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Abstract

We propose a new method to quickly and accurately pre-

dict 3D positions of body joints from a single depth image,

using no temporal information. We take an object recog-

nition approach, designing an intermediate body parts rep-

resentation that maps the difficult pose estimation problem

into a simpler per-pixel classification problem. Our large

and highly varied training dataset allows the classifier to

estimate body parts invariant to pose, body shape, clothing,

etc. Finally we generate confidence-scored 3D proposals of

several body joints by reprojecting the classification result

and finding local modes.

The system runs at 200 frames per second on consumer

hardware. Our evaluation shows high accuracy on both

synthetic and real test sets, and investigates the effect of sev-

eral training parameters. We achieve state of the art accu-

racy in our comparison with related work and demonstrate

improved generalization over exact whole-skeleton nearest

neighbor matching.

1. Introduction

Robust interactive human body tracking has applica-

tions including gaming, human-computer interaction, secu-

rity, telepresence, and even health-care. The task has re-

cently been greatly simplified by the introduction of real-

time depth cameras [16, 19, 44, 37, 28, 13]. However, even

the best existing systems still exhibit limitations. In partic-

ular, until the launch of Kinect [21], none ran at interactive

rates on consumer hardware while handling a full range of

human body shapes and sizes undergoing general body mo-

tions. Some systems achieve high speeds by tracking from

frame to frame but struggle to re-initialize quickly and so

are not robust. In this paper, we focus on pose recognition

in parts: detecting from a single depth image a small set of

3D position candidates for each skeletal joint. Our focus on

per-frame initialization and recovery is designed to comple-

ment any appropriate tracking algorithm [7, 39, 16, 42, 13]

that might further incorporate temporal and kinematic co-

herence. The algorithm presented here forms a core com-

ponent of the Kinect gaming platform [21].

Illustrated in Fig. 1 and inspired by recent object recog-

nition work that divides objects into parts (e.g. [12, 43]),

our approach is driven by two key design goals: computa-

tional efficiency and robustness. A single input depth image

is segmented into a dense probabilistic body part labeling,

with the parts defined to be spatially localized near skeletal

depth image body parts 3D joint proposals 

Figure 1. Overview. From an single input depth image, a per-pixel

body part distribution is inferred. (Colors indicate the most likely

part labels at each pixel, and correspond in the joint proposals).

Local modes of this signal are estimated to give high-quality pro-

posals for the 3D locations of body joints, even for multiple users.

joints of interest. Reprojecting the inferred parts into world

space, we localize spatial modes of each part distribution

and thus generate (possibly several) confidence-weighted

proposals for the 3D locations of each skeletal joint.

We treat the segmentation into body parts as a per-pixel

classification task (no pairwise terms or CRF have proved

necessary). Evaluating each pixel separately avoids a com-

binatorial search over the different body joints, although

within a single part there are of course still dramatic dif-

ferences in the contextual appearance. For training data,

we generate realistic synthetic depth images of humans of

many shapes and sizes in highly varied poses sampled from

a large motion capture database. We train a deep ran-

domized decision forest classifier which avoids overfitting

by using hundreds of thousands of training images. Sim-

ple, discriminative depth comparison image features yield

3D translation invariance while maintaining high computa-

tional efficiency. For further speed, the classifier can be run

in parallel on each pixel on a GPU [34]. Finally, spatial

modes of the inferred per-pixel distributions are computed

using mean shift [10] resulting in the 3D joint proposals.

An optimized implementation of our algorithm runs in

under 5ms per frame (200 frames per second) on the Xbox

360 GPU, at least one order of magnitude faster than exist-

ing approaches. It works frame-by-frame across dramati-

cally differing body shapes and sizes, and the learned dis-

criminative approach naturally handles self-occlusions and
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poses cropped by the image frame. We evaluate on both real

and synthetic depth images, containing challenging poses of

a varied set of subjects. Even without exploiting temporal

or kinematic constraints, the 3D joint proposals are both ac-

curate and stable. We investigate the effect of several train-

ing parameters and show how very deep trees can still avoid

overfitting due to the large training set. We demonstrate

that our part proposals generalize at least as well as exact

nearest-neighbor in both an idealized and realistic setting,

and show a substantial improvement over the state of the

art. Further, results on silhouette images suggest more gen-

eral applicability of our approach.

Our main contribution is to treat pose estimation as ob-

ject recognition using a novel intermediate body parts rep-

resentation designed to spatially localize joints of interest

at low computational cost and high accuracy. Our experi-

ments also carry several insights: (i) synthetic depth train-

ing data is an excellent proxy for real data; (ii) scaling up

the learning problem with varied synthetic data is important

for high accuracy; and (iii) our parts-based approach gener-

alizes better than even an oracular exact nearest neighbor.

Related Work. Human pose estimation has generated a

vast literature (surveyed in [22, 29]). The recent availability

of depth cameras has spurred further progress [16, 19, 28].

Grest et al. [16] use Iterated Closest Point to track a skele-

ton of a known size and starting position. Anguelov et al.

[3] segment puppets in 3D range scan data into head, limbs,

torso, and background using spin images and a MRF. In

[44], Zhu & Fujimura build heuristic detectors for coarse

upper body parts (head, torso, arms) using a linear program-

ming relaxation, but require a T-pose initialization to size

the model. Siddiqui & Medioni [37] hand craft head, hand,

and forearm detectors, and show data-driven MCMC model

fitting outperforms ICP. Kalogerakis et al. [18] classify and

segment vertices in a full closed 3D mesh into different

parts, but do not deal with occlusions and are sensitive to

mesh topology. Most similar to our approach, Plagemann

et al. [28] build a 3D mesh to find geodesic extrema inter-

est points which are classified into 3 parts: head, hand, and

foot. Their method provides both a location and orientation

estimate of these parts, but does not distinguish left from

right and the use of interest points limits the choice of parts.

Advances have also been made using conventional in-

tensity cameras, though typically at much higher computa-

tional cost. Bregler & Malik [7] track humans using twists

and exponential maps from a known initial pose. Ioffe &

Forsyth [17] group parallel edges as candidate body seg-

ments and prune combinations of segments using a pro-

jected classifier. Mori & Malik [24] use the shape con-

text descriptor to match exemplars. Ramanan & Forsyth

[31] find candidate body segments as pairs of parallel lines,

clustering appearances across frames. Shakhnarovich et al.

[33] estimate upper body pose, interpolating k-NN poses

matched by parameter sensitive hashing. Agarwal & Triggs

[1] learn a regression from kernelized image silhouettes fea-

tures to pose. Sigal et al. [39] use eigen-appearance tem-

plate detectors for head, upper arms and lower legs pro-

posals. Felzenszwalb & Huttenlocher [11] apply pictorial

structures to estimate pose efficiently. Navaratnam et al.

[25] use the marginal statistics of unlabeled data to im-

prove pose estimation. Urtasun & Darrel [41] proposed a

local mixture of Gaussian Processes to regress human pose.

Auto-context was used in [40] to obtain a coarse body part

labeling but this was not defined to localize joints and clas-

sifying each frame took about 40 seconds. Rogez et al. [32]

train randomized decision forests on a hierarchy of classes

defined on a torus of cyclic human motion patterns and cam-

era angles. Wang & Popović [42] track a hand clothed in a

colored glove. Our system could be seen as automatically

inferring the colors of an virtual colored suit from a depth

image. Bourdev & Malik [6] present ‘poselets’ that form

tight clusters in both 3D pose and 2D image appearance,

detectable using SVMs.

2. Data

Pose estimation research has often focused on techniques

to overcome lack of training data [25], because of two prob-

lems. First, generating realistic intensity images using com-

puter graphics techniques [33, 27, 26] is hampered by the

huge color and texture variability induced by clothing, hair,

and skin, often meaning that the data are reduced to 2D sil-

houettes [1]. Although depth cameras significantly reduce

this difficulty, considerable variation in body and clothing

shape remains. The second limitation is that synthetic body

pose images are of necessity fed by motion-capture (mocap)

data. Although techniques exist to simulate human motion

(e.g. [38]) they do not yet produce the range of volitional

motions of a human subject.

In this section we review depth imaging and show how

we use real mocap data, retargetted to a variety of base char-

acter models, to synthesize a large, varied dataset. We be-

lieve this dataset to considerably advance the state of the art

in both scale and variety, and demonstrate the importance

of such a large dataset in our evaluation.

2.1. Depth imaging

Depth imaging technology has advanced dramatically

over the last few years, finally reaching a consumer price

point with the launch of Kinect [21]. Pixels in a depth image

indicate calibrated depth in the scene, rather than a measure

of intensity or color. We employ the Kinect camera which

gives a 640x480 image at 30 frames per second with depth

resolution of a few centimeters.

Depth cameras offer several advantages over traditional

intensity sensors, working in low light levels, giving a cali-

brated scale estimate, being color and texture invariant, and

resolving silhouette ambiguities in pose. They also greatly
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Figure 2. Synthetic and real data. Pairs of depth image and ground truth body parts. Note wide variety in pose, shape, clothing, and crop.

simplify the task of background subtraction which we as-

sume in this work. But most importantly for our approach,

it is straightforward to synthesize realistic depth images of

people and thus build a large training dataset cheaply.

2.2. Motion capture data

The human body is capable of an enormous range of

poses which are difficult to simulate. Instead, we capture a

large database of motion capture (mocap) of human actions.

Our aim was to span the wide variety of poses people would

make in an entertainment scenario. The database consists of

approximately 500k frames in a few hundred sequences of

driving, dancing, kicking, running, navigating menus, etc.

We expect our semi-local body part classifier to gener-

alize somewhat to unseen poses. In particular, we need not

record all possible combinations of the different limbs; in

practice, a wide range of poses proves sufficient. Further,

we need not record mocap with variation in rotation about

the vertical axis, mirroring left-right, scene position, body

shape and size, or camera pose, all of which can be added

in (semi-)automatically.

Since the classifier uses no temporal information, we

are interested only in static poses and not motion. Often,

changes in pose from one mocap frame to the next are so

small as to be insignificant. We thus discard many similar,

redundant poses from the initial mocap data using ‘furthest

neighbor’ clustering [15] where the distance between poses

p1 and p2 is defined as maxj ‖p
j
1−p

j
2‖2, the maximum Eu-

clidean distance over body joints j. We use a subset of 100k

poses such that no two poses are closer than 5cm.

We have found it necessary to iterate the process of mo-

tion capture, sampling from our model, training the classi-

fier, and testing joint prediction accuracy in order to refine

the mocap database with regions of pose space that had been

previously missed out. Our early experiments employed

the CMU mocap database [9] which gave acceptable results

though covered far less of pose space.

2.3. Generating synthetic data

We build a randomized rendering pipeline from which

we can sample fully labeled training images. Our goals in

building this pipeline were twofold: realism and variety. For

the learned model to work well, the samples must closely

resemble real camera images, and contain good coverage of

the appearance variations we hope to recognize at test time.

While depth/scale and translation variations are handled ex-

plicitly in our features (see below), other invariances cannot

be encoded efficiently. Instead we learn invariance from the

data to camera pose, body pose, and body size and shape.

The synthesis pipeline first randomly samples a set of

parameters, and then uses standard computer graphics tech-

niques to render depth and (see below) body part images

from texture mapped 3D meshes. The mocap is retarget-

ting to each of 15 base meshes spanning the range of body

shapes and sizes, using [4]. Further slight random vari-

ation in height and weight give extra coverage of body

shapes. Other randomized parameters include the mocap

frame, camera pose, camera noise, clothing and hairstyle.

We provide more details of these variations in the supple-

mentary material. Fig. 2 compares the varied output of the

pipeline to hand-labeled real camera images.

3. Body Part Inference and Joint Proposals

In this section we describe our intermediate body parts

representation, detail the discriminative depth image fea-

tures, review decision forests and their application to body

part recognition, and finally discuss how a mode finding al-

gorithm is used to generate joint position proposals.

3.1. Body part labeling

A key contribution of this work is our intermediate body

part representation. We define several localized body part

labels that densely cover the body, as color-coded in Fig. 2.

Some of these parts are defined to directly localize partic-

ular skeletal joints of interest, while others fill the gaps or

could be used in combination to predict other joints. Our in-

termediate representation transforms the problem into one

that can readily be solved by efficient classification algo-

rithms; we show in Sec. 4.3 that the penalty paid for this

transformation is small.

The parts are specified in a texture map that is retargetted

to skin the various characters during rendering. The pairs of

depth and body part images are used as fully labeled data for

learning the classifier (see below). For the experiments in

this paper, we use 31 body parts: LU/RU/LW/RW head, neck,

L/R shoulder, LU/RU/LW/RW arm, L/R elbow, L/R wrist, L/R

hand, LU/RU/LW/RW torso, LU/RU/LW/RW leg, L/R knee,

L/R ankle, L/R foot (Left, Right, Upper, loWer). Distinct
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Figure 3. Depth image features. The yellow crosses indicates the

pixel x being classified. The red circles indicate the offset pixels

as defined in Eq. 1. In (a), the two example features give a large

depth difference response. In (b), the same two features at new

image locations give a much smaller response.

parts for left and right allow the classifier to disambiguate

the left and right sides of the body.

Of course, the precise definition of these parts could be

changed to suit a particular application. For example, in an

upper body tracking scenario, all the lower body parts could

be merged. Parts should be sufficiently small to accurately

localize body joints, but not too numerous as to waste ca-

pacity of the classifier.

3.2. Depth image features

We employ simple depth comparison features, inspired

by those in [20]. At a given pixel x, the features compute

fθ(I,x) = dI

(

x+
u

dI(x)

)

− dI

(

x+
v

dI(x)

)

, (1)

where dI(x) is the depth at pixel x in image I , and parame-

ters θ = (u,v) describe offsets u and v. The normalization

of the offsets by 1
dI(x)

ensures the features are depth invari-

ant: at a given point on the body, a fixed world space offset

will result whether the pixel is close or far from the camera.

The features are thus 3D translation invariant (modulo per-

spective effects). If an offset pixel lies on the background

or outside the bounds of the image, the depth probe dI(x
′)

is given a large positive constant value.

Fig. 3 illustrates two features at different pixel locations

x. Feature fθ1 looks upwards: Eq. 1 will give a large pos-

itive response for pixels x near the top of the body, but a

value close to zero for pixels x lower down the body. Fea-

ture fθ2 may instead help find thin vertical structures such

as the arm.

Individually these features provide only a weak signal

about which part of the body the pixel belongs to, but in

combination in a decision forest they are sufficient to accu-

rately disambiguate all trained parts. The design of these

features was strongly motivated by their computational effi-

ciency: no preprocessing is needed; each feature need only

read at most 3 image pixels and perform at most 5 arithmetic

operations; and the features can be straightforwardly imple-

mented on the GPU. Given a larger computational budget,

one could employ potentially more powerful features based

on, for example, depth integrals over regions, curvature, or

local descriptors e.g. [5].

… 

tree 1 tree 𝑇
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Figure 4. Randomized Decision Forests. A forest is an ensemble

of trees. Each tree consists of split nodes (blue) and leaf nodes

(green). The red arrows indicate the different paths that might be

taken by different trees for a particular input.

3.3. Randomized decision forests

Randomized decision trees and forests [35, 30, 2, 8] have

proven fast and effective multi-class classifiers for many

tasks [20, 23, 36], and can be implemented efficiently on the

GPU [34]. As illustrated in Fig. 4, a forest is an ensemble

of T decision trees, each consisting of split and leaf nodes.

Each split node consists of a feature fθ and a threshold τ .

To classify pixel x in image I , one starts at the root and re-

peatedly evaluates Eq. 1, branching left or right according

to the comparison to threshold τ . At the leaf node reached

in tree t, a learned distribution Pt(c|I,x) over body part la-

bels c is stored. The distributions are averaged together for

all trees in the forest to give the final classification

P (c|I,x) =
1

T

T
∑

t=1

Pt(c|I,x) . (2)

Training. Each tree is trained on a different set of randomly

synthesized images. A random subset of 2000 example pix-

els from each image is chosen to ensure a roughly even dis-

tribution across body parts. Each tree is trained using the

following algorithm [20]:

1. Randomly propose a set of splitting candidates φ =
(θ, τ) (feature parameters θ and thresholds τ ).

2. Partition the set of examples Q = {(I,x)} into left

and right subsets by each φ:

Ql(φ) = { (I,x) | fθ(I,x) < τ } (3)

Qr(φ) = Q \Ql(φ) (4)

3. Compute the φ giving the largest gain in information:

φ⋆ = argmax
φ

G(φ) (5)

G(φ) = H(Q)−
∑

s∈{l,r}

|Qs(φ)|

|Q|
H(Qs(φ)) (6)

where Shannon entropy H(Q) is computed on the nor-

malized histogram of body part labels lI(x) for all

(I,x) ∈ Q.

4. If the largest gain G(φ⋆) is sufficient, and the depth in

the tree is below a maximum, then recurse for left and

right subsets Ql(φ
⋆) and Qr(φ

⋆).



•
•
•
•

Figure 5. Example inferences. Synthetic (top row); real (middle); failure modes (bottom). Left column: ground truth for a neutral pose as

a reference. In each example we see the depth image, the inferred most likely body part labels, and the joint proposals show as front, right,

and top views (overlaid on a depth point cloud). Only the most confident proposal for each joint above a fixed, shared threshold is shown.

To keep the training times down we employ a distributed

implementation. Training 3 trees to depth 20 from 1 million

images takes about a day on a 1000 core cluster.

3.4. Joint position proposals

Body part recognition as described above infers per-pixel

information. This information must now be pooled across

pixels to generate reliable proposals for the positions of 3D

skeletal joints. These proposals are the final output of our

algorithm, and could be used by a tracking algorithm to self-

initialize and recover from failure.

A simple option is to accumulate the global 3D centers

of probability mass for each part, using the known cali-

brated depth. However, outlying pixels severely degrade

the quality of such a global estimate. Instead we employ a

local mode-finding approach based on mean shift [10] with

a weighted Gaussian kernel.

We define a density estimator per body part as

fc(x̂) ∝

N
∑

i=1

wic exp

(

−

∥

∥

∥

∥

x̂− x̂i

bc

∥

∥

∥

∥

2
)

, (7)

where x̂ is a coordinate in 3D world space, N is the number

of image pixels, wic is a pixel weighting, x̂i is the reprojec-

tion of image pixel xi into world space given depth dI(xi),
and bc is a learned per-part bandwidth. The pixel weighting

wic considers both the inferred body part probability at the

pixel and the world surface area of the pixel:

wic = P (c|I,xi) · dI(xi)
2 . (8)

This ensures density estimates are depth invariant and gave

a small but significant improvement in joint prediction ac-

curacy. Depending on the definition of body parts, the pos-

terior P (c|I,x) can be pre-accumulated over a small set of

parts. For example, in our experiments the four body parts

covering the head are merged to localize the head joint.

Mean shift is used to find modes in this density effi-

ciently. All pixels above a learned probability threshold λc

are used as starting points for part c. A final confidence es-

timate is given as a sum of the pixel weights reaching each

mode. This proved more reliable than taking the modal den-

sity estimate.

The detected modes lie on the surface of the body. Each

mode is therefore pushed back into the scene by a learned

z offset ζc to produce a final joint position proposal. This

simple, efficient approach works well in practice. The band-

widths bc, probability threshold λc, and surface-to-interior

z offset ζc are optimized per-part on a hold-out validation

set of 5000 images by grid search. (As an indication, this

resulted in mean bandwidth 0.065m, probability threshold

0.14, and z offset 0.039m).

4. Experiments

In this section we describe the experiments performed to

evaluate our method. We show both qualitative and quan-

titative results on several challenging datasets, and com-

pare with both nearest-neighbor approaches and the state

of the art [13]. We provide further results in the supple-

mentary material. Unless otherwise specified, parameters

below were set as: 3 trees, 20 deep, 300k training images

per tree, 2000 training example pixels per image, 2000 can-

didate features θ, and 50 candidate thresholds τ per feature.

Test data. We use challenging synthetic and real depth im-

ages to evaluate our approach. For our synthetic test set,

we synthesize 5000 depth images, together with the ground

truth body part labels and joint positions. The original mo-

cap poses used to generate these images are held out from

the training data. Our real test set consists of 8808 frames of

real depth images over 15 different subjects, hand-labeled

with dense body parts and 7 upper body joint positions. We

also evaluate on the real depth data from [13]. The results

suggest that effects seen on synthetic data are mirrored in

the real data, and further that our synthetic test set is by far

the ‘hardest’ due to the extreme variability in pose and body

shape. For most experiments we limit the rotation of the

user to ±120◦ in both training and synthetic test data since

the user is facing the camera (0◦) in our main entertainment

scenario, though we also evaluate the full 360◦ scenario.

Error metrics. We quantify both classification and joint

prediction accuracy. For classification, we report the av-

erage per-class accuracy, i.e. the average of the diagonal of

the confusion matrix between the ground truth part label and

the most likely inferred part label. This metric weights each
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Figure 6. Training parameters vs. classification accuracy. (a) Number of training images. (b) Depth of trees. (c) Maximum probe offset.

body part equally despite their varying sizes, though misla-

belings on the part boundaries reduce the absolute numbers.

For joint proposals, we generate recall-precision curves

as a function of confidence threshold. We quantify accuracy

as average precision per joint, or mean average precision

(mAP) over all joints.The first joint proposal within D me-

ters of the ground truth position is taken as a true positive,

while other proposals also within D meters count as false

positives. This penalizes multiple spurious detections near

the correct position which might slow a downstream track-

ing algorithm. Any joint proposals outside D meters also

count as false positives. Note that all proposals (not just the

most confident) are counted in this metric. Joints invisible

in the image are not penalized as false negatives. We set

D = 0.1m below, approximately the accuracy of the hand-

labeled real test data ground truth. The strong correlation

of classification and joint prediction accuracy (c.f . the blue

curves in Figs. 6(a) and 8(a)) suggests the trends observed

below for one also apply for the other.

4.1. Qualitative results

Fig. 5 shows example inferences of our algorithm. Note

high accuracy of both classification and joint prediction

across large variations in body and camera pose, depth in

scene, cropping, and body size and shape (e.g. small child

vs. heavy adult). The bottom row shows some failure modes

of the body part classification. The first example shows

a failure to distinguish subtle changes in the depth image

such as the crossed arms. Often (as with the second and

third failure examples) the most likely body part is incor-

rect, but there is still sufficient correct probability mass in

distribution P (c|I,x) that an accurate proposal can still be

generated. The fourth example shows a failure to generalize

well to an unseen pose, but the confidence gates bad propos-

als, maintaining high precision at the expense of recall.

Note that no temporal or kinematic constraints (other

than those implicit in the training data) are used for any

of our results. Despite this, per-frame results on video se-

quences in the supplementary material show almost every

joint accurately predicted with remarkably little jitter.

4.2. Classification accuracy

We investigate the effect of several training parameters

on classification accuracy. The trends are highly correlated

between the synthetic and real test sets, and the real test

set appears consistently ‘easier’ than the synthetic test set,

probably due to the less varied poses present.

Number of training images. In Fig. 6(a) we show how

test accuracy increases approximately logarithmically with

the number of randomly generated training images, though

starts to tail off around 100k images. As shown below, this

saturation is likely due to the limited model capacity of a 3

tree, 20 deep decision forest.

Silhouette images. We also show in Fig. 6(a) the quality

of our approach on synthetic silhouette images, where the

features in Eq. 1 are either given scale (as the mean depth)

or not (a fixed constant depth). For the corresponding joint

prediction using a 2D metric with a 10 pixel true positive

threshold, we got 0.539 mAP with scale and 0.465 mAP

without. While clearly a harder task due to depth ambigui-

ties, these results suggest the applicability of our approach

to other imaging modalities.

Depth of trees. Fig. 6(b) shows how the depth of trees af-

fects test accuracy using either 15k or 900k images. Of all

the training parameters, depth appears to have the most sig-

nificant effect as it directly impacts the model capacity of

the classifier. Using only 15k images we observe overfitting

beginning around depth 17, but the enlarged 900k training

set avoids this. The high accuracy gradient at depth 20 sug-

gests even better results can be achieved by training still

deeper trees, at a small extra run-time computational cost

and a large extra memory penalty. Of practical interest is

that, until about depth 10, the training set size matters little,

suggesting an efficient training strategy.

Maximum probe offset. The range of depth probe offsets

allowed during training has a large effect on accuracy. We

show this in Fig. 6(c) for 5k training images, where ‘maxi-

mum probe offset’ means the max. absolute value proposed

for both x and y coordinates of u and v in Eq. 1. The con-

centric boxes on the right show the 5 tested maximum off-
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Joint prediction from ground truth body parts

Joint prediction from inferred body parts

Figure 7. Joint prediction accuracy. We compare the actual per-

formance of our system (red) with the best achievable result (blue)

given the ground truth body part labels.

sets calibrated for a left shoulder pixel in that image; the

largest offset covers almost all the body. (Recall that this

maximum offset scales with world depth of the pixel). As

the maximum probe offset is increased, the classifier is able

to use more spatial context to make its decisions, though

without enough data would eventually risk overfitting to this

context. Accuracy increases with the maximum probe off-

set, though levels off around 129 pixel meters.

4.3. Joint prediction accuracy

In Fig. 7 we show average precision results on the syn-

thetic test set, achieving 0.731 mAP. We compare an ide-

alized setup that is given the ground truth body part labels

to the real setup using inferred body parts. While we do

pay a small penalty for using our intermediate body parts

representation, for many joints the inferred results are both

highly accurate and close to this upper bound. On the real

test set, we have ground truth labels for head, shoulders, el-

bows, and hands. An mAP of 0.984 is achieved on those

parts given the ground truth body part labels, while 0.914

mAP is achieved using the inferred body parts. As expected,

these numbers are considerably higher on this easier test set.

Comparison with nearest neighbor. To highlight the need

to treat pose recognition in parts, and to calibrate the dif-

ficulty of our test set for the reader, we compare with

two variants of exact nearest-neighbor whole-body match-

ing in Fig. 8(a). The first, idealized, variant matches the

ground truth test skeleton to a set of training exemplar skele-

tons with optimal rigid translational alignment in 3D world

space. Of course, in practice one has no access to the test

skeleton. As an example of a realizable system, the second

variant uses chamfer matching [14] to compare the test im-

age to the training exemplars. This is computed using depth

edges and 12 orientation bins. To make the chamfer task

easier, we throw out any cropped training or test images.

We align images using the 3D center of mass, and found

that further local rigid translation only reduced accuracy.

Our algorithm, recognizing in parts, generalizes better

than even the idealized skeleton matching until about 150k

training images are reached. As noted above, our results

may get even better with deeper trees, but already we ro-

bustly infer 3D body joint positions and cope naturally with

cropping and translation. The speed of nearest neighbor

chamfer matching is also drastically slower (2 fps) than our

algorithm. While hierarchical matching [14] is faster, one

would still need a massive exemplar set to achieve compa-

rable accuracy.

Comparison with [13]. The authors of [13] provided their

test data and results for direct comparison. Their algorithm

uses body part proposals from [28] and further tracks the

skeleton with kinematic and temporal information. Their

data comes from a time-of-flight depth camera with very

different noise characteristics to our structured light sen-

sor. Without any changes to our training data or algorithm,

Fig. 8(b) shows considerably improved joint prediction av-

erage precision. Our algorithm also runs at least 10x faster.

Full rotations and multiple people. To evaluate the full

360◦ rotation scenario, we trained a forest on 900k images

containing full rotations and tested on 5k synthetic full ro-

tation images (with held out poses). Despite the massive

increase in left-right ambiguity, our system was still able

to achieve an mAP of 0.655, indicating that our classifier

can accurately learn the subtle visual cues that distinguish

front and back facing poses. Residual left-right uncertainty

after classification can naturally be propagated to a track-

ing algorithm through multiple hypotheses. Our approach

can propose joint positions for multiple people in the image,

since the per-pixel classifier generalizes well even without

explicit training for this scenario. Results are given in Fig. 1

and the supplementary material.

Faster proposals. We also implemented a faster alterna-

tive approach to generating the proposals based on simple

bottom-up clustering. Combined with body part classifica-

tion, this runs at ∼ 200 fps on the Xbox GPU, vs. ∼ 50 fps

using mean shift on a modern 8 core desktop CPU. Given

the computational savings, the 0.677 mAP achieved on the

synthetic test set compares favorably to the 0.731 mAP of

the mean shift approach.

5. Discussion

We have seen how accurate proposals for the 3D loca-

tions of body joints can be estimated in super real-time from

single depth images. We introduced body part recognition

as an intermediate representation for human pose estima-

tion. Using a highly varied synthetic training set allowed

us to train very deep decision forests using simple depth-

invariant features without overfitting, learning invariance to

both pose and shape. Detecting modes in a density function

gives the final set of confidence-weighted 3D joint propos-

als. Our results show high correlation between real and syn-

thetic data, and between the intermediate classification and

the final joint proposal accuracy. We have highlighted the

importance of breaking the whole skeleton into parts, and

show state of the art accuracy on a competitive test set.

As future work, we plan further study of the variability
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Our result (per frame)

Ganapathi et al. (tracking)

(a) (b) 

Figure 8. Comparisons. (a) Comparison with nearest neighbor matching. (b) Comparison with [13]. Even without the kinematic and

temporal constraints exploited by [13], our algorithm is able to more accurately localize body joints.

in the source mocap data, the properties of the generative

model underlying the synthesis pipeline, and the particular

part definitions. Whether a similarly efficient approach that

can directly regress joint positions is also an open question.

Perhaps a global estimate of latent variables such as coarse

person orientation could be used to condition the body part

inference and remove ambiguities in local pose estimates.
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