160] that monitoring 
systems need to implement flexibility and adaptability to address such issues. 

Research needs to identify and address the mitigating factors for studies with real subjects (elderly 
adults living independently in their homes and in need of monitoring) so that outcomes are applicable 
in real-life. 
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8.1.2. Trial Scenarios 

Different studies are based on different sets of fall and ADL trial scenarios, which highlights the 
lack of a standard set of experimental scenarios for research studies. This complicates comparisons of 
the outcomes of different studies, because common procedures were not utilized to carry out the trials, 
nor were common criteria adopted for their evaluation. For example, it may be meaningless to compare 
100% detection rate for an algorithm tested on only three fall scenarios and seven ADL, simulated by 
one subject, to an algorithm tested on 20 fall scenarios and 32 ADL, simulated by six subjects, with a 
detection rate of 68% [39]. 

The authors in [15,41] proposed sets of fall and ADL trial scenarios as possible steps towards 
standardization, but failed to give reasons for their choices of the suggested scenarios. We propose the 
adoption of the ADL listed in Table 2 as the standard set of ADL trial scenarios, because that set 
encompasses most of the ADL originally proposed in [5,7]. Also, the set of ADL are limited to the 
activities that older adults living independently in their homes and requiring monitoring (due to age, 
health, or mobility issues) could possibly undertake independently. In addition, most of the ADL have 
been evaluated for their usefulness as physiological mechanisms in a variety of institutions and 
facilities serving community-resident older people. According to [7], “the outcome of the evaluation 
studies offer evidence that validate the index [of independence] as true measure of primary biological 
and psychosocial functions”. The behaviours measured by the ADL are described in details in [5,7]. 

There is a need to detect every fall event. It is therefore imperative that fall event detection studies 
encompass as many fall trial scenarios as possible. Basically, most falls could be in any one of the 
three main directions: forward—often due to stumbling/tripping; backward—often due to slipping; and 
sideways—often due to loss of balance. The subject could end up in any one of the six positions: 
supine, prone, fowler’s, lateral and crumbled. According to [161], 82% of falls by elderly adults occur 
from standing height, while the authors in [162] established that falls by the elderly adults occur 
mostly during ambulation (walking). Studies have also shown that forward fall while walking is the 
most common type of fall by elderly adults. 60% of falls in elderly adults happen in the forward 
direction. Researchers may, therefore, want to focus more attention on the forward fall scenarios. 

8.1.3. General Lack of Confidence 

There is a general lack of confidence in the use of existing monitoring systems in real environments 
with real subjects [163]. For example, it is difficult to determine if the monitoring device is being worn 
or is being manually manipulated by the subject [34]. According to [164], subject compliance with 
respect to wearing monitoring device is an important issue as some wear the device for the required 
duration while some don’t. The authors in [164] investigated participants’ compliance with wearing 
monitoring devices and found that subjects wore the device on average for 13.9 h in a 24-hour day 
with older people having 0.5% more wearing hours. Also, current monitoring approaches do not offer 
decisive information for determining whether an activity has or has not actually been performed, and 
therefore there are no assurances or guarantees of the outcomes produced by the system. A two-step 
activity recognition method was suggested in [59] as a way to address the issue. The first step is to 
recognize an activity, and the second step is to recognize the effect of the activity as a verification of 
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the actual occurrence of the activity. The authors concluded that experimental results demonstrate that 
activity verification increases accuracy consistently for each classified activity. The research 
community may want to explore means of activity verification. 

8.1.4. Distinguishing between Fall and ADL Events 

Distinguishing between fall and ADL events still poses challenges, though each event has distinct 
characteristic signatures in the sensor data. According to [47], fall events will show clear acceleration 
peaks making it possible to differentiate fall events from ADL events. Acceleration peaks of ADL do 
not usually exceed 3 g, but fall events usually range several g’s higher, suggesting that the difference 
in acceleration peaks can be utilized for distinguishing fall events from ADL events [165,166].  
In addition, postural orientation is one of the key differentiating factors between fall and ADL  
events [167]. However, there are activity events (such as lying down quickly, sitting down quickly, 
running, and jumping) that generate fall-like acceleration peaks [15]. A subject turning quite 
vigorously between lying postures could also generate peaks similar to those of a fall event [42]. Also, 
turning sharply while standing could pose challenges to fall detection as pointed out in [168], due to 
confusion between standing and sharp turning. 

8.2. Ethical Issues 

Ethical issues relate to standards of conduct, types of devices used (in terms of technological 
capabilities), and the way the devices are used as components to support subjects in their own  
homes [169]. Ethical considerations are imperative for all application areas. According to [169], 
ethical issues can be considered under four mutually nonexclusive categories: respect for autonomy 
(the right of each subject to control his/her own life and freedom from undesired interference); privacy 
(monitoring devices compromise users’ privacy in different ways and to different extents, depending 
on the sensor, with video camera considered to be the most intrusive); benefit; and use of resources.  

Some ethical issues to be considered with respect to the use of wearable monitoring devices as 
listed in [169] are given Table 14. 

Table 14. Ethical issues. 

Category Relevant Issues 
Anatomy 1. Does the subject have the capacity to consent to or refuse their use and all aspects of their use? 

2. Has the subject been fully informed of possible effects of their use, of who has access to the 
information and what the responses will be? 

3. Are there mechanisms in place to ensure continuing consent? 
4. Does the subject have control over the use of and responses to the device? 
5. If the subject lacks capacity to consent, is the consent procedure appropriate? 

Privacy 1. In what ways do the uses of and responses to the device invade the subject’s privacy? 
2. How can such invasion be minimized? 
3. Do the benefits of using the device outweigh the invasion of privacy? 

Benefit 1. What are the expected benefits of using the device both in the short and longer term? 
2. What are the dangers and possible unwanted effects of their use both in the short and long term? 
3. How can the benefits be maximized and the unwanted effects minimized? 
4. Where do the overall best interests lie? 
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9. Conclusions 

A wide range of sensors have been used for human ambulation, activity, and physiological (vital) 
signs sensing. Accelerometer is the most commonly used sensor for a number of reasons including low 
cost, low error, and high accuracy. However, it has been shown that combining accelerometer data 
with data from other sensors (sensor fusion) provides a more robust and reliable system. Additional 
sensors provide a way to acquire more useful data to enhance system performance. Sensor location for 
data acquisition is an important factor which determines the quality of acquired signals and impacts on 
system performance (e.g., event classification accuracies). There is no standard set or fixed number of 
features that can be extracted from any sensor data, which seems to be especially the case for 
accelerometer data.  

The performance measures used in most of the reviewed literature are accuracy, sensitivity and 
specificity (based on the confusion matrix). The problem with accuracy is that it assumes equal cost for 
all error types and gives only the base-rate value (that is, it predicts the predominant class) such that 
70% accuracy = 30% error. That is, if accuracy changes from 70% to 95% (36% increase in accuracy), 
for example, error would reduce from 30% to 5%. Also, the value of accuracy is subjective depending 
on the problem and crosslinks between the factors involved in the problem solution. Researchers may 
wish to consider the use of other performance measures including weighted (cost-sensitive) accuracy, 
F-measure, ROC, Mitre F-Score, Kappa score, Balanced Accuracy, Log-loss and Brier score. ROC is 
considered a better statistical foundation than most other measures and is taken as a standard measure 
in medicine and biology. 

Significant amount of research studies is still required in the subject area in order to address the 
related challenges and limitations discussed in this paper and to arrive at a system that is universally 
applicable. Furthermore, the constructive convergence of research directions is required in many 
aspects. The research community needs to define and adopt a common set of definitions, standards, 
protocols, algorithms, and systems evaluation techniques. This will facilitate a meaningful comparison 
of research results and the buildup of data pool for meta-analyses. Also, there is a need to ensure that 
wearable monitoring devices are fit for purpose both in terms of effectiveness and wearability. 
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