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Human detection in videos plays an important role in various real life applications. Most of traditional approaches depend on
utilizing handcra�ed features which are problem-dependent and optimal for speci	c tasks. Moreover, they are highly susceptible to
dynamical events such as illumination changes, camera jitter, and variations in object sizes. On the other hand, the proposed feature
learning approaches are cheaper and easier because highly abstract and discriminative features can be produced automatically
without the need of expert knowledge. In this paper, we utilize automatic feature learning methods which combine optical 
ow
and three di�erent deep models (i.e., supervised convolutional neural network (S-CNN), pretrained CNN feature extractor, and
hierarchical extreme learning machine) for human detection in videos captured using a nonstatic camera on an aerial platform
with varying altitudes.�e models are trained and tested on the publicly available and highly challenging UCF-ARG aerial dataset.
�e comparison between these models in terms of training, testing accuracy, and learning speed is analyzed. �e performance
evaluation considers 	ve human actions (digging, waving, throwing, walking, and running). Experimental results demonstrated
that the proposed methods are successful for human detection task. Pretrained CNN produces an average accuracy of 98.09%.
S-CNN produces an average accuracy of 95.6% with so�-max and 91.7% with Support Vector Machines (SVM). H-ELM has an
average accuracy of 95.9%. Using a normal Central Processing Unit (CPU), H-ELM’s training time takes 445 seconds. Learning in
S-CNN takes 770 seconds with a high performance Graphical Processing Unit (GPU).

1. Introduction

Human detection in videos (i.e., series of images) plays an
important role in various real life applications (e.g., visual
surveillance and automated driver assistance). �e task of
human detection in a series of aerial images is challenging
due to various reasons. One of these reasons is the variation
of human size in the video frame. �is results from changing
the altitude of the platform that the camera is attached to
during the task. Accuracy and short training time are the two
important factors that should be taken into consideration to
get a robust human, nonhuman classi	cation system.

�e process of feature design and selection is so sensitive
because it has a signi	cant role in improving the performance
of the model (the classi	er in this work). Handcra�ed
methods are speci	c domain knowledge. Some features that
are good for one application are not discriminative for other
applications. Besides that, these features need to be designed

by an expert under the process of feature engineering. On
the other hand, feature learning methods are fruitful when
the size of datasets is large with thousands of classes because
they are domain adaptation. �ey are able to learn highly
abstract features automatically without human intervention
and directly from raw pixels without designing speci	c
features.�is advantage is very fruitful when there is a lack of
an expert’s knowledge. On top of that, they are robust against
dynamical events in di�erent scenarios: the convolutional
neural network (CNN), which is one of the supervised
feature learning methods, extracts spatial structure by using
convolutions that provide local representations, pooling
that is shi�-invariant, and normalization that is adapted to
illumination change. Hierarchical extreme learning machine
(H-ELM), which is one of the unsupervised feature learning
methods, utilizes sparse autoencoders to provide more
robust features that adapt with data variations without
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preprocessing. Deep models have proven to be pro	cient in
human and nonhuman classi	cation.

Several papers have already utilized handcra�ed features
for human detection and have demonstrated that these
features are useful and successful for speci	c tasks. Local
binary patterns (LBP) [1] or Scale-Invariant Feature Trans-
form (SIFT) [2] were used for feature extraction in the given
image. Using these features, di�erent classi	ers were trained.
Examples are random forest and support vector machine.
Histogram of gradient (HOG) is also a prominent example
[3]. HOG preserves information concerning the gradient
surrounding detected spatial interest points [3]. HOG was
proven to be robust against changes in human appearance [3].
SVM was trained utilizing HOG features. Fastest Pedestrian
Detector of the West (FPDW) was also one of the methods
that depended on engineered features [4]. It utilizes HOG at
di�erent scales. Its speed outperforms state of the artmethods
by one order of magnitude but it preserves accuracy.�e pri-
mary strength of FPDW is that it only requires a single frame
for human detection but it requires a large number of pixels.

�ere are two main types of feature learning approaches:
supervised and unsupervised. A supervised learner needs
input/output pairs to learn the features. An unsupervised
learner uses only inputs to 	nd its features. S-CNN is a
supervised feature learner that 	ne-tunes the model parame-
ters iteratively. AlexNet is a supervised CNN model that has
already been trained on huge datasets and can be used as a
feature extractor. HELM is an unsupervised learner that gen-
erates input weights randomly and calculates output weights
analytically. �ese three di�erent models were applied in this
paper for the purpose of human, nonhuman classi	cation.

CNNs are multilayer perceptron neural networks. �ey
contain a number of convolutional layers, pooling layers,
fully connected layers, and normalization layers. �ey were
inspired by the biological process of organizing the animal
visual cortex [5]. �e weights of the whole layers in the net-
works are 	ne-tuned to produce speci	c classes.�e network
is trained by using the Stochastic Gradient Descent (SGD)
algorithm [5]. CNN has been employed in di�erent appli-
cations such as face recognition [6]. In this system, various
challenging factors such as pose change, illumination varia-
tion, and partial occlusion exist. In [6], a genetic algorithm
was used to 	nd the optimal CNN structure. An ensemble of
SVM was used for classi	cation. CNN has also been utilized
to solve various problems in natural language processing
such as sentence modelling, classi	cation, and prediction
[7–9]. �ree-dimensional CNN was used in the medical
	eld to segment the brain tumor in MR images [10]. An
extension of CNN to 3D was utilized for action recognition
in [11]. Spatiotemporal features were automatically learned. A
Recurrent Neural Network (Long Short-Term Memory) was
trained for sequential classi	cation. In this paper, supervised
CNN is demonstrated to learn discriminative features that are
being applied to the classi	ers.

Di�erent CNN models have already been trained with
big datasets. One of them is AlexNet. �e target dataset
was ImageNet. AlexNet was used to classify 1.2 million
high resolution images to 1000 di�erent classes [12]. �is
network achieved a very high accuracy. A big neural network

with 60 million connections and 650,000 nodes was built.
It includes 	ve convolutional layers, max pooling layers,
three fully connected layers, and a 1000-class so�-max layer.
�e dropout regularization method was utilized to reduce
over	tting in the fully connected layers. �is architecture
was utilized as a feature extractor in di�erent studies. �e
last fully connected layer was removed. Various classi	ers
were connected directly to the output of the seventh layer for
classi	cation purposes. AlexNet model is used in this paper
to extract the features before applying them on the classi	ers.

Hierarchical extreme learning machine is an e�cient fast
deep model that was used to learn features automatically
[13]. HELM has been involved in di�erent applications such
as digit classi	cation, car detection, tracking, and gesture
recognition. It was found to outperform the state of the art in
terms of training speed by one order ofmagnitude. It was able
to increase the speed of learning because there is no need to
	ne-tune the weights iteratively. In this model, the biases and
input weights are generated randomly, but the output weights
are calculated analytically. HELM model is also utilized in
this paper to learn the features in an unsupervised way before
applying them on the classi	ers.

Various applications have an embedded human detection
concept. One of themwas the driving assistance systems [14].
A camera was used instead of Light Detection and Ranging
(LIDAR) to detect objects in a single frame. �e LIDAR
sensor bounces laser beams to determine the distance. It
is expensive, sensitive to temperature, and good for only
short distances. �e camera is the cheaper replacement that
is not a�ected by distance and temperature. In this system,
automatic feature learning via fast deep network cascades was
used to performhumandetection. It was tested on theCaltech
dataset in videos captured by a camera mounted in a street.
CNN was also utilized in driving assistance system to detect
humans [15]. �e detection system was installed in a vehicle.
In this situation, a low cost and high accuracy technology
is required. CNN was merged with random dropout and
ensemble inference network (EIN) to improve the generaliza-
tion performance [15]. In this paper, the humandetection task
is demonstrated as a challenging task.�e image samples vary
in activities, positions, orientations, viewpoints, cloths color,
and scale. �e altitude of the camera is also varied according
to the moving airborne platform.

Using an aerial platform to perform human detection has
been in the attention of researchers for a signi	cant period of
time. Feature engineering methods were used for this objec-
tive. A framework that is based on optical 
ow and graph rep-
resentation was employed to extract the moving areas from
the frames of moving cameras in the Predator Unmanned
Airborne Vehicle (UAV) [16]. A dynamic template was used
to merge connected graph components to describe the graph
completely. Another human detection approach is based on
appearance [17]. It was proposed to detect humans from
a high altitude in an aerial image. An enhanced version
of the Haar features was utilized to characterize the object
shape. For color data, rectangular features were used. Small
persons (including their shadows) were detected utilizing an
AdaBoost binary classi	er. �e combination of FPDW and
Moving Object Detection (MOD) was utilized for UCF-ARG
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aerial dataset in [18]. MOD is based on the idea of detecting
all moving objects in the moving background. �e quality of
stabilization in this situation is important to detect moving
clusters of pixels. In this work, feature learning methods are
utilized for human detection using the sameUCF-ARG aerial
dataset.

Optical 
ow model was used for human detection in
various applications. �e task of mobile robot navigation
utilized optical 
ow to detect humans in real time when
the robot is moving [19]. �e thermal infrared camera was
used to achieve this goal. Human motion detection using a
combination of optical 
ow and classi	cation methods was
proposed in [20]. Region segmentation was used in the 	rst
stage and a�er getting geometric 
ow, feature extraction was
employed by Bandelet transform. Supervised learning was
added in the last stage for classi	cation. In this paper, optical

ow is utilized as a 	rst stage to detect moving objects with
moving camera. �e patches of moving objects are stored as
training samples including human and nonhuman patches.
�ese samples are used to learn the features and then to train
the classi	ers.

Several papers have already utilized handcra�ed features
for human detection. �is paper does not focus on these
methods and does not try to compare the handcra�ed
methods with deep model based methods. �e objective of
this paper is to study and compare di�erent deep learning
methods to detect humans in a challenging scenario that
includes a camera attached to a moving airborne object. �e
comparison between three di�erent deep models which are
supervised CNN, pretrained CNN, and HELM is demon-
strated for feature learning and model building for the UCF-
ARG aerial dataset. An optical 
ow model is added as a 	rst
stage in the three systems to get the training and testing
samples as inputs to deep models.

�e novelty of our work is as follows:

(i) To the best of our knowledge, this work is the 	rst one
that utilizes di�erent deepmodels for the publicUCF-
ARG aerial dataset for human detection.

(ii) Supervised CNN is demonstrated to 	nd optimal
features that are discriminative to two classes of
human and nonhuman. So�-max and SVM are used
in the last layer of CNN to produce the classi	cation
output.

(iii) PretrainedAlexNet CNNmodel that has already been
trained on ImageNet dataset for visual object recogni-
tion to classify 1000 di�erent classes is demonstrated
as a feature extractor with 	xed parameters a�er
removing the fully connected layers to 	nd discrimi-
native features for human, nonhuman classi	cation.

(iv) HELM is also discussed to take into consideration
the trade-o� between high accuracy and low training
time.

(v) �e comparison betweenCNNas a supervised feature
learner, pretrained CNN as a feature extractor, and
HELM as an unsupervised feature learner in terms
of learning speed and accuracy is evaluated for 	ve

human actions (digging, waving, throwing, walking,
and running).

�e organization of the paper is as follows: In Section 2,
the three proposed systems that consist of the optical 
ow
model and three deep models are described. Section 3
discusses the experimental results and analyzes them in
terms of training speed and accuracy. Section 4 demonstrates
the e�ciency of the proposed system by summarizing the
outcome of this work.

2. The Methodology

Visual aerial data is 	rst captured by a moving camera
mounted on an airborne platform. In this work, we work
with the publicly available and challenging UCF-ARG aerial
dataset [21]. �e frames of the videos are used as input
for the optical 
ow stabilization approach. Image patches of
objects resulting from the computation of the optical 
ow
will be produced for both human and nonhuman objects.
Nonhuman patches include cars, grass, tools, and other
di�erent regions from the background.

�e three deep models studied in our work (i.e., super-
vised CNN, pretrained CNN, and HELM) will then utilize
these patches as inputs. �e output of both deep models
is an e�cient type of representation for the objects. �ese
representations are then classi	ed into binary classes (human
and nonhuman) using so�-max or support vector machine
(SVM) in supervised CNN and pretrained CNN and extreme
learning machine (ELM) in HELM. A brief review about
each module used in the proposed detection system (optical

ow, supervised CNN, pretrained CNN, ELM, and HELM) is
summarized in the following subsections. A block diagram of
the proposed systems is shown in Figure 1.

2.1. Background Stabilization by Optical Flow Model [22, 23].
�e 	rst stage in our proposed system, which is background
stabilization, is done using the optical 
ow model. Optical

ow estimates the speed and direction of the motion vector
between sequences of frames.�is stage is important because
it tackles the camera movement issue that results from the
moving aerial platform. Feature images are produced by
thresh-holding and performing a morphological operation
(closing) to the motion vectors. Blob analysis is then per-
formed to locatemoving objects in each binary feature image.
Next, green boundary boxes are overlaid surrounding the
detected objects. �e quality of optical 
ow for background
stabilization is important as it is the 	rst stage, before feature

learning is performed via deep models which act as input for
the classi	ers.

To 	nd the optical 
ow between two frames, two optical

ow constraint equations are used:

�� + ��ℎ + ��V = 0, (1)

where ��, ��, and �� are the derivatives of spatiotemporal
brightness for a frame, V is the vertical part of optical 
ow,
and ℎ is the horizontal part.

When optical 
ow is applied over the whole frame,
the Horn-Schunck approach [23] 	nds the velocity 	eld
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Figure 1: Block diagram of the three proposed systems for human detection with aerial data.

estimation for each pixel in the frame, [ℎ V]�, thatminimizes
the following equation:
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where  is a scaling factor for the optical 
ow computation
and 
ℎ/
� and 
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� are the spatial derivatives of the optical
velocity ℎ
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In these equations, [ℎ��,� V��,�] is the velocity estimate at

pixel (�, �) and [ℎ��,� V��,�] is the neighborhood average of

[ℎ��,� V��,�]. �e initial velocity is 0 when � = 0. �e Horn-

Schunck method is used to solve ℎ and V.

2.2. Deep Model Based Human Detection. A�er applying
optical 
ow to stabilize the scenes, humans are detected
utilizing a deep model approach for human and nonhuman
classi	cation purposes.

2.2.1. Convolutional Neural Network [5, 6]. �e Convolu-
tional Neural Network (CNN) was inspired by biological
evidences in the visual cortex of mammal brains. CNN is a
supervised neural network that has multiple layers. It is able
to extract the e�cient features during the training stage.�us,
in this work, it functions optimally in learning important and
discriminative features from a series of images (i.e., videos)
containing humans. Its generalization capability enables it
to work well even for an arbitrary series of images. CNN is
invariant to shi�, rotation, and scale.�is is due to the pooling
layers inCNNwhich reduce the number of locally or specially

represented features and control the over	tting problem.
CNN is robust to misrepresented input data because the
structure of deep layers produces a highly abstract representa-
tion at the 	nal layer. It is also robust tomisbalanced data that
results from the unequal division of data into di�erent classes.
�e local receptive 	elds, spatial subsampling, and weight
sharing are the main properties that make this method so
robust. �e weight sharing property can reduce the number
of parameters and boost the generalization performance.

�e CNN structure includes two main blocks: automatic
feature learning and a classi	er. �e CNN works by putting
a raw image as input. Features are learned by using multiple
layers of feature maps. �e convolutional 	lters are applied
on raw images. Next, down sampling is performed to reduce
the size in each layer. Di�erent structures of CNN exist. �ey
o�en di�er from each other in the number of feature maps
in every convolutional layer, the dimensions of convolution
	lters, the speci	c connection between layers, and the activa-
tion functions.

(1) Supervised CNN Model [24, 25]. In the supervised CNN
model, there are many fully connected layers that are con-
nected before the classi	cation layer. �e weights of the
whole layers in the networks are 	ne-tuned to produce
speci	c classes related to the task. �e learned features are
discriminative to these classes. �is is called a supervised
feature learning approach.

�e S-CNN network was trained by using the Stochastic
Gradient Descent (SGD) algorithm with momentum [25]. In
this algorithm, parameters (weights and biases) are updated
in one step to minimize the error function (loss). Small steps
are added to negative gradient.

���+1 = �� − ∇� (��) , (4)

where � is the number of iterations,  is the learning rate, � is
the vector of parameters, �(�) is the loss function, and ∇�(�)
is the gradient.

�e entire training dataset is used to 	nd the gradient by
dividing the set into small subsets. �ese subsets are called
mini batches and they are used to update the parameters in
each iteration by taking one step. �e entire training dataset
is passed by using mini batches in one epoch. �e training



Computational Intelligence and Neuroscience 5

consists of many epochs.�emini batch size and the number
of epochs should be determined before training. Sometimes,
the gradient descent algorithm might oscillate around the
local optima; therefore amomentum term is added to prevent
this oscillation [24, 25]. �e SGD update with momentum is
as follows:

��+1 = �� − ∇� (��) + � (�� − ��−1) , (5)

where � is the impact of the previous gradient step in the
current iteration.

L2 regularization term is added to the weights of the error
function to reduce over	tting [24, 25].�e loss function with
regularization is as follows:

�� (�) = � (�) + �∇Ω (�) , (6)

where � is the weight vector, � is the regularization coe�-
cient, and Ω(�) is the regularization function.

Ω (�) = 1
2���. (7)

�e error function is the cross-entropy function for 1-of-k
mutually exclusive classes as shown in the following equation:

� (�) = − �∑
	=1

�∑

=1

�	
 ln�
 (�	, �) , (8)

where � is a vector of parameters, �	
 indicates that the  th
sample is linked to the !th class, and �
(�	, �) is the  th
sample’s output and can be formulated as a probability. �e
activation function of the output is the so�-max function:

�� (�, �) = exp ("� (�, �))
∑�
=1 exp ("
 (�, �)) , (9)

where 0 ≤ �� ≤ 1, ∑�
=1 �
 = 1.
In this work, a 	xed learning rate of 0.01 is used. �e

size of the mini batch is 300. �e number of epochs is 30.
�e initial weights are produced by a Gaussian distribution
with zero mean and standard deviation of 0.01. �e initial
bias value is zero. �e momentum value is 0.9. �e L2
regularization coe�cient is 0.0001.

(2) Pretrained CNN Model [26, 27]. “AlexNet” CNN with 5
convolutional layers has already been trained on ImageNet
dataset. �e network was trained for 90 cycles through the
training set of 1.2 million images.�is training took 	ve to six
days on two NVIDIA GTX 580 3GB GPUs. A�er training,
this model is used to extract discriminative features. �e
weights of the whole layers in the networks are 	xed.�e last
fully connected layer, which is used to classify objects to 1000
classes, was removed.�is pretrained model is able to extract
4096 features from each image. �ese features are used to
train the various classi	ers connected directly to the output
of the seventh layer.

2.2.2. Extreme Learning Machine [28]. Extreme learning
machine (ELM) is a neural network that contains only one
hidden layer. It possesses high generalization and highly

e�cient learning rate as its characteristics. �ese contribute
to the success of this learningmethod.�e biases and weights
of the hidden layers are set randomly but the weights of the
outputs are calculated analytically

% (�) = �∑
	=1

&	 (�, '	, *	) ⋅ 3	, '	 ∈ 5, *	, 3	 ∈ 5, (10)

where &	(⋅) is an activation function of the  th hidden node,'	 is an input weight, *	 is a bias, and 3	 is the weight applied
on the output. 6 neurons are used in the hidden layer.

3 = 7†8,
3 = 7� ( 1

� + 7 ⋅ 7�)−1 ⋅ 8, (11)

where 7 is an output of the hidden layer, 7† is the
Moore–Penrose generalized inverse of a matrix, T is a target,
and � is a regulation coe�cient.

2.2.3. Hierarchical ELM for Feature Learning [13]. When
dealing with visual data such as series of images, a deep
architecture of extreme learning machine is required. Hier-
archical extreme learning machine (HELM) is a recent deep
model that is used to learn features automatically. It is utilized
as a main block before the classi	er to improve the system
performance in terms of accuracy. �is architecture can
achieve self-taught feature learning via unsupervised ELM-
based sparse encoder. HELM provides improved general-
ization and reduced learning time. �e ELM-based sparse
encoder is built using a fast iterative shrinkage thresholding
algorithm (FISTA).�is encoder is used as a basic component
for HELM. Deep architecture is then achieved by stacking
multiple encoders. It guarantees improved data recovery and
reduces the testing time by reducing the number of neural
nodes. Please refer to [13] formore details concerningHELM.
HELM does not require the encoder’s weights to be 	ne-
tuned iteratively. �is is the main reason why it is able to
signi	cantly reduce the time used for learning/training.

3. Experimental Results

3.1. Dataset Description [29]. �e University of Central
Florida (UCF) published three types of datasets which are
captured using an aerial camera, a Roo�op camera, and
a Ground camera (ARG). Each dataset contains multiple
human actions captured from multiple views. �e datasets
consist of ten actions performed by twelve persons. �is
paper focuses on the aerial camera dataset and 	ve di�erent
activities: digging, waving, throwing, walking, and running.

�is aerial dataset is considered as one of the most
challenging datasets because the image samples are vary in
activities, positions, orientations, viewpoints, cloth color, and
scale. Besides that, the altitude of the camera varies according
to the moving airborne platform. Figures 2, 3, and 4 show
di�erent samples of human and nonhuman objects in various
situations.

In this paper, we focus on the usage of videos captured
using an aerial camera. A high-de	nition camera (1920 ×
1080 pixels at 60 fps) is mounted onto the payload platform
of a helium balloon. For each activity, there are forty eight
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Figure 2: A few samples of nonhuman objects detected by the optical 
owmodel.�e images actually have di�erent sizes but they are resized
to the same size.

Figure 3: A few samples of human objects with di�erent activities, positions, orientations, viewpoints, cloth color, and scale detected by the
optical 
ow model. �e images actually have di�erent sizes but they are resized to the same size.

Figure 4: A few samples of human objects with varying altitudes due to aerial movement. �e images actually have di�erent sizes but they
are resized to the same size.
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Figure 5: Structure of S-CNN model for human detection.

videos. Ten actions are performed four times by each per-
son: boxing, carrying, clapping, digging, jogging, open-close
trunk, running, throwing, walking, and waving. �e actions
are performed in various directions with three cars parked
also in various directions.

For experimental purposes, the performance of detection
methods is evaluated for 	ve di�erent actions: digging,
waving, throwing, walking, and running. �is is su�cient
as the main interest is to evaluate the performance of the
proposed approach by using various deep models to classify
aerial datasets which are highly challenging.

For this work, 48 (videos for each activity) ∗ 5 (activities)
= 240 videos are used as training and testing data. 12 persons
repeat the same activity 4 times. Eight of twelve persons are
used for training and four persons are used for testing. �e
results are 160 videos for training and 80 videos for testing.

To reduce the number of samples used for training, not all
frames in the video are used but only one frame from every
ten frames is taken for training. �ese frames are used a�er
applying optical 
ow to 	ndmoving patches within an image.
One of these patches contains a human. All patches in one
frame are used for training. Because the size of patches is
not equal as a result of varying altitudes when airborne, these
patches are resized to 227∗227 pixels in pretrained CNN and100∗100 pixels in S-CNN andHELMbefore being processed
by the deep models to extract the discriminative features.

�e problem that appears in our training and testing
samples is that the number of positive (human) and negative
(nonhuman) samples is unbalanced.�is is mainly caused by
the optical 
ow stage that detects human and other regions in
the images which do not have any human. To further clarify
this issue, in each frame that is processed, only one patch is
extracted for humans (via optical 
ow) and multiple patches
are extracted for the others (i.e., nonhumans). �e total
number of samples is 26541. It includes 5862 positive samples
and 20679 negative samples. However, the most interesting
fact is that this problem does not a�ect our results. Even
with an unbalanced dataset (between positive and negative
samples), the proposed systems are still robust and are able to
produce a high classi	cation accuracy.

�e experiment was implemented in Matlab2016a on a
desktop computer. For HELM, the Intel core i7 @ 3.5GHz
CPU was used. For supervised CNN and pretrained CNN,
the NVIDIA GetForce GTX 950 GPU was used. Both
experiments were conducted in the Windows 8.1 (64 bits)
environment.

3.2. Supervised CNN Implementation. �e optimal CNN
structure is shown in Figure 5. �e architecture consists of
17 layers including an input layer, three convolutional layers,
three max pooling layers, six recti	er linear unit layers, and
	nally two fully connected layers with a so�-max layer. �e
input layer contains a grey image with 100 ∗ 100 pixels.
Each convolutional layer has twenty feature maps with 5 ∗5 convolution 	lters. �e 	rst convolutional feature map is96 ∗ 96. �e second is 44 ∗ 44. �en, the third one is 18 ∗ 18.
�e layers of max pooling have 2 ∗ 2. �e 	rst max pooling
produces 48 ∗ 48 feature maps. �e second one gives 22 ∗ 22
features maps. �en, the third one has 9 ∗ 9 feature maps.
�e six recti	er linear unit layers (Relu) are used between
layers to clear the negative values. �e last layers are fully
connectedwith 1000 nodes. 2 nodes are connected to the so�-
max layer to give two classes. Figure 6 shows the snapshots of
feature maps a�er the 	rst convolution layer C1, the second
convolution layer C2, and the third convolution layer C3.
Stochastic gradient descent was used to train themodel with a
mini batch size of 300.�e learned features are extracted from
the eighth layer “fc8” which is connected directly to a so�-
max layer or SVM classi	er to produce two classes: human
and nonhuman.

�e supervised CNN layers are as follows:

(1) Image input layer with 100 ∗ 100 pixels grey image.

(2) Convolution layer: 20 feature maps of 5 ∗ 5.
(3) Relu layer.

(4) Max pooling layer: pooling regions of size [2, 2] and
returning the maximum of the four.

(5) Relu layer.

(6) Convolution layer: 20 feature maps of 5 ∗ 5.
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Figure 6: Snapshots of feature maps: the upper two rows show feature maps a�er the 	rst convolution layer C1 20 ∗ (5 ∗ 5); the lowest row
show feature maps a�er the second convolution layer C2 20 ∗ (5 ∗ 5).

(7) Relu layer.

(8) Max pooling layer: pooling regions of size [2, 2] and
returning the maximum of the four.

(9) Relu layer.

(10) Convolution layer: 20 feature maps of 5 ∗ 5.
(11) Relu layer.

(12) Max pooling layer: pooling regions of size [2, 2] and
returning the maximum of the four.

(13) Fully connected layer: with 1000 nodes.

(14) Relu layer.

(15) Fully connected layer with 2 classes.

(16) So�-max layer.

(17) Classi	cation layer.

3.3. Pretrained CNN Implementation. MatConvNet, Convo-
lutional Neural Networks for MATLAB, is a toolbox that was
designed for simple, 
exible, and easy use of CNN building
blocks. It provides MATLAB functions for computing linear
convolutions with 	lter banks, feature pooling, and many
more. By using MatConvNet, new CNN architectures can
be built easily. “AlexNet” is one of those models which can
be downloaded from MatConvNet [27]. A CUDA-capable
GPU card is required to run this model. Figure 7 shows
the architecture of the AlexNet model. �e input color RGB
image is resampled to 227 ∗ 227 ∗ 3 pixels. �e networks
include 	ve convolutional layers, ReLU layers, max pooling
layers, three fully connected layers, a so�-max layer, and a
classi	cation layer. �e last fully connected layer is removed.
�e features are extracted from the seventh layer “fc7” which
is connected directly to an SVM classi	er to produce two
classes: human and nonhuman. �e activation function,

which is used to extract features, is computed on the GPU.
Stochastic gradient descent was used to train themodel with a
mini batch size of 32 to ensure that theCNNand image data 	t
into GPUmemory.�e number of extracted features is 4096.
Amulticlass SVM classi	er is used to classify the features into
human and nonhuman classes.

3.4. HELM Implementation. �e optimal HELM structure is
shown in Figure 8.�e architecture consists of three modules
including two sparse ELM-based autoencoders, and an ELM-
based classi	er.�e input contains a grey imagewith 100∗100
pixels. In the 	rst sparse autoencoder, there are 1000 neurons.
�e second sparse autoencoder also has 1000 neurons. �e
last module, which is a classi	er, consists of 12,000 nodes in
the hidden layers that are connected to 2 nodes in the output
to produce two classes.

3.5. Accuracy Analysis. Table 1 shows the accuracy of each
of the ten testing con	gurations. In each con	guration,
four persons are used in the testing data a�er applying the
four-person-out cross-validation approach. �e ten testing
con	gurations are as follows:

Testing con	gurations: {p1, p2, p3, p4} where p1, p2, p3,
and p4 are 4 testing persons.{1, 2, 3, 4} {5, 6, 7, 8} {9, 10, 11, 12} {1, 3, 5, 7} {2, 4, 6, 8}{1, 4, 7, 10} {2, 5, 8, 11} {3, 6, 9, 12} {1, 5, 9, 12} {1, 6, 11, 12}.

�e table compares the average accuracies of the pro-
posed deep models in terms of accuracy. Pretrained CNN
was found to outperform S-CNN and HELMwith an average
accuracy of 98.09%. Supervised CNN produces an average
accuracy of 95.6% with the so�-max classi	er and 91.7%
with the support vector machine (SVM) classi	er. HELM
produces an average accuracy of 95.9%.

�e leave four-out cross-validation model was used for
average accuracy calculation. �e experiment is repeated 10
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Table 1: Accuracy comparison between CNN so�-max, CNN SVM, pretrained CNN, and HELM.

Cross validation (4 persons out of 12) Supervised CNN + so�-max Supervised CNN + SVM Pretrained CNN + SVM HELM

1 94.0542 91.8966 97.7170 94.7065

2 97.3726 91.9131 97.6115 97.9186

3 96.1542 92.9835 98.5988 96.0008

4 97.1056 92.8199 97.8509 97.4410

5 94.6982 91.1981 97.9344 94.9851

6 95.7974 91.2816 98.4077 95.7583

7 91.7131 87.8823 98.0749 92.3971

8 96.5649 92.7828 98.5311 96.5765

9 97.0207 93.6128 98.0556 97.3239

10 95.5184 90.6524 98.1257 95.7467

Average accuracy 95.5999% 91.7023% 98.0908% 95.8855%
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Figure 7: �e architecture of the pretrained CNNmodel based on AlexNet [12].
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Figure 8: Deep model based on hierarchical ELM for human detection.

times. �e average value from these experiments is taken as
the 	nal result.

Each time and for each activity, 32 videos are used as
training data, and 16 videos are used as testing data. �e
testing video consists of a four new persons who perform the
same activity 4 times. �ese four persons do not appear in
the training data. �e process is repeated for ten di�erent
con	gurations including four new persons out of twelve

persons, then the average is calculated. Table 2 presents the
number of training and testing samples in the UCF-ARG
aerial dataset.

�e confusion matrices for the last con	guration{1, 6, 11, 12} as testing data are shown in Figure 9. �e
matrices display the testing accuracy for four persons out of
twelve. Each person repeats the 	ve actions four times. So
the number of testing videos is 80 out of 240.
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Table 2: �e number of training and testing data in the UCF-ARG aerial dataset.

Cross validation (4 persons out of 12) Number of training data Number of testing data

1 18569 7972

2 17749 8792

3 16764 9777

4 18071 8050

5 17374 8714

6 18006 7662

7 15360 10233

8 16733 8646

9 15607 9566

10 16183 8323
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Figure 9: (a) Testing accuracy for pretrained CNN, (b) testing accuracy for HELM, (c) testing accuracy for supervised CNN + so�-max, and
(d) testing accuracy for supervised CNN + SVM.
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Table 3: �e training and testing speed comparison between
supervised CNN and HELM.

Methods
Training time

[s]

Testing time
for one

sample [s]

S-CNN (GPU) 770 0.045

HELM (CPU) 445 0.1

Figure 10: Humans running in the UCF-ARG dataset: the green
boundary boxes in the image are the results a�er using optical

ow. �e red boundary boxes are the results a�er applying human
classi	cation based on deep models.

3.6. Speed Analysis. Table 3 shows the di�erence between
two feature learners (HELM and supervised CNN) in terms
of training and testing time. �e proposed HELM-based
detector outperforms S-CNN in terms of training speed even
though HELM uses CPU whereas S-CNN uses GPU. �is
results from utilizing hierarchical extreme learning machine
as a fast deep model that does not require 	ne tuning of
weights iteratively.�is advantage of HELM gives a chance to
be implemented in real time on low cost embedded system.

Figures 10, 11, and 12 show the original frames with green
and red boundary boxes. �e green boundary boxes result
from the optical 
ow model. Di�erent objects are detected
by optical 
ow and surrounded by green boxes. �e red
boundary box is drawn a�er using a deep model to detect
only humans. �e simulation videos have been uploaded to
the YouTube website. Please refer to the following link:

https://www.youtube.com/channel/UCvEvheiIvcV n
NvK3l4vQA.

�e model is trained for 	ve activities (digging, waving,
throwing, walking, and running). In Figure 13, multiple

Figure 11: Humans waving in the UCF-ARG dataset: the green
boundary boxes in each image are the results a�er using optical

ow. �e red boundary boxes are the results a�er applying human
classi	cation based on deep models.

Figure 12: Humans digging in the UCF-ARG dataset: the green
boundary boxes in each image are the results a�er using optical

ow. �e red boundary boxes are the results a�er applying human
classi	cation based on deep models.

human detections are tested. �is generalization perfor-
mance is suitable for detecting persons which are perform-
ing di�erent untrained activities such as clapping, boxing,
carrying, and jogging. Figure 14 shows multiple persons in

https://www.youtube.com/channel/UCvEvheiIvcV_n_NvK3l4vQA
https://www.youtube.com/channel/UCvEvheiIvcV_n_NvK3l4vQA
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(a) (b)

(c) (d)

Figure 13: Detecting humans with di�erent untrained actions from the UCF-ARG dataset ((a) for jogging. (b) for carrying. (c) for boxing.
(d) for clapping). Green boundary boxes in each image are the results a�er using optical 
ow. �e red boundary boxes are the results a�er
applying human classi	cation based on deep models.

one frame. Each person performs a di�erent activity. �e
proposed models are able to detect all humans in the frame
and draw boundary boxes around them.

4. Discussion and Conclusion

In this paper, the implementation of three deep models for
human detection was demonstrated. �e performance was
evaluated for 	ve human actions (digging, waving, throwing,
walking, and running). �e models were trained and tested
on the public UCF-ARG aerial dataset. �e challenging part
of this dataset is the size of human patches which vary
according to the altitude of the moving airborne platform
and the multiple viewpoints of humans in the same video.
Also, due to the usage of optical 
ow, the training and testing
data was unbalanced in terms of the number of positive and
negative samples.

�e results of this work can be summarized as follows:

(1) �e quality of the stabilization method (optical 
ow)
is important in our proposed systems as a 	rst
stage before applying the deep models for human,
nonhuman classi	cation.

(2) �e proposed systems solve the trade-o� problem
between high accuracy and speed of detection. �e
pretrained deep model was found to outperform S-
CNNandHELM in terms of accuracywith an average
accuracy of 98.09%.�e pretrained CNN and S-CNN
models were implemented on a GPU. HELM was
more time e�cient than S-CNN because it does not
require iterative 	ne tuning of the weights. �is is
because the weights are generated randomly. Due

to this, the training time is reduced to 445 s with
a normal CPU. At the same time, it produces a
good average classi	cation accuracy of 95.9%. HELM
is recommended for use in embedded systems that
require high accuracy with low cost.

�e advantages of the proposed systems are as follows:

(i) �e proposed system can detect humans automati-
cally and does not need a manual detection threshold
to select one that has the highest true positive rate.

(ii) �e generalization of both deep models is able to
detect humans accurately in all 80 videos that are not
in the training data.

(iii) �e proposed system achieves real-time performance
for testing live-captured videos because the optical

owmodel only utilizes two successive frames to 	nd
motion. Moreover, deep models only require a single
frame to classify the optical 
ow patches as human or
nonhuman (i.e., human detection).

(iv) �e proposed deep models are robust against various
activities, positions, orientations, viewpoints, cloth
color, scale, and altitudes.

�e drawback of the proposed system is that it is highly
dependent on the quality of the optical 
ow processing stage.
Adding tracking to the whole pipeline for human detection
can reduce this dependency and improve the overall accuracy.
For a future work, we will integrate tracking thatmakes use of
initially extracted training regions around humans as positive
samples and other regions as negative samples. As the result
is highly accurate and e�cient, we will utilize the results
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Figure 14: Human detection for multiple human with di�erent actions from UCF-ARG dataset: Green boundary boxes in each image are
the results a�er using optical 
ow.�e red boundary boxes are the results a�er applying human classi	cation based on deep models.�e 	rst
and third rows are the original frames. �e second row is the 	rst row a�er zooming in on the persons.

of human detection demonstrated in this paper for human
action recognition to map each activity with a speci	c action
class.
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