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Abstract. The application of hyperspectral sensors in the develop-
ment of machine vision solutions has become increasingly popular
as the spectral characteristics of the imaged materials are better mod-
eled in the hyperspectral domain than in the standard trichromatic red,
green, blue data. While there is no doubt that the availability of
detailed spectral information is opportune as it opens the possibility
to construct robust image descriptors, it also raises a substantial chal-
lenge when this high-dimensional data is used in the development of
real-time machine vision systems. To alleviate the computational
demand, often decorrelation techniques are commonly applied
prior to feature extraction. While this approach has reduced to
some extent the size of the spectral descriptor, data decorrelation
alone proved insufficient in attaining real-time classification. This
fact is particularly apparent when pixel-wise image descriptors are
not sufficiently robust to model the spectral characteristics of the
imaged materials, a case when the spatial information (or textural
properties) also has to be included in the classification process.
The integration of spectral and spatial information entails a substantial
computational cost, and as a result the prospects of real-time opera-
tion for the developed machine vision system are compromised. To
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answer this requirement, in this paper we have reengineered the
approach behind the integration of the spectral and spatial information
in the material classification process to allow the real-time sorting of
the nonferrous fractions that are contained in the waste of electric and
electronic equipment scrap. © 2012 SPIE and IS&T. [DOI: 10.1117/
1.JEL.21.1.013018]

1 Introduction

The advent of modern hyperspectral imaging modalities
opened the possibility of implementing a large spectrum
of applications that cannot be robustly solved using the stan-
dard trichromatic [red, green, blue (RGB)] data. Among
many possible applications that were well served by
the inclusion of hyperspectral imaging systems (such as
remote sensing, biomedical imaging, industrial inspection,
etc.),'™ the accurate recognition of nonferrous materials
represents a prominent example.>'> The motivation behind
the decision to use hyperspectral information in the nonfer-
rous material sorting process is multifold, where the chief
reason being the fact that the color information is not suffi-
ciently descriptive to robustly sample the characteristics
associated with each nonferrous fraction. This issue proved
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to be particularly apparent in our study as the different frac-
tions of nonferrous materials show considerable intraclass
dispersion and a relative high interclass similarity in the
RGB domain.

As opposed to the standard RGB image-formation pro-
cess, hyperspectral imaging involves the acquisition and
interpretation of multidimensional digital images that are
able to sample the properties of the imaged materials in a
substantially wider spectral domain than that covered by
the visible spectrum.'>!? In this regard, it is worth mention-
ing that the current range of hyperspectral sensors are able to
simultaneously capture hundreds of spectral bands from
ultraviolet to far infrared with a spectral resolution of less
than 10 nm.'*!> Thus, the main characteristic of the hyper-
spectral images is that each pixel is defined by a large vector
whose elements are the spectral components captured from
the light arriving at the spectral sensor.*'*!*1° While there is
no doubt that the availability of hyperspectral data is oppor-
tune in the classification process, it is important to note that
the process of capturing a large number of spectral bands
results in a high dimensional data that may raise substantial
challenges from practical and computational perspectives. In
addition to the extensive dimensionality of the hyperspectral
data, the substantial correlation between the closely spaced
spectral bands may represent another issue that may affect
the accuracy of the material classification process. Thus it
is clear that the inclusion of the unprocessed hyperspectral
data in the classification process is not only suboptimal,
but also this approach will compromise the real-time opera-
tion of the developed machine vision system.

To answer the computational constrains and to avoid the
Hughes phenomenon,”'> a large number of studies have been
devoted to address the optimal decorrelation of the hyper-
spectral data, where the ultimate objective has been the
reduction of the feature vectors that describe the materials
that define the scene objects. To this end, principal compo-
nent analysis (PCA),' linear discriminant analysis (LDA),%
wavelet decomposition,” and uniform band design (UBD),”!
were previously used for hyperspectral decorrelation. While
these methods proved efficient when applied to diverse prac-
tical scenarios, they have the disadvantage of having to
require a substantial level of user intervention during the
training stage, and in addition these decorrelation approaches
need retraining if new materials are included in the classifi-
cation process. To circumvent these issues, unsupervised
decorrelation techniques based on fuzzy sets were proposed,’
which proved particularly efficient when applied to material
classification tasks. The experimental results reported in
Ref. 9 indicate that the application of decorrelation not
only improves the computational efficiency, but also in-
creases the accuracy of the classification process. Our
prior investigations'® revealed that the pixel-wise features
calculated after the application of data decorrelation proved
insufficient to accurately model the within-class variability
associated with the nonferrous fractions.” This inadequacy
of the pixel-wise features was particularly exacerbated by
the specular properties and the various levels of oxidization
that are characteristic for the nonferrous materials contained
in the waste of electric and electronic equipment (WEEE)
scrap. A robust solution resides in the combination of
the spectral and spatial features with the aim of generating
a descriptor that is able to factor in not only the spectral
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properties of the imaged materials, but also their textural char-
acteristics as well.*>!>?>2* One approach toward spectral-
spatial integration was proposed by Mercier and Lennon,?
where the authors attempted to model the texture in the hyper-
spectral domain by computing the marginal distribution of the
wavelet coefficients using generalized Gaussian density
(GDD). Other approaches implemented texture decomposi-
tion using Gabor filters,”® directional filter banks,?’ Markov
random fields,”® or analyzed the texture using statistical
schemes based on the calculation of co-occurrence matrices.”
While these methods have shown promising results when
applied to various practical applications, their major limitation
is the onerous computational overhead associated with the cal-
culation of the spectral-spatial descriptors (SSDs), a fact that
rendered them as unfeasible when deployed in the develop-
ment of real-time vision systems.

In a recent paper’ we detailed a novel framework where
the textural and spectral features are integrated using local
distributions, a concept that is well suited for sampling
the spectral descriptors that are characteristic for nonferrous
materials. The use of local distributions for nonferrous mate-
rial sorting proved opportune from a classification perfor-
mance standpoint (accuracy >98%), but although the
computational complexity of the proposed algorithm was
substantially lower than that associated with standard hyper-
spectral texture analysis methods,?* it was still too high to
be feasible for real-time operation. Thus, the major goal of
this paper is to redesign the process behind the calculation of
the local distributions in the decorrelated hyperspectral
domain that was presented in Ref. 9 with the objective of
reducing the computational time to a level that offers real-
time operation when the nonferrous material-sorting algo-
rithm is included in the development of a conveyor-based
WEEE recycling system. Another important objective in
our research was to attain the real-time operation while main-
taining the classification accuracy at a similar level when
compared to the original implementation.

This paper is organized as follows. In Sec. 2, an overview
of the WEEE recycling process is provided. Section 3 details
the proposed material classification algorithm and its real-
time implementation. Section 4 describes and discusses
the experimental results, while Sec. 5 concludes the paper.

2 WEEE Recycling: Background Information

The most recent statistics indicate that the WEEE constitutes
4% of the total municipal waste in Europe, and it is increas-
ing by 16 to 28% every five years.>? Although certain sec-
tors of the electrical and electronic equipment (EEE) market
show signs of stagnation (e.g., TV sets and large kitchen
appliances), others, including information and telecommuni-
cation equipment, car electronics, and electronic toys, still
experience a robust growth. In this context, it is useful to
note that the European economic area (EEA) countries gen-
erate 6.5 million tons of WEEE per annum, and currently
approximately 90% of this potentially hazardous waste is
disposed as unsorted in generic municipal landfills. Accord-
ing to the current EU statistics, the WEEE is expected to
increase to 12 million tons by 2015, and, as a consequence,
legislation that sets specific requirements in regard to WEEE
collection and recycling has been recently introduced.’!
While the introduction of strict targets toward WEEE recy-
cling had a direct impact on EEE manufacturers, as they had
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to adjust their environmental policies, it also opened an
opportunity for companies that are active in the WEEE recy-
cling sector.

Prior to the application of various technological recycling
processes, the WEEE is shredded to allow the separation of
its constituent parts. After mechanical, electrostatic, and
densiometric sorting,'®* a distinct component of the
WEEE scrap is formed by nonferrous materials (stainless
steel, aluminum, copper, zinc, brass, and lead) that cannot
be sorted by standard mechanical recycling procedures.
This fact has negative economic implications as the unsorted
nonferrous materials are sold at a much lower price than the
individual nonferrous fractions. Thus the availability of new
technologies that would allow the robust sorting of nonfer-
rous materials will increase considerably the profitability of
the overall WEEE recycling process. To achieve this goal,
the classification of the nonferrous materials has been initi-
ally carried out using the RGB data. These approaches
proved inefficient when applied to the separation of several
fractions of nonferrous materials (such as stainless steel,
aluminum, and zinc),8 and as a result new methodologies
that perform the classification in the hyperspectral domain
were actively explored.’** While hyperspectral classification
techniques proved accurate when applied to nonferrous
sorting, they proved challenging when included in the devel-
opment of industrial systems due to their high computational
demand. To provide an insight into this issue, the specifica-
tions for WEEE recycling outlined in the SORMEN
European project documentation® indicate that a sorting
speed of one ton/h is required to justify the automatic recy-
cling process from an economical perspective. This trans-
lates into a processing speed of 50 m/min (approximately
170 camera lines/s). The algorithms based on pixel-wise
classification schemes can meet this computational con-
straint, but they are not able to properly model the interclass
variations associated with different nonferrous materials. As
indicated in the introductory section of this paper, the solu-
tion to this problem resides in the integration of the spectral
and spatial information in the classification process, but there
are substantial computational challenges that need to be
overcome. In the following sections of the paper we will
detail a real-time nonferrous material classification algorithm
that is able to attain the processing speed required for an
industrial recycling system, while maintaining the classifica-
tion accuracy at a level above 96%.

2.1 System Overview

In order to devise a flexible machine vision solution, we have
adopted a modular approach. In this regard, the proposed
system consists of several computational modules that

|

Control Unit and
Classification Module

WEEE Parts Delivery
(WEEE Shredded Scrap)

Hyperspectral P Particle
Camera Sorting
' Mechanism
—> € ER=kE

—» Q WEEE Transport System O

Fig. 1 Schematic of the nonferrous material sorting system.
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include the hyperspectral image acquisition and nonferrous
material classification, and mechanical subcomponents that
implement the WEEE vibratory delivery system, particle
transport module (conveyor), and the pneumatic particle sort-
ing mechanism. The logical arrangement of the constituent
modules of the developed machine vision solution is illu-
strated in Fig. 1, and in the remainder of the paper we
will be primarily focused on the description and analysis
of the nonferrous material classification algorithm, which
is the core component of the system. Details about all
mechanical components of the developed machine vision
solution can be found in Ref. 24.

3 Real-Time Nonferrous Material Classification

The computational stages associated with the proposed real-
time material classification algorithm can be summarized as
follows:

1. Hyperspectral data decorrelation
2. Background removal and nonferrous particle labeling

3. Data quantization and the calculation of the SSD for
each nonferrous particle

4. Material classification.

For clarity, Fig. 2 presents a block diagram that describes
the complete overview of the proposed real-time material
classification algorithm. In this diagram, arrows illustrate
the logical links between the distinct computational compo-
nents of the proposed nonferrous classification algorithm. It
is useful to mention that the main computational bottleneck
is associated with the calculation of the SSD for each non-
ferrous particle (see the shaded component in Fig. 2). Thus
the main objective of our work was to devise an optimized
approach for the robust integration of spectral-spatial
information to allow the implementation of a real-time non-
ferrous material-sorting system. In this sense, the new
approach constructs a single descriptor for each nonferrous
particle, as opposed to the approach detailed in Ref. 9, which
requires the calculation of fuzzy spectral-spatial distributions
for each pixel in the hyperspectral image and the application
of computationally complex procedures relating to region
merging and reclassification. Full details about each compu-
tational component shown in Fig. 2 will be provided in the
remainder of this paper.

3.1 Hyperspectral Data Decorrelation

In the first step the unprocessed hyperspectral image is
subjected to data decorrelation using an unsupervised
approach based on spectral fuzzy sets.” This approach
is based on the knowledge that the spectral information var-
ies smoothly over successive spectral bands, and as a result
the characteristics associated with nonferrous materials
should be sampled by groups of spectral bands rather
than selective spectral bands. The data flow associated
with the developed fuzzy-based decorrelation scheme
is detailed in Fig. 3.

The developed hyperspectral decorrelation (see Fig. 4)
involves the partitioning of the spectral domain in a prede-
fined number of fuzzy sets, m, and an energy value E,
for each fuzzy set ¢ (¢ € [1,m]) is calculated as follows:
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Fig. 2 Outline of the real-time nonferrous material classification algorithm.
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It can be observed that the energy measure defined in Eq. (1)
samples the strength of the intensity signal I(x,y) =
[11(x,y), I(x,y), ..., I;(x,y)] in each fuzzy set. Using this
approach, the dimensionality of each hyperspectral pixel
I(x,y) is reduced from k to m (k >> m). To provide some
insight into the computational efficiency attained by the pro-
posed data decorrelation scheme, the dimensionality of
the unprocessed hyperspectral data, &, is 80 (i.e., consists
of 80 spectral bands), and our earlier studies revealed
that optimal classification results are obtained when the
hyperspectral data is decorrelated using eight fuzzy sets
(i.e., m = 8) (for more details please refer to Ref. 9 where
a comprehensive set of experimental results are provided).

3.2 Background Segmentation and Particle Labeling

The next step of the classification procedure involves the
segmentation of the decorrelated spectral data into back-
ground and nonferrous particles. As indicated in our earlier
paper, where the mechanical design of the WEEE recycling
system is outlined,”* the WEEE delivery component (vibra-
tory feeder) was carefully built to ensure a uniform place-
ment of the nonferrous particles onto the belt of the
conveyor without any particle overlaps.

Based on the hyperspectral characteristics of the nonfer-
rous materials, it was decided to choose a belt that is coated
with matte black material. The main reason behind this deci-
sion was to maximize the contrast in the hyperspectral
domain between the nonferrous materials and the back-
ground information (conveyor belt) and to reduce as much
as possible the occurrence of specular reflections due to
the adherence of the small WEEE particles to the conveyor
belt. By taking advantage of these characteristics, a sole dec-
orrelated energy vector component (i.e., the energy compo-
nent whose central wavelength corresponds to 510 nm)
proved sufficient for robust background segmentation
using an experimentally determined threshold. However,
when the recycling system has been operated in an industrial
environment, we have discovered that vertical scratches

occurred on the conveyor belt due to the friction with non-
ferrous particles (see Fig. 5). Nonetheless, the occurrence of
these vertical scratches on the conveyor belt has negative
effects on the background segmentation process, as illu-
strated in Fig. 5(b), and to robustly eliminate these undesired
features we devised a filtering approach in the Fourier
domain by masking the contribution of the frequencies
that are generated by the vertical scratches as shown in
Fig. 5(d) and Eq. (2).

0 if(u,v) EQ

F(u,v) = I(u,v)H(u,v) H(u,v)= { 1 otherwise

(€))

where u,v are the spatial frequencies, I(u,v) is the input
image after the application of the two-dimensional (2-D)
fast Fourier transform (FFT), H(u, v) denotes the Fourier fil-
ter, Q defines the section of the Fourier spectrum associated
with vertical scratches, and F(u, v) is the filtered image. The
filtered image F(u,v) is converted to the spatial domain
using the inverse FFT, and the image resulting from the back-
ground segmentation process [see Fig. 5(f)] is subjected to a
computationally optimized labeling procedure. Figure 6
illustrates the image resulting from the labeling process.

3.3 Calculation of the Particle Spectral-Spatial
Descriptor

After the application of the particle segmentation and labeling
process, the next step involves the calculation of the spectral
descriptor for each nonferrous particle. In our initial studies
we have analyzed the feasibility of using pixel-wise spectral
information for material classification, but the experimental
results indicated a classification success rate of only 71.52%
when dealing with six nonferrous fractions (aluminium, cop-
per, brass, lead, stainless steel, and white copper). This classi-
fication accuracy clearly indicates that the spectral information
provided by a single pixel is not sufficient to robustly model
the significant intraclass dispersion caused by the various
levels of oxidization that are characteristic for each nonferrous
material. Another important factor that increased the intraclass
dispersion was generated by the specular properties of the

Y 11(K~Y) Fuzzy-sets E |(X,y)
Iz(x_,y} — 5 | hyperspectral E, gx,y}

X i decorrelation
A L(x.y) E_(xy)

Fig. 3 Fuzzy sets-based hyperspectral decorrelation.
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o . >
M2

Fig. 4 Calculation of the membership grade for the spectral band 4.
In this diagram 1, defines the half-width of each fuzzy set.

nonferrous materials and by the shadows caused by the three-
dimensional (3-D) geometrical profile of each particle. While
the issues inserted by the various oxidization levels can be (at
least theoretically) modeled in a statistical sense, the incidence
of the problems caused by the specular highlights and sha-
dows cannot be predicted as they are caused by external fac-
tors. To alleviate the problems introduced by shadows and
highlights we normalized the intensity of the decorrelated
spectral information as illustrated in Eq. (3) (for more details
regarding this hyperspectral intensity normalization scheme
the reader can refer to Ref. 33).

Exenn(l) = Ea(h) = min [E, (1), )

Fig. 6 Nonferrous particle labeling.

E(%)

where E, (4;) = Wand m denotes the number of fuzzy
i=1 !

sets that is a parameter of the spectral decorrelation scheme
detailed in Sec. 3.1.

However, as indicated earlier, the most important problem
we confronted is the inability of the pixel-wise spectral fea-
tures to properly sample the characteristics of the nonferrous
materials, and a solution to this problem resides in the inte-
gration of the spatial and spectral features in a composite
descriptor. Using this concept, the spectral characteristics
of the nonferrous materials are sampled by the distribution
of the spectral features that are calculated over a region in the
image. In the context of the application detailed in this paper,
we propose to calculate the distribution of the spectral-spatial
information using a fuzzy-based method similar to the
approach used for data decorrelation (see Sec. 3.1). This
approach is motivated by the fact that several factors such
as image noise, uneven illumination, and different levels
of oxidization of the nonferrous materials induce undesired
and unpredictable changes in the calculation of the SSDs. To
alleviate these issues we mapped each component of the nor-
malized spectral energy vectors E; into a new fuzzy-based

(d)

(b)

(f)

Fig. 5 Background segmentation process. (a) Input image where vertical scratches due to the friction between nonferrous particles and conveyor's
belt are visible. (b) Background segmentation. (c) Fourier spectrum of image (a). (d) Fourier filtering (c). (e) Inverse Fourier transform (d). (f) Back-

ground segmentation.
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Quantized vector: [0, 0, 0, 0.8, 0.2, 0]

Fig. 7 The fuzzy-based vector quantization procedure (p = 6 fuzzy
sets are applied to sample the decorrelated hyperspectral domain).

representation. The process required to calculate the fuzzy
distributions (histograms) entails two steps that are depicted
in Figs. 7 and 8. In the first step, the intensity of each energy
vector E;, i € [1,m] is subjected to a quantization procedure
where each spectral component is projected into a higher
dimensional vector space as illustrated in Fig. 7. In this pro-
cess, p fuzzy sets are employed from which only two will
return a value different than zero. In the second step, the
SSD is calculated as shown in Fig. 8. As indicated in
Fig. 8, for each pixel (x,y) the quantized vectors Q; for
each energy E; are concatenated into a pixel-wise feature
vector Q(x,y), while the SSD for a given region R is calcu-
lated as follows,

SSD(R) = > 0O(x.y). 4)
v

X,y)ER

The calculation of the SSD, as illustrated in Figs. 7 and 8, has
several advantages that are well suited for the application tar-
geted in this paper. First, the vector quantization procedure
applied to measure the response of each energy E;(x,y)
allows the construction of soft histograms that avoid the dis-
advantages associated with crisp binning (i.e., as in the case
when the spectral-spatial histograms would be calculated
using the E; values). This is particularly obvious in the
case of material classification, as the properties of different
nonferrous fractions vary smoothly within the hyperspectral
domain. Second, another important advantage resides in the
fact that the compound SSD involves the simple summation
of the quantized spectral response that is calculated for each
pixel in the region of interest R, which opens the opportunity

Ei(xy)

ol ik E—' Qg (xy)
B | Qgxy)

= -"! E_’ QEm(x'y)

y O BaGy)

=Q(x,y}

SSD®R) = X Q(xy)
(xyloR

Fig. 8 Calculation of the spectral-spatial descriptor (SSD).
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of real-time operation. While the nonferrous particles have
various sizes, prior to the classification process, each com-
ponent (bin) of the SSD is normalized with respect to the
number of pixels contained in the region R.

3.4 Multivariate Gaussian Classifier

The histogram shown in Eq. (4) defines the distribution of
the spectral energies within the area encompassed by a non-
ferrous particle, and this information is used as input for clas-
sification. In our implementation, the multivariate Gaussian
classifier'® is proposed to perform the material classification
since the dispersion of the spectral-spatial features within
each class of nonferrous materials can be well approximated
with normal distributions [the multivariate Gaussian classi-
fier is optimal in the Bayes sense if the relationships between
the input vectors that characterize each nonferrous material
class, and the output class variables can be accurately mod-
eled by multivariate normal distributions, as illustrated in
Eq. (5)]. In this regard, a multivariate Gaussian model is cre-
ated for each nonferrous material where y and X are the mean
vector and the covariance matrix of the modeled class (in the
training stage, 7 X 7 SSD descriptors have been used to sam-
ple the spectral characteristics for each nonferrous material).

1 1

[—%(X—H)TZ" (x—u)}
2 - )P~ |E|1/2e .

N(x|p, %) = (5)

The classification stage is carried out by checking each spec-
tral-spatial vector calculated for each particle SSD (R;), s
being the number of particles resulting after the segmentation
and labeling processes, with respect to the normalized dis-
tributions that define each material class in the training pro-
cess (4., %), where ¢ denotes the number of classes. Each
particle in the decorrelated hyperspectral image is labeled to
the class that achieves the best matching cost as shown in
Eq. (6).

P SSD(RY) € ci:| = ch?}XN(X|ﬂCi, Zci)' (6)

4 Experimental Results

The developed machine vision system consists of four dis-
tinct components: the particle feeding device, conveyor,
material classification, and particle separation mechanism.
The shredded WEEE mixture is automatically loaded onto
a nonspecular black conveyor belt (600 mm wide) via a
vibratory feeder that has been specifically designed to ensure
the nonferrous materials are arranged into a thin layer prior to
their arrival at the inspection line. The conveyor speed was
set at 20 m/min, and the particle separation mechanism was
implemented using a pneumatic part-extractor.

The WEEE mixture is defined by six nonferrous materi-
als: white copper, aluminum, stainless steel, brass, copper,
and lead (see Fig. 9). The material samples have been pro-
vided by Indumetal Recycling S.A. and IGE Hennemann
Recycling GmbH, both members of the SORMEN project
consortium.*® The nonferrous materials have been manually
sorted by expert operators, and full information was provided
about each nonferrous waste fraction. In this study the cap-
tured datasets were divided into training and testing sets,
where half of the data was used for training, and the remain-
ing half was used for testing. From each of these datasets
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Fig. 9 The nonferrous materials investigated in this study.®

more than 500,000 SSDs were extracted for validation
purposes.

Table 1 shows the experimental results obtained by the
nonferrous material sorting system detailed in this paper.
The processing times reported in Table 1 were obtained
when the proposed algorithm, and the algorithms described
in Ref. 9, were implemented using the Microsoft Visual C++
environment (Windows XP) and executed on a standard PC
that is fitted with an Intel Core 2 Duo 2.4-GHz processor and
2-GB RAM. To emphasize the computational advantages
associated with the real-time classification technique pre-
sented in Sec. 3, we also provide the computational time
attained by the classification method for which the SSD is
calculated in predefined neighborhoods for each pixel in
the image.” As opposed to the approach presented in
Ref. 9 where the classification process involves N class
assignments, N being the number of pixels present in the
image, in the implementation detailed in this paper the clas-
sification of each nonferrous particle resulting after segmen-

Table 1 Classification results.

Window Computational Computational Classification
size speed (pixels/s) speed (m/s) accuracy (%)
Proposed 2194285 2.285714 96.87
method

1x1 26761 0.027876 71.52
3x3 16072 0.016742 96.18
5x5 12858 0.013394 96.67
7x7 9891 0.010303 98.36

11 x 11 5934 0.006181 98.36
15x 15 3709 0.003864 98.36
19x 19 2521 0.002626 96.94
23x23 1778 0.001852 96.94
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tation and labeling (see Sec. 3.2) involves a single class
membership assignment using Eq. (6). This is illustrated
in Eq. (7) where we show the computational cost entailed
by the method discussed in Ref. 9 (Cpeighborhood) and the
new approach detailed in Sec. 3 (Cg). In Eq. (7) f defines
the computational cost associated with the extraction of the
vector Q(x, y) (see Fig. 8), M is the size of the neighborhood
(see Table 1), f, is the marginal computational cost asso-
ciated with the class assignment for the unknown SSD, as
indicated in Eq. (6), and ¢ denotes the number of classes.

Cneighbourhood =fi x M? XNXfyXNXc

@)

Cr=f1 XRXf,Xc.
The experimental results depicted in Table 1 confirm the con-
siderable decrease in computational speed attained by the
proposed approach, which allows the processing of more
than two linear meters of WEEE particles per second at
the conveyor speed (20 m/min). In particular, we would
like to stress that the decrease in computational cost has
been obtained only with a marginal drop in classification
accuracy (96.87%, nonferrous classification approach
detailed in this paper, and 98.36%, the neighborhood-
based nonferrous material classification method described
in Ref. 9, a fact that recommends the proposed solution

for real-time material sorting).

5 Conclusions

The major objective of this paper was to detail the develop-
ment of an industrial compliant nonferrous material sorting
system. In this paper we have reviewed the practical issues
associated with the WEEE recycling process, and we have
analyzed the challenges that have to be addressed during
the development of an integrated nonferrous material sorting
system when operated in an industrial environment. Among
many practical and theoretical challenges, the computational
efficiency and the accuracy of the nonferrous classification
technique are critical requirements that justify the automatic
recycling process from an economical standpoint. To answer
these requirements, in this paper we have introduced a rede-
signed classification scheme in the hyperspectral domain,
where the main novelty resides in the optimized computational
approach that allows the real-time calculation of the SSDs in
the context of nonferrous material sorting. The experimental
results reveal that the proposed machine vision system is able
to process the nonferrous shredded WEEE scrap at a rate of
2.28 m/s with a classification accuracy of 96.87%. The perfor-
mance attained by our system exceeds the economic thresh-
olds required for automatic WEEE nonferrous material
sorting, and currently the developed machine vision system
is fully evaluated in an industrial recycling environment.
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