
Real-Time Human Pose Tracking

from Range Data

Varun Ganapathi1,2, Christian Plagemann1,2,
Daphne Koller1, and Sebastian Thrun1,2

1 Stanford University, Computer Science Department, Stanford, CA, USA
2 Google Inc., Mountain View, CA, USA

{varung,plagemann,koller,thrun}@ stanford.edu

Abstract. Tracking human pose in real-time is a difficult problem with
many interesting applications. Existing solutions suffer from a variety
of problems, especially when confronted with unusual human poses. In
this paper, we derive an algorithm for tracking human pose in real-time
from depth sequences based on MAP inference in a probabilistic tempo-
ral model. The key idea is to extend the iterative closest points (ICP)
objective by modeling the constraint that the observed subject cannot
enter free space, the area of space in front of the true range measure-
ments. Our primary contribution is an extension to the articulated ICP
algorithm that can efficiently enforce this constraint. Our experiments
show that including this term improves tracking accuracy significantly.
The resulting filter runs at 125 frames per second using a single desk-
top CPU core. We provide extensive experimental results on challenging
real-world data, which show that the algorithm outperforms the previous
state-of-the-art trackers both in computational efficiency and accuracy.

1 Introduction

Tracking human pose in real-time has been a computer vision challenge for
decades. Automatic tracking is useful in a variety of domains including human
computer interaction, surveillance, gait analysis, the film industry and enter-
tainment. Yet, existing marker-less solutions are limited. They have difficulty
with occlusion, unusual poses, sensor noise, and the challenging computational
constraints of operation on embedded systems, running side-by-side with actual
user applications at faster than real-time.

In this paper we focus on improving model-based tracking. Existing model-
based trackers use one of two likelihood formulations. ICP-style trackers treat
the depth image as a point cloud. They alternate between updating pose to
minimize the distance between points and their corresponding locations on the
model, and updating the correspondences themselves. The other type of tracker
treats the sensor as a camera, and models the ray casting process directly. Their
goal is to find the pose that minimizes an error metric based on comparing
the observed depth image to the expected depth image derived from the pose
estimate. These two algorithms suffer opposing drawbacks: on the one hand,

2 Varun Ganapathi, Christian Plagemann, Daphne Koller, Sebastian Thrun

the ray-casting likelihood function is more complete, but is difficult and slow to
optimize because of local maxima and plateaus; On the other hand, the ICP-style
algorithm, while fast to converge, often converges to the wrong answer.

We propose an algorithm that combines elements of the ray-casting likeli-
hood, specifically knowledge about free space, with the ICP likelihood. By using
particular data structures and a suitable model representation, we are able to
retain the speed advantages of the ICP method while achieving more accurate
tracking. We also contribute a new pose tracking dataset that features more
subjects, acrobatic maneuvers, and unusual movements than the currently used
Stanford TOF benchmark [1]. As we demonstrate, our new algorithm is able to
robustly track widely varying poses faster than real-time using one CPU core.

2 Related Work

Human motion tracking from camera data is a widely studied problem in com-
puter graphics, computer vision and related fields [2]. One class of existing ap-
proaches requires multiple cameras to constrain the pose of the tracked per-
son [3], while our approach tracks with a single depth camera. Off-line multi-
camera approaches typically aim at achieving highly accurate pose reconstruc-
tion up to the surface mesh level [4] at the expense of long processing and
inconvenient setups. Usually such systems require an accurate mesh model of
the subject before it can be tracked [5].

Learning-based approaches [6–8] require a large amount of training data to
sample the large space of body configurations. Many papers have proposed to
detect body parts from images as a preprocessing step for full-body pose recon-
struction. Plagemann et al. [9], Shotton et al. [10] and Girshick et al. [11] give
algorithms for detecting parts from single depth images. These approaches are
complementary to ours in that they focus on the part detection problem without
exploiting temporal and skeletal constraints. As a result, they do not necessarily
output consistent poses at each frame because they might include multiple de-
tections of the same part or miss them entirely. These failures are problematic in
a large variety of applications, and therefore such algorithms benefit from being
combined with a tracking algorithm like the one we present in this paper.

A related class of algorithms are variants of the iterative closest point (ICP)
algorithm, such as, Articulated ICP (AICP) [12–14], Nonrigid ICP [15], or those
specifically focused on depth data [16]. To the best of our knowledge, none of
the existing algorithms has been shown to be robust enough to track difficult
maneuvers like hand-stands, cart-wheels, or even fast full-body movements. The
most similar in flavor to our approach is that of Demirdjian et al. [14], which
updates the pose of individual body parts using ICP and applies constraint pro-
jection to enforce articulation and body pose constraints. Our algorithm goes
further by introducing a more realistic likelihood function by adding free-space
and self-intersection constraints to the ICP likelihood. We apply Chamfer dis-
tance transforms, as seen in algorithms that recover pose from silhouettes [17],
to efficiently enforce free-space constraints.

Real-Time Human Pose Tracking from Range Data 3

x t-1 x

b

D

m

c

H

N
LS

LE

LW
LP

LK

LA
LF

LH

LPE

RS

RE

RW
RP

RK

RA
RF

RH

RPE

joint 1

joint 2
pixel dk

ck

Fig. 1. (a) Graphical model for the tracking algorithm, (b) Human body model, (c)
Model schema, (d) Capsule model and pixel correspondence.

Combining detection with tracking has been explored in order to avoid local
minima and increase the robustness of global optimization of likelihood. Zhu
and Fujimura [18] combine articulated ICP with part detection for improved ro-
bustness. Ganapathi et al. [19] and Siddiqui et al. [20] approach the markerless
people tracking problem from a hypothesize-and-test angle, with hypotheses ad-
ditionally generated from part detectors. Ganapathi et al. implement this using
a GPU-accelerated generative model for synthesizing and evaluating large sets
of hypothetical body configurations. Baak et al. [21] perform nearest-neighbor
search in a database that maps features computed on depth images to poses.
These poses are used as additional hypotheses for local optimization.

Compared to Ganapathi et al. [19], our approach does not require a detailed
mesh model of the person. Though our algorithm can benefit from part detectors,
we are able to achieve better performance than Ganapathi et al. on the Stanford
TOF dataset [19] even without detectors.

3 Human Motion Tracking

The objective is to track the pose of a human over time using a stream of
monocular depth images {D1, D2, . . . }. Each image D consists of scalar distance
measurements D = {d1, d2, . . . , dN}, where N is the number of image pixels.

We model our system as the dynamic Bayesian network (DBN) depicted
in Fig. 1(a). Here, the state x denotes the pose of the human at time t (for
ease of notation, the time index is omitted for the most recent frame) and the
measurementD is the corresponding depth image. Our DBN encodes the Markov
independence assumption that x is independent of D1 . . . Dt−1 given xt−1. The
model also contains the latent auxiliary variables b, m and c, which will be
introduced later in this section.

Our goal is to estimate the most likely state x̂ at time t given only the
the MAP estimate of the previous frame, that is, x̂t−1, which is determined by
solving the inference problem

x̂ = argmax
x
logP (D|x) + logP (x|xt−1) . (1)

In this paper, we do not deal with the image segmentation problem and
rather assume that a pixel-wise background mask is given. We now describe the
measurement model P (D|x) and transition model P (x|xt−1) in detail.

4 Varun Ganapathi, Christian Plagemann, Daphne Koller, Sebastian Thrun

depth camera

object background

Example Scene (top view, 2D slice)

foreground foreground

depth camera

object hypothesis
before update background

ICP-based Model

correspondences
before update

object hypothesis
after update

depth camera

Ray-Casting Model

foreground

background
object hypothesis

before update

expected measurements
for one sample

pose samples

Fig. 2. The two predominant measurement models for depth sensing and their effects
on an object tracking process. Left: Example scene with the true object pose. Middle:
ICP-based models “pull” the object towards the foreground points. Right: Raycasting-
based models evaluate pose likelihoods based on individual pixel likelihoods.

3.1 Measurement Model

The choice of measurement model has a particularly strong influence on (a) how
accurately the DBN is able to represent the human motion sequence and (b) how
efficiently Eq. 1 can be solved. Before introducing our proposed measurement
model, let us discuss the two most prominent alternatives from the literature as
well as their respective shortcomings. As a running example, consider the situ-
ation illustrated in the left diagram of Fig. 2. The task is to infer the pose of
an object measured by a depth camera from a given initial estimate. Both mea-
surement models make the assumption that the measurements are independent
given state, P (D|x) =

∏

i P (di|x).

ICP-based Model. Given the camera calibration, each distance measurement
dj in the depth image can be converted to a point dj ∈ R

3 in the coordinate
system of the camera. This makes it possible to understand the data as a 3D
point cloud (rather than as an image-array of depth values). A well-known class
of tracking approaches called Iterative Closest Point (ICP) take such 3D point
clouds as input and seek to fit a geometric body model to the data by minimizing
the length of a correspondence cj between model surface and data points; see the
middle diagram in Fig. 2 for an illustration. We define S(x) to be a geometric
representation of the object surface at pose x. In addition, S(x, cj)→ R

3 returns
the closest point on S(x) according to the data correspondence cj . ICP-based
approaches solve Eq. 1 by alternating between optimizing the correspondence
variables and optimizing the state variables. Concretely, the measurement model
that leads to the ICP algorithm is defined as

pICP(dk|x, ck) ∝

{

exp
(

− 1
2 ||S(x, ck)− dk||

2
Σ

)

, if dk in foreground,
1 , if dk in background.

While ICP-based models allow for efficient gradient-based optimization, they
fail to model an important aspect of the data. Each measurement dj not only

Real-Time Human Pose Tracking from Range Data 5

provides evidence for the existence of model surface at point dj , but also for the
non-existence of surface between dj and the camera. This “negative” information
or free space constraint is non-trivial to use in ICP-based approaches and, thus,
typically omitted. The middle diagram in Fig. 2 illustrates how ICP manages to
“explain” the foreground points, but does not utilize the free space information
provided by the measurement rays to infer the correct pose of the object.

Ray Casting Model. So-called Ray Casting Models are more flexible in this re-
spect, since they model the image formation process directly, that is, they define
how a certain scene and body configuration influences each pixel in the depth
image. Concretely, for each hypothesized body pose x, a synthetic depth map
r(x) is constructed by casting rays from the camera to S(x). The measurement
model in these models is typically defined per-pixel in a form similar to

pRC(dk|x) ∝ exp

(

−
1

2σ2
|rk(x)− dk|

2

)

.

Here, rk(x) is the hypothetical (or synthesized) depth measurement for pixel k.
While ray casting-based approaches model the object-measurement relationship
more faithfully than ICP (including free space information provide by the rays),
they are much harder to optimize.

As the right diagram in Fig. 2 illustrates, approaches using ray casting [19, 20]
often make use of the hypothesize-and-test paradigm, that is, they sample model
configurations, synthesize the respective depth measurements and compare these
to the actual measurements. Such a system is typically hard to optimize, because
the direction of improvement of the optimization objective has to be estimated
indirectly from samples in a high-dimensional space. In the depicted example,
all sampled object poses have a similar measurement likelihood.

Ray-Constrained ICP Model. One of the main contributions of this paper is
a novel measurement model, termed Ray-Constrained ICP Model that combines
aspects of each model above. As with ICP, we instantiate a hidden correspon-
dence variable cj for each measured point dj . Then we define our measurement
likelihood for a given measurement dk as

pRC-ICP(dk|x) ∝ exp

(

−
1

2
||S(x, ck)− dk||

2
Σ

)

· I{rk(x)≥dk} , (2)

where IE denotes the indicator function, which is 1 for all points that satisfy an
expression E and 0 otherwise.

This measurement likelihood essentially multiplies into the ICP likelihood
an approximation of the ray-casting likelihood. This approximation assigns zero
probability to poses that would receive extremely low probability according to
the ray-casting likelihood, and uniform probability to all other states. As we
show in Sec. 4, we can derive an efficient optimization scheme for this objective,
even though it contains the valuable non-linear free space information acquired
through the depth image.

6 Varun Ganapathi, Christian Plagemann, Daphne Koller, Sebastian Thrun

3.2 Body Model and Pose Parametrization

The discussion so far applies to arbitrary 3D objects. For the purpose of tracking
human subjects, we model the human body as a collection of linked 3D volumes;
see Fig. 1(b) and (c). The body parts take the form of 3D capsules {sij}, each
of which connects a joint xi to another one, xj , see Fig 1 (b,c,d). The resulting
body model is flexible enough to represent a wide variety of human body shapes,
while allowing for fast geometric operations such as collision checks and closest
point calculations. Note that, unlike the ray-cast model, our measurement model
introduced in the previous section does not require a highly accurate body model
that fits the tracked subject precisely. The pose is parametrized by a set of joint
positions x = {x1, . . . ,xJ},xi ∈ R

3, in the camera coordinate system. Each joint
has an associated radius ri that defines the form of the connecting capsules.

3.3 Transition Model

The last component of the DBN is the transition model P (x|xt−1), which defines
how states are allowed to evolve over time. Apart from motion constraints, such
as how far a limb can move within one frame, this term also includes constraints
on the intrinsic body configuration, such as limb lengths, and a component to
allow larger jumps in state space to regain tracking after partial occlusions or
after complete track loss.

Physical Constraints We do not require the body model to be known precisely
ahead of time. Rather, we constrain the tracked model to remain similar in shape
to a prototypical human model scaled by a single scale variable h (which is
estimated dynamically). The parameters of this scaled model are made explicit
in the DBN as the latent auxiliary variable b; see Fig. 1(a). Let lij(x) = ||xi−xj ||
denote the length of a link sij between joint i and j in our model. We then define

l̄ij to be this quantity calculated on the reference human model and l̂ij = hl̄ij
to be the scaled version. Our transition model enforces the constraint that ∀sij :

(1− ǫ) l̂ij ≤ lij (x) ≤ (1 + ǫ) l̂ij , where ǫ is a fraction encoding our uncertainty
on link length.

Since multiple rigid objects cannot occupy the same region in space, the
transition model also enforces the constraint that capsules do not intersect one
another. We prohibit two capsules from penetrating each other if they are not
connected by a shared joint.

Motion model Apart from self-collision and limb constraints, the transition
model includes a discrete set of admissible state transitions selected by a switch-
ing variable m; see Fig. 1(a). m = 0 indicates regular, smooth human motion
following a normal distribution on joint positions, P (xt|xt−1) ∝ N (0, σ2I). The
modes m > 0 represent non-smooth state transitions from a library of partial
poses followed by the regular smooth update. The non-smooth transitions, which
are sampled with a low, uniform probability, ensure that the tracker can recover

Real-Time Human Pose Tracking from Range Data 7

from partial track loss, e.g. due to temporary occlusion of body parts. In our
experiments, we use a library of seven partial poses, including three configura-
tion changes to the arms (left and right) as well as a full pose reset to the stored
prototypical pose. For ease of notation, we denote with xm the pose after the
potential non-smooth update that is applied to xt−1.

4 Inference

We now describe how to perform efficient MAP inference at each frame, that
is, how to solve Eq. 1 given the definition of its components in the previous
section. We observe that both the measurement model as well as the transition
model contain a likelihood term and a set of constraints. By denoting with C
the intersection of all constraints and by making the latent switching variable m
explicit, we can rewrite the optimization objective to

G(x, c) = logP (x|xm) + logP (D|x) + logP (m)

=
1

σ2
||xt − xm||

2 +
∑

k

−
1

2
||S(x, ck)− dk)||

2
Σ + logP (m) . (3)

Our goal is to find x, c,m that maximize G subject to the constraint that the
state satisfies the physical and ray-casting constraints, that is, x ∈ C. Since our
library of partial poses is small, we employ a deterministic, frame-wise sampling
strategy for m, i.e., in each frame we evaluate the setting m = 0 as well as
exactly one setting from m > 0 using a fixed schedule.

Even after fixing m, the remaining optimization problem is not solvable in
closed form for the following three reasons: (1) the search space over data associ-
ations c is large, (2) the articulation and self-collision constraints are non-convex,
and (3) the free space constraint requires ray casting the model, which depends
on x. The first two reasons apply to existing articulated ICP approaches [14],
while the last is unique to our approach.

Fortunately, well justified approximations exist that allow us to optimize the
problem efficiently and accurately, as detailed in the following.

4.1 Constrained Optimization

Articulated ICP-style algorithms maximize log likelihood by calculating a se-
quence of pose estimates {x[0],x[1], . . . }. The basic algorithmic steps are es-
timating correspondences, updating the pose and projecting onto the feasible
set [14]. We apply projected gradient ascent to interleave maximizing pose and
satisfying constraints.

The first estimate is obtained from the prior x[0] = xm. The (n + 1)-th
estimate is computed from the n-th one by the following 3-step algorithm.

Step 1. Holding x constant, maximize the objective with respect to corre-
spondences c. We observe that the terms involving only c in the objective de-
composes into a a sum of terms each involving only one correspondence variable

8 Varun Ganapathi, Christian Plagemann, Daphne Koller, Sebastian Thrun

ci. Thus we apply the update ci := argminĉi [S(ĉi,x) − pi] for each foreground
measurement pi. This calculation is equivalent to finding the closest point in the
model to the measurement (hence the name of the algorithm). If a measurement
is too far from all existing points in the model, it is temporarily discarded as an
outlier, which is equivalent to using a heavy-tailed Gaussian for the measurement
likelihood P (pk|x, ck).

Step 2. The pose estimate is updated by gradient ascent on the likelihood,
holding c fixed,

x[k+1] ← x[k] + γ(x[k] − x[k−1])− λ∇xG(x[k],d; c) ,

where γ gives the strength of the “momentum” term and λ is the size of the
gradient step.

Step 3. As a result of the gradient update, the state x may no longer satisfy
the physical and ray-casting constraints. We therefore apply constraint projec-
tion. Formally, a projection operator for the constraint C, projC is defined as
projC(x) = argmin

x′∈C ||x
′ − x||2 , taking a configuration x as argument and

returning the closest configuration within C.
While it is difficult to project onto the intersection of all the physical con-

straints in closed form, it is easier to derive a projection operator for any individ-
ual constraint. In order to project onto the entire intersection of the articulation,
self-collision and ray-casting constraints, we iterate through each constraint Ci in
an fixed order and apply the update x := αx+(1−α) projCi

(x), where α ∈ [0, 1].
This iterative algorithm is related to well-known cyclical projection algorithms
for finding the intersection of convex sets which are known to converge to the
optimal value [22].

This leaves the question of the individual projection operators. Consider an
articulation constraint constraining the distance between two joints. To project
into the constraint space for this constraint, the two affected joint positions can
be moved in 3D space along the capsule center line until the constraint is met.

The projection operator for the ray-casting constraint is more involved. As
a reminder, the function r(x) maps a pose estimate to a synthetic range map.
This is the set of measurements a perfect sensor would produce for pose x. The
ray-casting constraint states that rk(x) ≥ dk. We wish to design a data structure
that helps us to efficiently project x onto this constraint.

The first key idea is that the constraint is equivalent to constraining all points
on the model surface to lie in the 3D region of space behind the measurements,
which we denote by A. Since our model surface is defined by symmetric capsules,
we can reformalize this surface constraint in terms of joint positions: instead of
constraining the surface to A, we constrain the line segments between joints to
lie inside A shrunk by the radius of the capsule. We approximate the projection
of entire line segments by projecting a finite set of points on the line segments.

One way to approach this problem would be to construct a 3D voxel grid and
mark all cells inside the allowed space, and perform a 3D distance transform.
Each voxel would then contain the distance and direction to the closest point

Real-Time Human Pose Tracking from Range Data 9

of the allowed space. For our purposes, this is prohibitively expensive in both
space and computational time.

Our approach instead splits the constraint into the intersection of two con-
straints with simpler projection operators, termed Silhouette and Z-Surface con-
straints. Embedded within the overall cyclical projection loop, this will achieve
the effect of projection onto A, but much more efficiently. The first set is the
foreground silhouette (Silhouette constraint) on which we compute a 2D distance
transform. If a model point projects outside the silhouette, we project it to the
closest point inside. If the model point lies inside the silhouette, we check if it is
closer than the observed depth and project it backwards (Z-Surface constraint).

Using this approximation, the projection into the admissible space of the free
space constraint becomes as efficient as an array lookup (precomputed distance
transform). As we show in the following experimental evaluation, this model
component leads to a large reduction in tracking error without causing substan-
tial runtime overhead.

Fig. 3. Sample frames from the EVAL test data set. Our system tracks the human
motion in real-time from just the stream of depth images.

5 Experiments

The full tracking system has been implemented in C/C++ and evaluated on a
desktop computer running Linux using the following benchmark data sets:

• SMMC-10 : the Stanford markerless motion capture data set 2010 [1] and

• EVAL : a new evaluation data set (3 subjects, 8 sequences each).

EVAL was recorded using the Microsoft Kinect camera at approximately 30 fps.
The recording includes precise locations of artificial markers attached to the sub-
jects body using the Vicon motion capture system. SMMC-10 has been recorded
using a Mesa SwissRanger time-of-flight sensor.

The goal of this experimental evaluation is (a) to verify that our system is
able to track a broad range of human motion in real-time using a single depth

10 Varun Ganapathi, Christian Plagemann, Daphne Koller, Sebastian Thrun

 0.75

 0.8

 0.85

 0.9

 0.95

 1

Articulated ICP

Ganapathi et al.

This algorithm

Articulated ICP

This algorithm

T
ra

c
k
in

g
 A

c
c
u

ra
c
y

SMMC-10 EVAL

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

H
e
a
d

N
e
ck

R
. S

h
o
u
ld

e
r

L
. S

h
o
u
ld

e
r

R
. K

n
e
e

L
. K

n
e
e

R
. A

n
kle

L
. A

n
kle

R
. W

rist
L
. W

rist
R

. E
lb

o
w

L
. E

lb
o
w

T
ra

c
k
in

g
 A

c
c
u
ra

c
y

Articulated ICP
Ganapathi et al.

This algorithm

Fig. 4. Tracking performance on SMMC-10 and EVAL as well as comparison to Articulated
ICP and Ganapathi et al.. The tracking accuracy is significantly higher than for the
other approaches – especially for hard-to-estimate joint locations, such as, the elbows.

camera, (b) to show that the system outperforms Articulated ICP [12, 16] and
existing ray-casting based approaches [19] on their evaluation data set in both
accuracy by a large margin and (c) to analyze the practical role of individual
elements incorporated in our algorithm including the ability to make use of
body part detections. Articulated ICP has been implemented by deactivating
the free space constraints and jump proposals in our system. All depth sequences
start with the human subject facing the camera. The system is able to initialize
tracking autonomously, because the person starts in a pose that is reasonably
close to the standard reset pose.

5.1 Quantitative Tracking Performance

We compared our algorithm quantitatively to state-of-the-art approaches from
the literature. Ganapathi et al. [19] introduced a model-based tracking algorithm
for monocular depth data and published the evaluation data set [1], which we
call SMMC-10 in this paper. We compare experimentally against their results as
well as against Articulated ICP on the same data set.

SMMC-10 contains 28 depth image sequences of human motion and time-
synchronized marker positions from PhaseSpace, a professional marker-based
motion capture system. We calculated the true joint positions in 3D from the
motion capture markers and compare these to the estimated 3D joint positions
by our algorithm. Our evaluation metric is the joint prediction accuracy per
joint. This is defined as the number of correctly predicted joints divided by
the number of joints. We count a joint as detected correctly, if the algorithm
estimates the 3D joint location within a 10cm sphere of the true joint location
and as detected incorrectly, otherwise. The results are shown in Fig. 4. Our
algorithm outperforms the model-based tracker presented by Ganapathi et al.
and Articulated ICP by a large margin. The predication error is reduced by
71.6% w.r.t. Ganapathi et al. and by 80.8% w.r.t. Articulated ICP. As expected,
this gain is achieved at computational requirements in the order of those of
Articulated ICP. Our algorithm performs inference at 125 frames per second
(fps) on a standard desktop computer running Linux on a single CPU core (Intel
i7) using no GPU, compared to 230 fps for Articulated ICP. In comparison,

Real-Time Human Pose Tracking from Range Data 11

Algorithm Step (one frame) Time (ms) Rate (fps)

Data Preprocessing 1.1 915.2

Subsampling, 1̃60 points 0.54 1859.5
Free Space Precomputation .90 1101.9
Opt. 1 (no reset) (200 steps) 2.7 184.3
Opt. 2 (partial reset) 2.7 184.3

Total 7.9 125.7
0.787

+5%

+10%

 0 0.2 0.4 0.6 0.8 1

T
ra

c
k
in

g
 A

c
c
u

ra
c
y

Detector Precision

Det. Recall = 1.00
Det. Recall = 0.50
Det. Recall = 0.10
Det. Recall = 0.01

No Part Detections

Fig. 5. Left: Run-time performance, single Intel i7 core. Right: Study of how the accu-
racy of available body part detections influences the tracking accuracy of our algorithm.

Ganapathi et al. report inference speed of 10 frames per second on a desktop
computer using a GPU. The left table in Fig. 5 shows the distribution of runtime
requirements over the different stages of the algorithm.

5.2 Comparison to Real Part Detectors

We compared the tracking accuracy against the state-of-the-art body part de-
tector by Shotton et al. [10] as well as [11] on the SMMC-10 data set. In principle,
these approaches cannot be compared directly to ours, since the purpose differs
fundamentally (part detection vs. tracking) and they should be seen as comple-
mentary rather than competing. Nevertheless, in a comparison favorable to their
approaches we can consider the tracking output of our tracker as a set of part de-
tections (at confidence 1). Comparing our metric from above (tracking accuracy)
with their average joint prediction precision (which again is disadvantageous for
our approach since their average (a) includes low recall regimes while our mea-
sure just contains the one actual recall number (b) does not consider occluded
parts), we find that our algorithm decreases the error by 44% for [10] (0.971
vs. 0.948) and 26% for [11] (0.971 vs. 0.961). At the same time, our algorithm
runs approximately 16 times faster (based on the 50 fps reported in [10] using
an 8-core CPU implementation).

5.3 Analysis of Model Components

In this experiment, we analyzed how important the individual model compo-
nents are for tracking human motion successfully. To this aim, we ran the
algorithm on a set of depth sequences and evaluated the tracking accuracy
using the joint prediction accuracy as described for the previous experiment.
We tested the influence of the model components Z-Surface constraints, Silhou-
ette constraints, and Jump proposals by running the algorithm with all pos-
sible combinations of these settings. The data set used, termed EVAL in this
paper, includes artistic motions, such as, hand stands, kicks, sitting down on

12 Varun Ganapathi, Christian Plagemann, Daphne Koller, Sebastian Thrun

 0.8

 0.82

 0.84

 0.86

T
ra

c
k
in

g
 A

c
c
u

ra
c
y

Tracking Accuracy

Jump Proposals

Silhouette

Z-Surface

1 2 3 4 5 6 7 8

C
o

n
fi
g

u
ra

ti
o

n

Fig. 6. Top: Tracking accuracy of our algorithm (upper bar plot) for different config-
urations of the algorithm (below) on the EVAL data set.

the floor, see Fig. 3 and Fig. 7. This new benchmark data set is available at
http://ai.stanford.edu/~varung/eccv12.

The quantitative results are given in Fig. 6. Each component adds track-
ing accuracy to the results, whereby Z-Surface constraints provide the largest
benefits, followed by Silhouette constraints, and Jump proposals.

5.4 Integration of Part Detectors

Our framework makes it easy to include bottom-up evidence about body part
locations by simply defining an appropriate partial pose update to be considered
as a jump proposal, see Sec. 3.3. Such a part detection can then be accepted or
rejected by the algorithm automatically. In this experiment, we analyzed how
the accuracy of a part detection algorithm influences the tracking accuracy. We
consider Sequence 27 of the SMMC-10 data set, which is the most challenging
in the set, featuring a fast tennis swing, partial body rotation and a significant
amount of self occlusion. To analyze a broad spectrum of part detector quality
levels (defined by two constants Pprecision, Precall), we sample body part detec-
tions from the set of available motion capture markers. For each motion capture
marker, we sample a detection proportional to the probability Precall and for
each chosen detection, we sample a correctness variable according to Pprecision.
If the detection has been sampled as incorrect, we assign it a wrong, randomly
chosen marker location. This simulates the nature of a detector to confuse body
parts and makes it especially difficult for our algorithm to filter out.

Fig. 5 shows the quantitative results. The individual graphs represent recall
levels ranging from 0.0 (no part detections) to 1.0 (all parts detected). Precision
on the x-axis ranges from 0.0 (all part labels wrong) to 1.0 (all part labels correct)
and the y-axis gives the resulting tracking accuracy of our full algorithm. While
precise detectors (precision>0.6) lead to a large increase in tracking accuracy as
expected, it should be noted that precisions as low as 0.2 (which means that up to
80% of parts are detected at wrong locations) still lead to improved performance.
This shows that the algorithm is able to filter out bad detections.

Real-Time Human Pose Tracking from Range Data 13

Front view: Side view:

Fig. 7. Sample frames from the EVAL test data set. The side view shows that the arms
of the subject are not visible due to occlusion. Nevertheless, the algorithm outputs
reasonable estimates for the arms, as other constraints limit the feasible set.

6 Conclusion

This paper proposed a technique for tracking human pose in real-time from
range data through energy minimization. We parameterize human pose through
the deformation of a flexible capsule model and derive a measurement model
that represents free space constraints and can be optimized efficiently. We also
describe a set of natural physical constraints on pose that limit the deformation
of the body model and prevent self collision. To tackle the resulting constrained
optimization problem efficiently we described an algorithm with the following key
elements: data association, accelerated gradient descent, constraint projection,
and reinitialization. Experimental results obtained on both a standard data set
and a new data set show the speed and accuracy of our approach. We also
performed experiments to show that our algorithm can benefit from body part
detectors of varying quality.

As our more difficult data set shows, there is still room for improvement.
The parameters of the body model could be adapted to the specific subject
being tracked. Discriminative partial pose detectors could be learned specifi-
cally for integration with this framework to focus on the remaining error modes.
The framework could also be extended towards fully deformable surfaces meshes
which can potentially capture finer configuration details such as cloth deforma-
tion.

References

1. Ganapathi, V., Plagemann, C.: Project website and data sets:
http://ai.stanford.edu/∼varung/cvpr10 (March 2010)

2. Pons-Moll, G., Rosenhahn, B.: Model-based pose estimation. Visual Analysis of
Humans (2011) 139–170

3. Stoll, C., Hasler, N., Gall, J., Seidel, H.P., Theobalt, C.: Fast articulated motion
tracking using a sums of gaussians body model. In: IEEE International Conference
on Computer Vision (ICCV). (2011)

14 Varun Ganapathi, Christian Plagemann, Daphne Koller, Sebastian Thrun

4. de Aguiar, E., Theobalt, C., Stoll, C., Seidel, H.P.: Marker-less deformable mesh
tracking for human shape and motion capture. In: CVPR. (2007) 1 –8

5. Corazza, S., Mundermann, L., Chaudhari, A., Demattio, T., Cobelli, C., Andriac-
chi, T.: A markerless motion capture system to study musculoskeletal biomechan-
ics: Visual hull and simulated annealing approach. Annals of Bio. Eng. (2006)

6. Van den Bergh, M., Koller-Meier, E., Van Gool, L.: Real-time body pose recogni-
tion using 2d or 3d haarlets. Int. Journal of Computer Vision 83 (2009) 72–84

7. Agarwal, A., Triggs, B.: 3d human pose from silhouettes by relevance vector re-
gression. In: Computer Vision and Pattern Recognition (CVPR). (2004)

8. Sun, Y., Bray, M., Thayananthan, A., Yuan, B., Torr, P.H.S.: Regression-based
human motion capture from voxel data. In: British Machine Vision Conf. (2006)

9. Plagemann, C., Ganapathi, V., Koller, D., Thrun, S.: Realtime identification and
localization of body parts from depth images. In: IEEE Int. Conference on Robotics
and Automation (ICRA), Anchorage, Alaska, USA (2010)

10. Shotton, J., Fitzgibbon, A.W., Cook, M., Sharp, T., Finocchio, M., Moore, R.,
Kipman, A., Blake, A.: Real-time human pose recognition in parts from single
depth images. In: CVPR. (2011)

11. Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient regres-
sion of general-activity human poses from depth images. In: ICCV. (2011)

12. Grest, D., Woetzel, J., Koch, R.: Nonlinear body pose estimation from depth
images. Pattern Recognition (2005) 285–292

13. Plankers, R., Fua, P.: Articulated soft objects for multiview shape and motion
capture. Pattern Analysis and Machine Intelligence 25(9) (sept. 2003) 1182 – 1187

14. Demirdjian, D., Ko, T., Darrell, T.: Constraining Human Body Tracking. Com-
puter Vision, IEEE International Conference on 2 (2003)

15. Hähnel, D., Thrun, S., Burgard, W.: An extension of the ICP algorithm for mod-
eling nonrigid objects with mobile robots (2003)

16. Knoop, S., Vacek, S., Dillmann, R.: Sensor fusion for 3d human body tracking
with an articulated 3d body model. In: ICRA. (2006)

17. Balan, A., Sigal, L., Black, M., Davis, J., Haussecker, H.: Detailed human shape
and pose from images. In: Computer Vision and Pattern Recognition (CVPR),
2007, IEEE (2007) 1–8

18. Zhu, Y., Fujimura, K.: Bayesian 3d human body pose tracking from depth image
sequences. In: ACCV (2). (2009) 267–278

19. Ganapathi, V., Plagemann, C., Thrun, S., Koller, D.: Real time motion capture
using a single time-of-flight camera. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), San Francisco, CA, USA (June 2010)

20. Siddiqui, M., Medioni, G.: Human pose estimation from a single view point,
real-time range sensor. In: Computer Vision and Pattern Recognition Workshops
(CVPRW), 2010 IEEE Computer Society Conference on. (june 2010) 1 –8

21. Baak, A., Müller, M., Bharaj, G., Seidel, H.P., Theobalt, C.: A data-driven
approach for real-time full body pose reconstruction from a depth camera. In:
IEEE 13th International Conference on Computer Vision (ICCV), IEEE (Novem-
ber 2011) 1092–1099

22. Bregman, L.M.: The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Mathematical Physics 7(3) (1967) 200–217

