
Real-Time Hyperlapse Creation via Optimal Frame Selection

Neel Joshi Wolf Kienzle Mike Toelle Matt Uyttendaele Michael F. Cohen

Microsoft Research

0 20 40 60 80 100 120 140 160 180
−400

−350

−300

−250

−200

−150

−100

−50

0

50

100

Input time

H
o
ri
z
o
n
ta

l
tr

a
n
s
la

ti
o
n

Input

Naive hyperlapse

Our approach

Output time

In
pu

t t
im

e

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Naive hyperlapse
Our approach

Mean Standard Deviation

N
a

iv
e

O
u

rs

Figure 1: Hand-held videos often exhibit significant semi-regular high-frequency camera motion due to, for example, running (dotted blue
line). This example shows how a naive 8x hyperlapse (i.e., keeping 1 out every 8 frames) results in frames with little overlap that are hard
to align (black lines). By allowing small violations of the target skip rate we create hyperlapse videos that are smooth even when there is
significant camera motion (pink lines). Optimizing an energy function (color-coded in Middle image) that balances matching the target rate
while minimizing frame-to-frame motion results in a set of frames that are then stabilized. (Right) To illustrate the alignment we show the
mean and standard deviation of three successive frames (in red box on the Left plot) after stabilization for the naive hyperlapse (Top Right)
and our result (Bottom Right) – these show that our selected frames align much better than those from naive selection.

Abstract

Long videos can be played much faster than real-time by recording
only one frame per second or by dropping all but one frame each
second, i.e., by creating a timelapse. Unstable hand-held moving
videos can be stabilized with a number of recently described meth-
ods. Unfortunately, creating a stabilized timelapse, or hyperlapse,
cannot be achieved through a simple combination of these two
methods. Two hyperlapse methods have been previously demon-
strated: one with high computational complexity and one requiring
special sensors. We present an algorithm for creating hyperlapse
videos that can handle significant high-frequency camera motion
and runs in real-time on HD video. Our approach does not require
sensor data, thus can be run on videos captured on any camera.
We optimally select frames from the input video that best match a
desired target speed-up while also resulting in the smoothest possi-
ble camera motion. We evaluate our approach using several input
videos from a range of cameras and compare these results to exist-
ing methods.

CR Categories: I.3.8 [Computer Graphics]: Applications; I.4.8
[Image Processing and Computer Vision]: Applications;

Keywords: time-lapse, hyperlapse, video stabilization

1 Introduction

The proliferation of inexpensive, high quality video cameras along
with increasing support for video sharing has resulted in people
taking videos more often. While increasingly plentiful storage has
made it very easy to record long videos, it is still quite tedious to
view and navigate such videos, as users typically do not have the
time or patience to sift through minutes of unedited footage. One
simple way to reduce the burden of watching long videos is to speed
them up to create “timelapse” videos, where one can watch minutes
of video in seconds.

When video is shot with a stationary camera, timelapse videos are
quite effective; however, if there is camera motion, the speed-up
process accentuates the apparent motion, resulting in a distract-
ing and nauseating jumble. “Hyperlapse” videos are an emerging
medium that addresses the difficulty of timelapse videos shot with
moving cameras by performing camera motion smoothing (or “sta-
bilization”) in addition to the speed-up process. They have a unique
appealing dynamism and presence.

The two main approaches for stabilizing camera motion are
hardware-based and software-based. Hardware-based methods uti-
lizing onboard gyros can be quite successful [Karpenko 2014], but
require specialized hardware at capture time, thus cannot be applied
to existing videos. As they are blind to the content of the video,
they also fail to stabilize large foreground objects. Software-based
computer vision methods operate on the pixels themselves. They
range from 2D stabilization to full 3D reconstruction and stabiliza-
tion. Existing 2D approaches can work well when camera motion is
slow, but breakdown when the camera has high-frequency motion.
3D approaches work well when there is sufficient camera motion
and parallax in a scene [Kopf et al. 2014], but have high computa-
tional cost and are prone to tracking and reconstruction errors when
there is insufficient camera translation.

In this paper, we present an algorithm for creating hyperlapse
videos that runs in real-time (30 FPS on a mobile device and even
faster on a desktop) and can handle significantly more camera mo-

tion than existing real-time methods. Our approach does not require
any special sensor data, thus can be run on videos captured by any
camera. Similar to previous work in video stabilization, we use
feature tracking techniques to recover 2D camera motion; however,
unlike previous work, camera motion smoothing and speed-up are
optimized jointly. We develop a dynamic programming algorithm,
inspired by dynamic-time-warping (DTW) algorithms, that selects
frames from the input video that both best match a desired target
speed-up and result in the smoothest possible camera motion in
the resulting hyperlapse video. Once an optimal set of frames is
selected, our method performs 2D video stabilization to create a
smoothed camera path from which we render the resulting hyper-
lapse.

We evaluate our approach using input videos from a range of cam-
era types and compare these results to existing methods.

2 Related Work

Our work is related to previous work in 2D and 3D video stabiliza-
tion and approaches directly designed for producing timelapse and
hyperlapse videos.

2.1 Software-based video stabilization

Software-based video stabilization is the removal of undesirable
high-frequency motion, often caused by the instability of handheld
cameras. 2D stabilization is a well-known technique that operates
by manipulating a moving crop window on the video sequence to
remove much of the apparent motion of the camera. Corresponding
features are detected and used to recover frame-to-frame camera
pose as parameterized by a rigid transform. These camera poses
are smoothed to produce a new set of transforms that are applied to
create a new smooth camera path [Matsushita et al. 2006; Grund-
mann et al. 2011]. While 2D stabilization cannot model parallax,
3D methods can. 3D methods use structure-from-motion to esti-
mate 6D camera pose and rough scene geometry and then render
the scene from a novel smoothed camera path [Liu et al. 2009; Liu
et al. 2011]. Both 2D and 3D approaches have been extended to
compensate for rolling shutter artifacts [Baker et al. 2010; Forssen
and Ringaby 2010; Liu et al. 2013].

2.2 Hardware-based video stabilization

Hardware-based approaches replace the feature tracking methods
with a sensor-based approach. The most common commercial ap-
proach for reducing camera jitter is image stabilization (IS). These
methods use mechanical means to dampen camera motion by off-
setting lens elements or by translating the sensor to offset camera
motion as measured by inertial sensors (i.e., gyros and accelerom-
eters) [Canon 1993]. Recent work has shown how to use these sen-
sors to directly measure the camera motion during capture [Joshi
et al. 2010] and how to use this measured motion (similar to the
software-based methods) for stabilization and rolling shutter cor-
rection [Karpenko et al. 2011].

2.3 Timelapse and hyperlapse methods

There are a few recent works that directly address creating time-
lapse and hyperlapse videos. The simplest approach is to perform
timelapse by uniformly skipping frames in a video without any sta-
bilization, which is possible in many professional video editing
packages, such as Adobe Premiere. The Apple iOS 8 Timelapse
feature uses this naive frame-skipping approach while adjusting the
global timelapse rate so that the resulting video is 20-40 seconds

long [Provost 2014]. Work by Bennett et al. [2007] creates non-
uniform timelapses, where the skipping rate varies across the video
as function of scene content.

The most direct approach to creating hyperlapse videos is to per-
form stabilization and timelapse sequentially in either order, i.e.,
first stabilize and then skip frames or skip first and then stabi-
lize. The recent Instagram Hyperlapse app uses the latter ap-
proach [Karpenko 2014] using the hardware stabilization approach
of Karpenko et al. [2011]. As noted above, the Instagram approach
cannot be applied to existing video. In addition, since it is blind to
the video content, it can only stabilize the global inertial frame and
not lock onto large moving foreground objects. Our method pro-
duces comparable results to the Instagram approach and, as we will
show, performs well in the presence of large moving foreground
objects.

The most sophisticated hyperlapse work is that of Kopf et al.
[2014], which uses structure-from-motion (SfM) on first person
videos and re-renders the scene from novel camera positions using
the recovered 3D geometry. By performing a global reconstruction
and rendering from a combination of input frames for each out-
put frame, Kopf et al.’s method can handle cases where the camera
is moving significantly and there is significant parallax. Kopf et al.
also perform path planning in 6D to choose virtual camera locations
that result in smooth, equal velocity camera motions in their final
results. This approach works well when there is sufficient camera
motion and parallax in a scene, but has difficulty where the cam-
era motion is small or purely rotational, as the depth triangulation
in the SfM step is not well constrained. SfM can also have diffi-
culties when the scene is dynamic. Furthermore, this approach has
high computational cost – on the order of minutes per frame [Kopf
et al. 2014]. Although our approach cannot always achieve the same
smoothness, it comes close and is more robust to motions other than
forward motion, such as static and rotating cameras, as well as in
non-rigid scenes. Kopf et al. is, however, more robust in scenes
with very high parallax, for example where the foreground is very
close to a moving camera, i.e., where the ambiguity between trans-
lation and rotation breaks down. That said, most importantly, our
method is three orders of magnitude faster, running at faster than
real-time rates on a desktop and making it amenable to real-time
performance on most mobile devices.

Our approach resides in between the Instagram approach and that of
Kopf et al. We use 2D methods as in Instagram, but do not require
inertial sensors and do not naively skip frames. Naive frame skip-
ping can lead to poor results as it can result in picking frames that
cannot be well stabilized (see Figure 1). Instead, we allow small
violations of the target skip rate if that leads to a smoother output.
Our selection of frames is driven by optimizing an energy func-
tion that balances matching the target rate and minimizing frame-
to-frame motion in the output video. This allows us to handle high-
frequency camera motion with significantly less complexity than
3D approaches.

In concurrent work, Poleg et al. [2014], as in this work, carefully
sample frames on a video, particularly in semi-regular oscillating
videos such as those captured when walking, to select frames lead-
ing to more stable timelapse results. They also suggest producing
two simultaneous, but offset, tracks to automatically extract stereo
pairs of video. This work is the most similar to that reported here in
terms of the frame sampling based method leading to a hyperlapse.
However, they rely on optical flow and a shortest path optimiza-
tion as opposed to our homography plus dynamic programming ap-
proach which leads to our very fast results. Poleg et al. report times
of approximately 6.5 seconds per input frame on a desktop vs. 30
frames per second on a mobile device for our approach, which a
difference of more than two orders of magnitude.

INPUT VIDEO HYPERLAPSECOST MATRIX FILLED COST MATRIX

STAGE 1: FRAME MATCHING AND BUILDING COST MATRIX
STAGE 2: PATH SELECTION

(DYNAMIC PROGRAMING)
STAGE 3: PATH SMOOTHING

AND RENDERING

Figure 2: Our method consist of three main stages. 1) Frame-matching: using sparse feature-based techniques we estimate how well each
frame can be aligned to its temporal neighbors and store these costs as a sparse matrix, 2) Frame selection: a dynamic programming
algorithm finds an optimal path of frames that balances matching a target rate and minimizes frame-to-frame motion, and 3) Path smoothing
and rendering: given the selected frames, smooth the camera path and render the final hyperlapse result.

2.4 Video frame matching

A related area of techniques use dynamic programming approaches
for matching and aligning image sets or videos from different times
or views [Kaneva et al. 2010; Levieux et al. 2012; Arev et al. 2014;
Wang et al. 2014]. Our work draws some inspiration from these
papers; however, our approach is more concerned with matching
a video to itself and thus shares some similarities with work for
detecting periodic events in videos [Schödl et al. 2000].

3 Overview

Our goal is to create hyperlapse videos at any speed-up rate with no
constraints on the video camera used, scene content, or camera mo-
tion. The key inspiration for our algorithm comes from observation
of naive hyperlapse results (i.e., timelapse followed by stabiliza-
tion).

When input camera motions are fairly smooth, naive hyperlapse al-
gorithms work quite well [Karpenko 2014]; however, when there is
significant high-frequency motion, the results can be quite unwatch-
able [Kopf et al. 2014]. When there is high frequency motion, for
example rapid swaying due to running or walking, it is easy to “get
unlucky” when naively picking frames and choose frames that have
very little overlap. Thus, during stabilization, it is not possible to
align these frames well, which is critical to creating a smooth result.
The key observation is that in many videos the jittery motions are
semi-periodic (e.g., due to handshake, walking, running, or head
motions).

Figure 1 illustrates a simple case of this. Consider a camera mo-
tion that is a semi-periodic horizontal jitter. Here, naive skipping
chooses frames that have very little overlap and potentially a lot of
parallax between them. However, by allowing small violations of
the target skip rate, one can choose frames where there is very little
motion, resulting in better alignment and a smoother result.

The key contribution of our work is defining a cost metric and op-
timization method that picks a set of frames that are close to the
target speed yet can be aligned well and thus stabilized in the sped-
up output video. It is worth noting that the cost metric is highly
correlated with the needs of the stabilizer, thus creating a unified
optimal frame selection and stabilization framework.

As illustrated in Figure 2, our method consists of three main stages:

1. Frame-matching: using sparse feature-based techniques we
estimate how well each frame can be aligned to its temporal
neighbors.

2. Frame selection: a dynamic-time-warping (DTW) algorithm
to find an optimal path of frames that trades-off matching the
target rate with minimizing frame-to-frame motion.

3. Path smoothing and rendering: given the selected frames,
smoothing the camera path to produce a stabilized result.

We will discuss these three main steps in the following section and
several additional refinements in Section 5.

4 Finding an Optimal Path

Given an input video represented as sequence of frames F =
〈1,2, ...,T 〉, we define a timelapse as any path p that is a strictly
monotonically increasing subsequence of F . The path inherently
serves as a mapping from output time to input time p(t̃)= t, where
t∈F .

In our framework, a hyperlapse is a desired path p where the time
between subsequent frames is close to a target speed-up yet subse-
quent frames can be aligned well and the overall result has smooth
camera motion. We formulate finding the best path as an optimiza-
tion problem that minimizes an objective function that consists of
three terms: a cost that drives towards optimal frame transitions,
a term that drives towards matching the target speed-up rate, and
a third that minimizes the acceleration. This cost function is used
to populate a cost matrix and a path through the matrix directly
corresponds to a path p. We use an approach inspired by dynamic
programming and dynamic-time-warping algorithms to find the op-
timal path.

4.1 Frame matching cost

An optimal frame-to-frame transition is where both frames can be
aligned well and have significant overlap. The first criteria is neces-
sary for a smooth visual transition between frames, while the latter
ensures that the transition can be done with minimal cropping.

Given two video frames Ft=i and Ft=j , denote T (i, j) as the ho-
mography that warps Fi to Fj (we drop the “t=” notation for
brevity), or more specifically maps a set of features points between
the frames. We compute T (i, j) using a standard RANSAC (RAN-
dom SAmple Consensus) method on sparse feature points [Fischler
and Bolles 1981] – we use Harris corners each with a correspond-
ing Brief descriptor [Calonder et al. 2010] and compute 500 fea-
tures per frame. Given T (i, j) we define two cost functions corre-
sponding to our criteria for a good frame-to-frame transition.

The first term is an alignment cost:

Cr(i, j)=
1

n

n
∑

p=1

∣

∣

∣

∣

∣

∣
(xp,yp)

T
j −T (i, j)(xp,yp)

T
i

∣

∣

∣

∣

∣

∣

2

. (1)

This cost is equivalent to the average of the 2D geometric re-
projection error for n corresponding features selected by the
RANSAC process.

The second term measures motion and penalizes lack of overlap
between the frames:

Co(i, j)=
∣

∣

∣

∣

∣

∣
(x0,y0)

T −T (i, j)(x0,y0)
T
∣

∣

∣

∣

∣

∣

2

, (2)

where (x0,y0,1) is the center of the image. This is equivalent to
the magnitude of translation of the center of the image between the
two frames, which is a function of the (out-of-plane) rotation and
translation of the camera. This serves as an estimate of the motion
of the camera look-vector.

These costs are combined into a single cost function:

Cm(i, j)=
{

Co(i, j) Cr(i, j)<τc
γ Cr(i, j)≧τc

, (3)

where τc=0.1∗d, γ=0.5∗d and d is the image diagonal in pixels.
This single function simply states that if the alignment error is low
(in this case less than 10% of the image diagonal), the cost is equal
to the motion cost; however, if the alignment error is too large, the
transformation and motion cost are not reliable, so T (i, j) is set
to identity and the cost is set to a large cost – half the diagonal of
the image, which corresponds to zero image overlap. These cases
are due to abrupt transitions in the video. The large cost causes the
optimization to avoid choosing the frame; however, it can be chosen
if there is no other. This ensures that the algorithm can always find
a full path through the video.

4.2 Velocity and acceleration costs

The matching costs ensures that the hyperlapse is smooth in terms
of camera motion; however, it is also important for a hyperlapse
to achieve a desired speed-up. Our second cost function penalizes
straying from a user-input target speed-up:

Cs(i, j,ν)=min(||(j− i)−ν||22, τs). (4)

This term is a truncated L2 on the difference between the actual
jump between frames i and j and the target rate τ . We have empir-
ically determined a setting of τs=200; however, the results are not
that sensitive to the exact value of this parameter.

The previous costs lead to a balance between choosing frames that
lead to smooth motion versus violating the target speed-up rate. We
have found that violating the target rate to achieve smoother camera
motion can cause a perceptible visual jump as time suddenly accel-
erates. An acceleration penalty reduces this effect by making the
speed changes more gradual:

Ca(h,i, j)=min(||(j− i)−(i−h)||22, τa). (5)

This term is also a truncated L2 and we also have empirically de-
termined a setting of τa=200; however, the results are also not that
sensitive to the exact value of this parameter.

Thus, the total cost for a given speed-up rate ν for a triplet of frames
is:

C(h,i, j,ν)=Cm(i, j)+λsCs(i, j,ν)+λaCa(h,i, j). (6)

Algorithm: Stage 2: Path Selection

Input: ν

Initialization:

for i=1 to g do
for j= i+1 to i+w do

Dν(i, j)=Cm(i, j)+λsCs(i, j,ν)
end for

end for

First pass: populate Dν

for i=g to T do
for j= i+1 to i+w do

c=Cm(i, j)+λsCs(i, j,ν)

Dν(i, j)=c+
w

min
k=1

[Dν(i−k, i)+λaCa(i−k, i, j)]

Tν(i, j)=
w

argmin
k=1

[Dν(i−k, i)+λaCa(i−k, i, j)]

end for
end for

Second pass: trace back min cost path

(s,d)=
T,i+w

argmin
i=T−g,j=i+1

Dν(i, j)

p=〈d〉
while s>g do

p=prepend(p, s)
b=Tν(s,d)
d=s, s=b

end while

Return: p

Figure 3: A first pass populates a dynamic cost matrix D where
each entry Dν(i, j) represents the cost of the minimal cost path
that ends at frame t=j. A trace-back matrix T is filled to store
the minimal cost predecessor in the path. The optimal minimum
cost path is found by examining the final rows and columns of D
and the final path p is created by walking through the trace-back
matrix.

We have empirically determined that settings of λs=200 and λa=
80 work well. Again, the results are not very sensitive to the exact
value of these parameters, and there is a certain amount of personal
preference in these settings, i.e., depending on how important it is to
a user to match the target speed or have smooth changes in velocity.

4.3 Optimal frame selection

We define the cost of a path for a particular target speed ν as:

φ(p,ν)=

T̃−1
∑

t̃=1

C(p(t̃−1),p(t̃),p(t̃+1),ν). (7)

Thus the optimal path p is:

pν =argmin
p

φ(p,ν). (8)

We compute the optimal path using an algorithm inspired by dy-
namic programming (DP) and dynamic-time-warping (DTW) algo-
rithms that are used for sequence alignment. The algorithm consists
of three stages.

In Stage 1 (see Figure 2) the matching cost is computed using frame
matching, as described in Section 4.1 and is stored in a sparse, static
cost matrix Cm for all frames 〈1,2, ...,T 〉. 1

We only construct the upper triangle of Cm as it is symmetric. In
principle, Cm can be fully populated, which captures the cost of a
transition between any two frames, but as an optimization we com-
pute a banded (or windowed) version of C, where band w defines
the maximum allowed skip between adjacent frames in the path.
This is similar to a windowed DTW algorithm. For a particular
input video and value of w, Cm is static and computed once and
re-used for generating any speed up ν<=w. Section 6 discusses
the values we use for w.

Stage 2 is the DP algorithm and it consists of two passes. A first
pass populates a dynamic cost matrix Dν , which is function of the
user specified target speed-up ν. While Cm is computed once in
Stage 1, the DP algorithm has to be run for each desired speed
up. We use the same window size w for Dν and Cm. The al-
gorithm constructs Dν by iterating over its elements, where each
entry Dν(i, j) represents the running minimal cost path that ends

with the frames i and j. This cost is a sum of Cm, Cs, and Ca.2

At each step of filling Dν , the algorithm accumulates the cost by
evaluating the Cm and Cs cost functions at i and j and finding the
lowest cost preceding frame h, which depends on the previous costs
and Ca. h stored in traceback matrix T for the second pass of the
algorithm.

Once D is fully populated the second pass finds an optimal path
by finding the minimal cost in the final rows and columns of Dν

(within some “end-gap” g) and then traces the path through the ma-
trix. We allow “start gaps” and “end gaps” g, as the optimization
performs better when it is not restricted to include the first and last
frame. This is a common approach in DTW algorithms. For long
hyperlapse sequences, the start and end gaps are not noticeable in
the resulting video. We set g=4; however, one could easily use
larger gaps for long sequences. Figure 3 gives detailed pseudo-code
of our frame selection algorithm.

4.4 Path smoothing and rendering

Once an optimal set of frames is selected, the next step is to com-
pute a smooth camera motion path and warp the images to generate
the result. This step is essentially the same as running standard
video stabilization, which computes a sequence of frame-to-frame
transformations and smooths them to create a stable result.

We use a variant of the approach used by Joshi et al. [2012]. The
alignment is computed by extracting image features (Harris cor-
ners with a corresponding Brief descriptor [Calonder et al. 2010])
for each frame and performing a windowed search between adja-
cent frames to find matching features. A feature is determined to be
a match if the Brief descriptor distance of the best match is suffi-
ciently different from that of the second best match (a.k.a. the ratio
test [Lowe 1999]).

This process differs slightly from the process used for the frame
matching described in Section 4.1, as we use tracking across multi-
ple frames (in Section 4.1 only pairs are matched) to avoid locking
onto scene motion and to distinguish foreground motion from back-
ground static features. The tracks are analyzed using a RANSAC

1For convenience, we use the same notation for the cost function and

matrix Cm, as they are essentially equivalent given that the cost function is

discrete.
2In DTW parlance, Cm is the ‘distance matrix”, Cs is a “gap penalty”,

and Ca is a second-order penalty, and we are solving for a self-alignment,

where the trivial alignment is not allowed and gaps of certain sizes are de-

sired, rather than to be avoided.

method to find the largest set of inlier tracks such that a single tem-
poral sequence of homographies maps all background features to
their positions in an initialization frame. If too many tracks are
lost after a number of frames, the tracker re-initializes with a new
set of feature points. This tracking process results in a sequence
of frame-to-frame homographies. These are then smoothed using
the single-path version of the approach by Liu et al. [2013]. The
amount of smoothing in this algorithm is controlled by the maxi-
mum allowable cropping in the result, which we set to 80%. Our
tracking process also performs rolling-shutter correction using the
algorithm of Baker et al. [2010]. Unlike in previous work [Kopf
et al. 2014], we use a single-frame rendering approach to render the
result: we warp each selected frame with the smoothed transforma-
tion and correction to produce the resulting hyperlapse sequence.

5 Refinements and optimizations

In the previous section, we defined our algorithm and general
framework for creating hyperlapse videos using optimal frame se-
lection. In this section, we describe two refinements that we incor-
porate into our framework.

5.1 Equal motion hyperlapse video

Equations 4 and 5 are defined in terms of temporal velocity, i.e.,
they are a function of how many frames are skipped. However, an
appealing aspect of some hyperlapse videos (such as those of Kopf
et al. [2014]) is that they attempt to maintain consistent camera
velocity. In addition, large lateral swings in the camera are very
disorienting when sped up too much. We can avoid these as we
have camera motion estimates when we construct the cost matrix.

We approximate “equal motion” hyperlapses by modifying our
speed cost to have a temporally varying target speed-up rate, ν(i):

Cs(i, j,ν(i))=min(||(j− i)−ν(i)||22, τs), (9)

ν(i) is a function of the camera velocity in the input video. We es-
timate this velocity in pixel space by sampling the optical flow in-
duced by the frame-to-frame transformations in the input sequence.
Given the transformations T (i, j) discussed in Section 4.1, the cam-
era velocity for frame i is the average flow of four corners of the
frame:

v(i)=
1

4

4
∑

p=1

∣

∣

∣

∣

∣

∣
T (i, i+1)(xp,yp)

T
i −(xp,yp)

T
i

∣

∣

∣

∣

∣

∣

2

, (10)

where (xp,yp)∈{(1,1),(1,h),(w,1),(w,h)} where w and h are
the frame width and height.

The time varying target rate is given by:

ν(i)=αν

(

1

T

∑T

i=1
v(i)

v(i)

)

+(1−α)ν. (11)

This function simply computes what speed-up rate is needed at
frame i to result in a camera velocity that is ν times the average
camera velocity. α allows one to balance between “equal motion”
and “equal time” results. We set α= .8 for our equal motion results.

5.2 Speed optimization

The most computationally expensive part of our process is com-
puting the transformations T (i, j), especially when the cost matrix
window w is large, as one needs to compute w transformations per

CAPTURE

(STAGE 1: FRAME MATCHING AND BUILDING COST MATRIX)

PROCESSING

(STAGE 2: PATH SELECTION)

INTERACTIVE VIEWING

(STAGE 3: PATH SMOOTHING AND RENDERING)

Figure 4: Our smartphone app and the three stages of our algorithm mapped to the user experience. Stage 1 occurs online during capture,
Stage 2 is a short processing stage following capture, and Stage 3 occurs online during interactive viewing, where a user can use an on-screen
slider to immediately change the speed-up for the displayed hyperlapse.

input frame. Our optimization is to approximate the overlap cost
Co(i, j) by chaining the overlap estimate between frames:

Co(i, j)=Co(i, i+1)+Co(i+1, i+2)+ ...+Co(j−1, j). (12)

This is similar to the approach of chaining transformations as in
video stabilization algorithms [Grundmann et al. 2011]; however,
we chain the cost directly instead of the underlying transformation
used to compute the cost. This type of chaining works well when
chaining a modest number of measurements; however, it is possible
for the approximation to drift over long chains.

6 Desktop and mobile apps

We have implemented our algorithms in two applications: a smart-
phone app and a desktop app. While the two apps share the same
code, due to differences in usage scenario and computational power,
there are some subtle implementation differences.

6.1 Desktop app

In the desktop app, we assume the video has already been captured
and the user provides a desired speed for the hyperlapses to create.
The video is read off disk and all three stages are run in an on-
line fashion as if the video stream was coming from a live camera
stream. The hyperlapses are generated and saved to disk. We set the
cost matrix window parameter w equal to two times the maximum
target speed.

As a performance optimization we use a combination of chained
and directly computed transformations T (i, j). To decide whether
to chain or directly compute the transformation, we use a simple
heuristic to estimate the drift. We first compute the overlap cost
Co(i, j) using the chained approximation. If Co(i, j)<=0.05d,
where d is the image diagonal, we use the chain-computed cost.
If Co(i, j)>0.05d, we compute T (i, j) directly and recompute
Co(i, j). We have found this heuristic to work well, as Co(i, j)
is small only if T (i, j) is closer to identity. In this case there is
likely to be little accumulated drift since drift will manifest itself
as a transformation that is increasingly far from the identity. There
are other approaches that could be used instead, as we discuss in
Section 8.

6.2 Mobile app

Our smartphone app, shown in Figure 4, typically operates on live
captures, but also allows for importing of existing videos. The
pipeline is the same as the desktop app; however, we currently only
allow a discrete set of speed-ups of 1, 2, 4, 8, 16, and 32, and we set
the cost matrix window w=32. Stage 1 is run during capture, stage

2 is run immediately after capture, and stage 3 is run live as the user
previews the hyperlapse and can use a slider to interactively change
the speed-up rate.

Due to the reduced computational power of the smartphone, we
always use chained transformations in the mobile app. Although
this can lead to some drift, the errors due to this decision are usually
un-noticeable. See Section 8 for more discussion on this.

7 Results

We have run our algorithm on a large, diverse set of videos from
many activities and cameras: GoPros, several smartphones, and
drone cameras – all videos are HD resolution (720p and higher).
Some videos we acquired ourselves intending to make a hyperlapse,
while others were general videos, where there was no intent to cre-
ate a hyperlapse.

Figure 5 visually tabulates a selection from our test set and the
color coding indicates which videos are compared with which pre-
vious methods. Most of our results are generated using our desk-
top app, as this allows the most flexibility for comparison. Five
results in the “purple” section of Figure 5 are from our mobile
app. It is not possible to create comparisons for these, as our mo-
bile app does not save the original video due to storage concerns.
Our results are presented as individual videos and several have
side-by-side comparisons in our main video, all results are avail-
able at: http://research.microsoft.com/en-us/um/
redmond/projects/hyperlapserealtime/. The reader
is strongly encourage to view our these videos to fully appreciate
our results; however, we also summarize a selection of results here.

For the videos indicated in “green” in Figure 5, we compared to the
Instagram app in two ways. For two of the videos (Short Walk 1
and Selfie 2) we captured with the app, saved a hyperlapse, saved
the raw input video using the advanced settings, and then ran our
desktop app on the raw input video using the same target speed.
Unfortunately, the save input video setting was recently removed
in the Instagram app, so for two more captures (Selfie 1 and Dog
Walk 2), we constructed a rig that allowed us to capture with two
phones simultaneously, one using the Instagram app and one cap-
turing regular HD video. We then ran our desktop app on the video
from the second phone. Figure 6 shows a few consecutive frames
from Instagram Hyperlapse and our approach.

To illustrate the differences in the camera motion, we show the
mean and standard deviation of three consecutive frames. The
sharper, less “ghosted” mean and lower standard deviation shows
that our selected frames align better than those from Instagram.
Where there is parallax, the images also illustrate how our results
have more consistent forward motion with less turning. These dif-

http://research.microsoft.com/en-us/um/redmond/projects/hyperlapserealtime/
http://research.microsoft.com/en-us/um/redmond/projects/hyperlapserealtime/

Comparisons to Kopf et al. Comparisons to Instagram Comparisons to Naive No Comparisons (mobile and additional results)

DRONE MOTORCYCLEHEATHROW

CHAPEL MARKET

WALKING LONDON

GARDEN

MILLENNIUM BRIDGE PYONGYANGCRUISE

RUN 5K

HOI BIKE RIDE RUN WALTER RUN

TIMES SQUARE 1

TIMES SQUARE 2

TIENGEN

HEDGE MAZE

MADRID AIRPORT

GRAVEYARD

SHORT WALK 1 SELFIE 1 & 2

DOG WALK 1

BIKE 1 BIKE 3 WALKING SCRAMBLINGBIKE 2

DOG

WALK 2

Figure 5: Thumbnails for videos in our test set. The videos span a diverse set of activities and wide range of cameras, from GoPros and
different models of smartphones to videos where the camera is unknown. We compare our results to previous work wherever possible, as
indicated in the diagram.

ferences are due to selecting a set of frames with more overlap that
can be aligned more accurately and our visual tracking compensat-
ing for more than just the camera rotation that is measured by the
gyros used by the Instagram app. The latter is most obvious in the
“Selfie-lapses”. In our main result video we shows a few side-by-
side video comparisons for these results.

The five clips indicated in “red” in Figure 5 were provided to us
by Kopf et al. [2014]. We ran their input video clips through our
desktop app using a 10x target speed up. For Bike 1, 2, and 3 and
Walking our results are similar, although the motion is less consis-
tent. However, our computation time is two orders of magnitude
faster. Just as in the Kopf et al. results our algorithm is able to skip
many undesired events, such as quick turns.

The scrambling video is not as successful and illustrates some lim-
itations, which are discussed in the following section. We would
also expect the Kopf et al. approach to fail for some cases that work
well in our approach, such as when there is not enough parallax to
perform 3D reconstruction (e.g., if the camera is mostly rotating),
and our approach has many fewer artifacts when there is scene mo-
tion, as 3D reconstruction requires the scene to be static over many

In
st

a
g

ra
m

O
u

rs

Mean Std. Dev.Consecutive Frames

Figure 6: Selfie-lapse: comparing Instagram Hyperlapse and
our approach. Once again our approach leads to sharper, less
“ghosted” mean and lower standard deviations since the Instagram
approach is blind to the large foreground and thus cannot stabilize
it well. The differences are more obvious in the associated videos.

frames. Our main result video shows side-by-side comparisons for
these results.

The “yellow” clips in Figure 5 are other videos from GoPro, drone,
dash, cell phone, and unknown cameras. For these we include com-
parisons to naive hyperlapse (i.e., timelapse followed by stabiliza-
tion), where the only difference between the naive results and ours
is our frame selection algorithm. The naive hyperlapse results are
similar to the Instagram approach except that visual features are
used instead of the gyros. We use naive hyperlapse as a compari-
son as there is no way to run the Instagram app on existing videos
and Kopf et al. have not released their code. Our main result video
shows side-by-side comparisons for a few results, and we include
a few additional results without comparisons, as indicated in “pur-
ple”.

We also show side-by-side comparisons of our equal time vs. equal
motion approach for a few videos. In these comparisons the slower
camera motions are sped up while the quick pans are slowed down
to create a more consistent camera velocity.

While our algorithm can skip large distracting motions such as head
turns, this can occasionally lead to an undesirable temporal jump.
In our online results, we also show some initial results for easing
large temporal transitions by inserting a cross-faded frame when-
ever the temporal jump is larger than twice the desired target speed
up.

Table 1 summarizes running times and video properties for a se-
lection of videos and Figure 7 shows histograms of performance
for all test videos. The average running rates for our algorithm are
Stage 1: 50.7 FPS, Stage 2+3: 199.8 FPS, and Total: 38.16 FPS.
These timings were measured running on a single core of a 2.67
GHz Intel Xeon X5650 PC from 2011 running Windows 8.1. The
algorithm has not been optimized other than what is discussed in
Section 5.2 and there is no code parallelization. All stages are per-
formed online during capture, loading, or viewing. As Stage 2 is
faster than real-time, it can be applied live while watching a hyper-
lapse, in other words, a hyperlapse is ready for consumption after
Stage 1. We have included the dynamic programming time in the
Stage 2+3 plot, as it is quite insignificant, with an average perfor-
mance of 4638.5 FPS, or a most a few seconds for long inputs.

Our mobile app runs at 30 FPS with 1080p captures on a mid-level
Windows Phone. To evaluate the impact of the optimization in Sec-
tion 5.2, we ran “Short Walk 1” with no optimization, the hybrid

Video Name Length Resolution Target Speed-up Actual Speed-up Stage 1 FPS Stage 2+3 FPS DP FPS Total FPS Kopf et al. FPS

SHORT WALK 1 0:59 1920x1080 12x 11.30x 32.29 79.47 18242.78 22.90 n/a

BIKE 3 16:36 1280x960 10x 12.6x 8.76 101.79 2912.43 8.07 0.0016

SELFIE 2 0:39 720x1280 10x 10.17x 67.86 169.39 25500.00 47.88 n/a

TIMES SQUARE 2 17:26 1920x1080 10x 9.81x 53.68 59.57 21849.38 28.18 n/a

CHAPEL MARKET 6:17 1280x960 10x 9.88x 59.73 98.21 16957.79 37.10 n/a

HOI BIKE RIDE 17:26 1920x1080 16x 16.16x 57.83 60.92 11078.41 29.62 n/a

RUN 5K 1:05:16 1280x960 20x 19.1x 10.09 84.59 9383.01 9.014 n/a

Mean (entire test set) n/a n/a n/a n/a 50.7 199.8 4638.5 38.16 n/a

Table 1: Detailed running times and video properties for a subset of our test set. The mean statistics reported are across the whole test set.

approach, and the fully chained approach. The Stage 1 performance
for these is 17, 38, and 89 FPS, respectively.

8 Discussion and Future Work

We have presented a method for creating hyperlapse videos that can
handle significant high-frequency camera motion and also runs in
real-time on HD video. It does not require any special sensor data
and can be run on videos captured with any camera. We optimally
select frames from the input video that best match a desired target
speed-up while also optimizing for the smoothest possible camera
motion. We evaluated our approach using many input videos and
compared these results to those from existing methods. Our results
are smoother than the existing Instagram approach and much faster
than Poleg et al. and the 3D Kopf et al. approach, providing a good
balance of robustness and flexibility with fast running times.

One of the interesting outcomes of our approach is its ability to au-
tomatically discover and avoid periodic motions that arise in many
first person video captures. While our algorithm stays close to the
average target speed, it will locally change its speed to avoid bad
samplings of periodic motions.

The primary limitations of our method are when there is significant
parallax in a scene, when there is not a lot of visual overlap be-
tween nearby frames, or if the scene is mostly non-rigid. In these
cases, the gyro approach of Instagram and the 3D reconstruction ap-
proach of Kopf et al. can help. While we have used these methods
as our primary points of comparison, it is important to note that our
method is quite complementary to those approaches, and an inter-
esting area for future work is to combine these approaches. Our vi-
sual tracking and optimal frame selection are quite helpful indepen-
dently, e.g., gyros and visual tracking can be fused for robustness
and to distinguish between camera rotation and translation [Joshi
et al. 2010]. Similarly, our optimal frame selection algorithm could
be used with any tracking method: gyro, 2D, or 3D.

Overall, our approach is quite modular, so just as the first two
stages: visual matching and DP could be used with other hyper-
lapse methods, there are number of 3D and 2.5D stabilization meth-
ods [Liu et al. 2009; Liu et al. 2011; Liu et al. 2013] that could eas-
ily be used as stage 3 of our approach, which could further refine
our results and handle misalignments due to parallax.

Another interesting direction for future work is to integrate addi-
tional semantically derived costs into our cost matrix approach. For
example, one could drive the selection of frames by visual or audio
saliency, measures of image quality, such as blur, or detectors for
faces or interesting objects.

Lastly, while our approach is already quite fast, there a numerous
opportunities for optimization. Parallelization is the most obvious.
The most time consuming step of computing frame-to-frame trans-
formations is highly parallelizable and could lead to significant im-
provement in running time. Similarly, there are more optimal ways

to estimate transformations using chaining, e.g., directly computing
transformations at fixed spacings, such as 1x, 2x, or 4x, etc. and
then using chaining for short segments in between. Given faster
performance, one could then increase the band window in the cost
matrix, to allow for matching across more frames, which can lead
to more robust skipping of undesired events, such as quick turns.

Acknowledgements

We thank Rick Szeliski for his many suggestions and feedback.
We thank Eric Stollnitz, Chris Sienkiewicz, Chris Buehler, Celso
Gomes, and Josh Weisberg for additional work on the code and
their design choices in the apps. We would also like to thank our
many testers at Microsoft for their feedback and test videos, and
lastly we thank the anonymous SIGGRAPH reviewers for helping
us improve the paper.

References

AREV, I., PARK, H. S., SHEIKH, Y., HODGINS, J., AND SHAMIR,
A. 2014. Automatic editing of footage from multiple social
cameras. ACM Trans. Graph. 33, 4 (July), 81:1–81:11.

BAKER, S., BENNETT, E., KANG, S. B., AND SZELISKI, R.
2010. Removing rolling shutter wobble. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, 2392–
2399.

BENNETT, E. P., AND MCMILLAN, L. 2007. Computational time-
lapse video. ACM Trans. Graph. 26, 3 (July).

CALONDER, M., LEPETIT, V., STRECHA, C., AND FUA, P. 2010.
Brief: binary robust independent elementary features. In Pro-
ceedings of the 11th European Conference on Computer vision:
Part IV, ECCV’10, 778–792.

CANON, L. G. 1993. EF LENS WORK III, The Eyes of EOS.
Canon Inc.

FISCHLER, M. A., AND BOLLES, R. C. 1981. Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM 24,
6 (June), 381–395.

FORSSEN, P.-E., AND RINGABY, E. 2010. Rectifying rolling
shutter video from hand-held devices. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, 507–
514.

GRUNDMANN, M., KWATRA, V., AND ESSA, I. 2011. Auto-
directed video stabilization with robust l1 optimal camera paths.
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, 225–232.

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

fps

co
un

t
Performance for Stage 1

120 140 160 180 200 220 240 260 280 300 320 340 360
0

1

2

3

4

5

6

7

8

9

10

fps

co
un

t

Performance for Stage 2+3

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

fps

co
un

t

Total Performance

Figure 7: Real-time performance. The running times for our test set of video in terms of frames-per-second (FPS) relative to the input video
length. The average running times are Stage 1: 50.7 FPS, Stage 2+3: 199.8 FPS, and Total: 38.16 FPS. As Stage 2, is faster than real-time,
it can be applied live while watching a hyperlapse, in other words, the hyperlapse is ready for consumption after Stage 1.

JOSHI, N., KANG, S. B., ZITNICK, C. L., AND SZELISKI, R.
2010. Image deblurring using inertial measurement sensors.
ACM Trans. Graph. 29, 4 (July), 30:1–30:9.

JOSHI, N., MEHTA, S., DRUCKER, S., STOLLNITZ, E., HOPPE,
H., UYTTENDAELE, M., AND COHEN, M. 2012. Cliplets:
Juxtaposing still and dynamic imagery. In Proceedings of the
25th Annual ACM Symposium on User Interface Software and
Technology, ACM, New York, NY, USA, UIST ’12, 251–260.

KANEVA, B., SIVIC, J., TORRALBA, A., AVIDAN, S., AND

FREEMAN, W. 2010. Infinite images: Creating and exploring a
large photorealistic virtual space. Proceedings of the IEEE 98, 8
(Aug), 1391–1407.

KARPENKO, A., JACOBS, D., BAEK, J., AND LEVOY, M. 2011.
Digital video stabilization and rolling shutter correction using
gyroscopes. Stanford University Computer Science Tech Report
CSTR 2011-03.

KARPENKO, A., 2014. The technology behind hy-
perlapse from instagram, Aug. http://instagram-
engineering.tumblr.com/post/95922900787/hyperlapse.

KOPF, J., COHEN, M. F., AND SZELISKI, R. 2014. First-person
hyper-lapse videos. ACM Trans. Graph. 33, 4 (July), 78:1–
78:10.

LEVIEUX, P., TOMPKIN, J., AND KAUTZ, J. 2012. Interactive
viewpoint video textures. In Proceedings of the 9th European
Conference on Visual Media Production, ACM, New York, NY,
USA, CVMP ’12, 11–17.

LIU, F., GLEICHER, M., JIN, H., AND AGARWALA, A. 2009.
Content-preserving warps for 3d video stabilization. ACM Trans.
Graph. 28, 3 (July), 44:1–44:9.

LIU, F., GLEICHER, M., WANG, J., JIN, H., AND AGARWALA,
A. 2011. Subspace video stabilization. ACM Trans. Graph. 30,
1 (Feb.), 4:1–4:10.

LIU, S., YUAN, L., TAN, P., AND SUN, J. 2013. Bundled camera
paths for video stabilization. ACM Trans. Graph. 32, 4 (July),
78:1–78:10.

LOWE, D. 1999. Object recognition from local scale-invariant fea-
tures. In Computer Vision, 1999. The Proceedings of the Seventh
IEEE International Conference on, vol. 2, 1150–1157 vol.2.

MATSUSHITA, Y., OFEK, E., GE, W., TANG, X., AND SHUM, H.-
Y. 2006. Full-frame video stabilization with motion inpainting.

Pattern Analysis and Machine Intelligence, IEEE Transactions
on 28, 7 (July), 1150–1163.

POLEG, Y., HALPERIN, T., ARORA, C., AND PELEG, S. 2014.
Egosampling: Fast-forward and stereo for egocentric videos.
arXiv, arXiv:1412.3596 (November).

PROVOST, D., 2014. How does the iOS 8 time-lapse feature
work?, Sept. http://www.studioneat.com/blogs/main/15467765-
how-does-the-ios-8-time-lapse-feature-work.

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I.
2000. Video textures. In Proceedings of the 27th Annual Confer-
ence on Computer Graphics and Interactive Techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
SIGGRAPH ’00, 489–498.

WANG, O., SCHROERS, C., ZIMMER, H., GROSS, M., AND

SORKINE-HORNUNG, A. 2014. Videosnapping: Interactive
synchronization of multiple videos. ACM Trans. Graph. 33, 4
(July), 77:1–77:10.

