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Real-Time Identification of LCL Filters Employed

With Grid Converters
Ville Pirsto, Jarno Kukkola, F. M. Mahafugur Rahman, Student Member, IEEE,

and Marko Hinkkanen, Senior Member, IEEE

Abstract—This paper presents a real-time identification
method for LCL filters used with three-phase grid converters.
The method can be applied to identify both the inductance
and capacitance values of the filter and the series resistance
seen by the converter. As a side-product, an estimate of the
grid inductance seen from the point of connection is also
obtained. A wideband excitation signal is added to the converter
voltage reference. During the excitation, converter current and
converter voltage reference samples are used for identification.
The samples are preprocessed in real time by removing DC biases
and significant grid-frequency harmonics. Parameters of two
discrete-time models are estimated at each sampling instant with
a recursive estimation algorithm. Depending on the estimated
model, the model parameter estimates are translated to either
the resistance or the inductance and capacitance values of the
system. The method can be embedded to a control system of
pulse-width-modulation (PWM) based converters in a plug-in
manner. Only the DC-link voltage and converter currents need to
be measured. Simulation and experimental results are presented
for a 12.5-kVA grid converter system to evaluate the proposed
method.

Index Terms—Grid converter, LCL filter, real-time identifica-
tion, recursive parameter estimation.

I. INTRODUCTION

In the last decade, the cost of producing electricity using

renewable energy resources, such as wind and solar, has re-

duced greatly. As a result, the penetration of renewable energy

sources in the electric grid has increased enormously. These

renewable energy sources are connected to the grid through

a converter equipped with a filter, typically of an L or LCL

type. The LCL filter has gained popularity due to its higher

attenuation above its resonance frequency compared to an L

filter of equal magnetic volume [1]. However, the resonant

modes of the LCL filter make the control of the converter more

challenging. These resonant modes are typically damped with

active damping methods that are implemented in the converter

control systems. Many of the active damping methods require

knowledge of the reactive filter parameters, e.g., [2]–[5].

Even if the nominal parameters of the LCL filter are

known, manufacturing tolerances and aging phenomena cause

uncertainties in the parameters. Knowledge of the reactive

parameters of the LCL filter could be used for condition mon-

itoring and fault diagnosis, e.g., tracking long-term evolution
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of the filter capacitances for pre-emptive maintenance [6].

Furthermore, the estimates of the reactive filter parameters

could be used to improve the converter control tuning.

Closely related to the identification of an LCL filter, there

are numerous methods proposed for real-time identification

of the grid impedance, e.g., [7]–[13]. The identification has

been carried out using Fourier analysis [7], recursive parameter

estimation [8]–[10], model predictive control [11], extended

Kalman filter [12], and wavelets [13]. The real-time estimates

of the grid impedance can be used, e.g., for islanding detection

and improving the converter control tuning.

Post-processing-based methods for identifying the LCL

filter of a grid converter have been proposed in [14]–[18].

In [14]–[16], methods for identifying a discrete-time state-

space model of the LCL filter are presented. However, these

methods do not yield estimates of the reactive filter parameters

and they are not designed for real-time identification. In [17],

[18], the inductance and capacitance values of the LCL filter

are identified offline using an indirect identification approach.

In this approach, the converter controller needs to be changed

during the identification, as it is part of the identification

model.

In [19], the values of these LCL filter parameters are

identified as an online batch process, yielding a single estimate

of the reactive filter parameters each time the identification

method is run. Despite the number of different methods

proposed for real-time identification of the grid impedance, no

recursive real-time identification method for the parameters of

an LCL filter has yet been proposed. Furthermore, a method

capable of simultaneously identifying both the LCL filter

parameters and indirectly the parameters of an inductive-

resistive grid has not been presented.

The benefits of a recursive approach are significant. In

the batch method approach of [19], all the data used in the

identification has to be collected before the estimation can be

carried out. This requires a considerable amount of memory,

as data spanning several grid-frequency periods is required in

practice, e.g., 0.1 seconds in the case of five grid periods (50

Hz). Furthermore, iterating through the collected data requires

a high number of floating-point operations, in the range of 104,

which can take several seconds to execute as a background

process of a converter [19]. To update the estimates, the whole

identification routine has to be run again. The recursive ap-

proach, on the other hand, is considerably more efficient when

the estimates of the filter parameters are desired on a sample-

to-sample basis, e.g., for real-time tracking of changes in the

filter parameters. With the recursive approach, less memory is
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Fig. 1. Circuit model of an LCL filter connected to an inductive-resistive grid
in stationary coordinates.

consumed and the number of floating-point operations required

to update the estimates are several decades lower, in the range

of 102, as will be shown in this paper.

In this paper, a real-time LCL filter identification method is

proposed. The method is capable of identifying an inductive-

resistive grid as a side product. The contributions of this paper,

in comparison to the state-of-the-art, are:

1) The proposed method can run continuously to provide

real-time estimates of the filter parameters and the grid

inductance.

2) In addition to the filter parameters, a general pulse-

transfer function of the system consisting of the filter and

the grid is estimated in real-time. The series resistance

seen by the converter is extracted from this pulse-transfer

function.

3) Compared to [19], the parameter estimation of the iden-

tification model is simplified without compromising ac-

curacy.

Additionally, the proposed recursive real-time implementation

allows for distributing the computational costs over the run

time of the algorithm. Despite the different characteristics of

the proposed method and [19], similar estimation accuracy is

maintained as both methods rely on the same prediction-error

method. As compared to our earlier conference paper [20], the

identification method is extended by estimating a more general

pulse-transfer function of the filter and the grid, from which

an estimate of the series resistance seen by the converter is

extracted. Simulation and experimental results are presented

for a 12.5-kVA three-phase grid converter.

II. SYSTEM MODEL

A space-vector model for a three-phase LC or LCL filter

connected between the converter and an inductive-resistive

grid is shown in Fig. 1, where Lc is the converter-side

inductance, Cf the filter capacitance, and Lg the grid-side

inductance, consisting of the grid-side filter inductance Lfg

and the grid inductance Lgr, i.e., Lg = Lfg + Lgr. The

resistances Rc, Rf , and Rg model the resistive losses of the

filter components Lc, Cf , and Lg, respectively. If some apriori

information regarding either the inductance of the grid-side

filter inductor or the grid is available, these two inductances

can be separated from Lg. A hold-equivalent discrete-time

model of the LCL filter in stationary coordinates can be written

as
x(k + 1) = Φx(k) + Γcuc(k) + Γgug(k)

ic(k) = Ccx(k).
(1)

In the above, x = [ic,uf , ig]
T

is the state vector where uf

is the voltage over the filter capacitor and Cc = [1, 0, 0] (cf.

Yc(z)

Yg(z)

Σ

ug(k)

uc,ref (k) ic(k)
z
−1

uc(k)

Fig. 2. Block diagram representation of the discrete-time LCL filter model
including the computational delay caused by the control system.
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Fig. 3. ARMAX model structure.

Appendix A). The converter current ic can be obtained from

the state-space model (1) as

ic(k) = Yc(z)uc(k) + Yg(z)ug(k) (2)

where the pulse-transfer operator Yc(z) is given by

Yc(z) = Cc (zI −Φ)
−1

Γc (3)

where z is the forward-shift operator. The pulse-transfer oper-

ator Yg(z) is obtained similarly. Due to the finite computation

time of the control algorithm, the converter voltage reference

uc,ref is delayed by one sampling period, i.e., uc(k) =
z−1uc,ref(k). Taking the computational delay into account,

the pulse-transfer function from uc,ref to ic can be written as

Y (z) =
ic(z)

uc,ref(z)
= z−1Yc(z). (4)

A block diagram representation of the discrete-time LCL

filter model (2) including the computational delay is shown

in Fig. 2. Knowledge of the structure of Y (z) is important

for selecting a suitable identification model, and it can be

expressed as

Y (z) =
B(z)

A(z)
=

z−1(β1z
−1 + β2z

−2 + β3z
−3)

1 + α1z−1 + α2z−2 + α3z−3
. (5)

The coefficients of the above pulse-transfer function are com-

plicated functions of the filter parameters and the sampling

period Ts. If the resistances in the system are omitted, i.e., an

ideal filter is considered, the number of unique coefficients in

Y (z) is reduced. Furthermore, the coefficients can be written

using the closed-form expression of the hold-equivalent state-

space model (1) of the ideal LCL filter (cf. Appendix A) as

[17]

α1 = −α2 = −1− 2cos(ωpTs)

α3 = −1

β1 = β3 =
Ts + Lg sin(ωpTs)/(ωpLc)

Lc + Lg

β2 = −2Tscos(ωpTs) + 2Lg sin(ωpTs)/(ωpLc)

Lc + Lg

(6)

where ωp is the undamped resonance frequency of the LCL

filter, given by

ωp =

√

Lc + Lg

LcCfLg
. (7)
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III. IDENTIFICATION MODEL

Choice of the identification model structure is crucial for

obtaining accurate results. The most common discrete-time

identification model structures are divided into equation-error

and output-error models [21]. Equation-error models include

an error term that passes through the same denominator

polynomial as the input signal. Such models correspond well

to the model of an LCL filter, as both inputs uc,ref and

ug pass through the same denominator polynomial A(z) to

ic. Therefore, an autoregressive-moving-average (ARMAX)

equation-error model, shown in Fig. 3, is used. Out of the

available equation-error models, ARMAX is selected due to

the flexibility it offers for modeling the error term. The

discrete-time ARMAX model can be expressed as [21]

A(z)i(k) = B(z)u(k) + C(z)e(k) (8)

where i(k) is the preprocessed converter current ic(k) cor-

responding to the model output, u(k) is the preprocessed

converter voltage reference uc,ref(k) corresponding to the

model input, and e(k) represents white noise with zero mean.

The grid voltage ug is not included in the model, as it is

assumed to be unknown in order to increase the generality of

the proposed method. However, this exclusion does not pose

a problem since the influence of the grid voltage is effectively

removed from the samples used in the identification, as will

be discussed in Section IV-B.

As the structure of the LCL filter dynamics from uc,ref

(corresponding to u) to ic (corresponding to i) is known [cf.

(5)], the orders of the polynomials A(z) and B(z) are selected

identical to the denominator and numerator of Y (z) given in

(5), respectively. For selecting the numerator polynomial C(z),
a parsimonious approach is adopted for the sake of generality

of the model [22]. A second-order polynomial

C(z) = 1 + c1z
−1 + c2z

−2 (9)

is employed, as it was found to yield similar results as

compared to higher-order polynomials in various simulations

and experiments. However, the order of C(z) can be optimized

for specific systems by using advanced model-order selection

approaches, such as the Akaike information criterion [22].

Next, the regression models for the realistic and ideal LCL

filters are presented. The realistic filter model is employed to

obtain an estimate of the series resistance R̂s = R̂c + R̂g

seen by the converter. As the reactive parameters are difficult

to obtain directly from the realistic model, an ideal filter

model is also considered. In the ideal filter model, the losses

of the components are neglected. This allows for expressing

the reactive filter parameters as functions of the estimated

polynomial coefficients [cf. (24)].

A. Regression Model for the Realistic LCL Filter

The ARMAX model (8) of a realistic LCL filter (5) can be

written as a regression model

yr(k) = ϕ
T
r (k)θr + e(k) (10)

where the regressed variable is

yr(k) = i(k) (11)

and the regressor vector ϕr and the parameter vector θr are

ϕr(k) = [−i(k − 1),−i(k − 2),−i(k − 3), u(k − 2),

u(k − 3), u(k − 4), e(k − 1), e(k − 2)]T

θr = [α1, α2, α3, β1, β2, β3, c1, c2]
T

(12)

respectively.

B. Regression Model for the Ideal LCL Filter

In the regression model

yi(k) = ϕ
T
i (k)θi + e(k) (13)

of the ideal LCL filter with polynomial coefficients (6), the

regressed variable is

yi(k) = i(k)− i(k − 3) (14)

and the regressor and parameter vectors are

ϕi(k) = [i(k − 2)− i(k − 1), u(k − 2) + u(k − 4),

u(k − 3), e(k − 1), e(k − 2)]T

θi = [α1, β1, β2, c1, c2]
T

(15)

respectively. As the resistive losses of the filter are neglected,

the coefficients in polynomials A(z) and B(z) of the identifi-

cation model (8) can be related to the parameters of the LCL

filter through (6).
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Fig. 5. Block diagram of the proposed identification method. LPF denotes a low-pass filter.

IV. IDENTIFICATION METHOD

A block diagram of the proposed identification method

embedded to a PWM-based grid converter system is presented

in Fig. 4. Sampling of the converter currents is synchronized

with the PWM and the digital control system is assumed to

cause a delay of one sampling period. The DC-bus voltage

udc is measured for the PWM and the converter current ic is

controlled by the converter.

A block diagram of the identification algorithm is presented

in Fig. 5. While the system is being excited by a wideband

excitation signal v(k), the following steps are taken at each

sampling period:

A) The most recent samples of the converter voltage refer-

ence uc,ref and the converter current ic are input to the

algorithm.

B) Significant grid-frequency harmonics, including the fun-

damental component, are removed from the samples.

C) Parameter estimates of the realistic filter model, θ̂r, and

the ideal filter model, θ̂i, are updated.

D) The estimate θ̂r is translated into an estimate of the series

resistance R̂s = R̂c+R̂g and the estimate θ̂i is translated

into inductance and capacitance estimates L̂c, Ĉf , and L̂g.

These steps are explained in the following subsections.

A. Excitation and Sampling

During identification, an excitation signal v(k) = vα(k) +
jvβ(k) is added to the converter voltage reference calculated

by the converter control system, as shown in Fig. 4. In order

to successfully identify the LCL filter, the power spectrum

of the excitation signal should be wide enough to excite the

resonance frequency (7) of the LCL filter sufficiently. Fur-

thermore, the power of the injected signal affects the accuracy

of the estimates. Higher power improves the signal-to-noise

ratio of the identification, which improves the accuracy of

the obtained estimates. A maximum-length binary sequence

(MLBS) is used as the excitation signal due to its ease

of implementation, deterministic behavior, repeatability, wide

power spectrum, and lowest possible crest factor [21], [23]. In

this paper, the MLBS is injected into vβ while vα = 0. As a

result, only the b and c phases are excited and thus only the

imaginary components of the sampled signals are processed.

The choice of amplitude of the MLBS signal is a compromise

between excitation power and distortion of the grid currents.

Standards, such as the IEEE 519-2014, set limits to harmonics

injected to the grid. Compliance with standards solely related

to harmonics is not an issue for the proposed method due

to the power of the excitation signal spreading mostly to the

interharmonic frequencies. However, standards for distributed

generation, such as the IEEE 1547-2018, set limits to the total

current distortion at the point of connection. The compliance

of the proposed method with regards to these standards will

be examined in Section V-D.

B. Harmonic Removal

In practice, the grid voltage includes some low-order har-

monics in addition to its fundamental component. In order

to increase the accuracy of the parameter estimates obtained

from the method, significant grid-frequency harmonics should

be removed from the current and voltage samples to eliminate

the effect of the grid voltage on the estimates. The selected

harmonic components are removed from the samples as

u(k) = ucβ,ref(k)−
∑

m

um(k) (16)

i(k) = icβ(k)−
∑

m

im(k) (17)

where um and im are the mth-order harmonics for the

voltage and current, respectively. In this paper, the harmonic

components m = [0, 1, 5, 7] are removed from the samples.

As a result, the sum in (16) becomes
∑

m um(k) = u0(k) +
u1(k) + u5(k) + u7(k) and the sum in (17) can be written

similarly. The DC component m = 0 is removed due to a

possible bias in the measurement sensors. Assuming that the

grid voltage consists purely of the aforementioned harmonics,

its influence is effectively removed from the samples used

in the identification. In practice, the grid voltage includes

several other frequency components as well. However, these

components are typically minor as compared to the low-order

grid-frequency harmonics that are removed from the samples.

As a result, they are mostly modeled by the noise term e(k).
There are several different algorithms for computing har-

monic components from a signal, the standard method for

batch processes being the discrete Fourier transform (DFT).

The DFT of a signal, e.g., current i, calculated from N
previous samples at time k for a mth-order harmonic can be

expressed as

Im(k) =
N−1
∑

n=0

i(q + n)W−mn
N , ∀m ∈ {0, 1, . . . , N − 1}

(18)

where q = k −N + 1 and WN = ej2π/N [24].



5

−

z
−N

icβ(k)

Buffer

Σ

∑
m im(k)1

N
Σ

Re{·}

2Re{·}

Resonator 0

Resonator 7

I0(k)

I7(k)

ic,β(k)− ic,β(k −N)

(a)

Σ

z
−1

××

W
−m
N conj{·}
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For computing a limited number of harmonics efficiently in

real time on a sample-to-sample basis, sliding DFT (SDFT)

algorithms are a superior tool. The SDFT algorithms leverage

the fact that only one element in the sample buffer changes

between the sampling instants by modifying the result of

the DFT from the previous sampling instant accordingly. The

traditional SDFT can be derived from (18) as [25]

Im(k) =W−mn
N [Im(k − 1) + i(k)− i(k −N)] (19)

where n = mod(k,N). However, this form of the SDFT

suffers from numerical instabilities and accumulated errors due

to a complex pole on the unit circle [26]. Hence, a guaranteed

stable and accurate variant of the sliding DFT, the modulated

sliding DFT (mSDFT), is used instead [26]. The structure of

the mSDFT is presented in Fig. 6, which depicts the extraction

of the harmonics from the converter current samples used

in the identification. The mSDFT consists of a comb filter

acting as a sample buffer and one resonator for tracking each

harmonic of interest. Mathematically, N -point mSDFT of a

signal, e.g., current i, at time k for a mth-order harmonic can

be expressed as [26]

Ĩm(k) = Ĩm(k − 1) +W−mn
N [i(k)− i(k −N)] (20)

Im(k) =W
m(n+1)
N Ĩm(k) (21)

where the tilde indicates that the DFT bin calculated in (20)

has phase error that is corrected with (21). Finally, as shown in

Fig. 6(a), the spectral bins are transformed into instantaneous

values of the harmonics as

im(k) =

{

1
N Re{Im(k)} if m = 0
2
N Re{Im(k)} otherwise.

(22)

C. Model Parameter Estimation

A recursive prediction error (RPE) algorithm [22] is used

for computing estimates for the coefficients of the polynomials

A(z) and B(z) of the ARMAX model (cf. Appendix B).

Estimates for the noise polynomial coefficients ĉ1 and ĉ2 are

also obtained in the process.

For tracking time-varying parameters with the RPE algo-

rithm, either a forgetting factor λ less than unity needs to

be used or the covariance matrix P needs to be actively

modified. If neither of these modifications is employed, the

tracking capability of time-varying parameters is severely

hindered due to the covariance wind-up phenomenon [27]. In

the covariance wind-up, the values of a number of elements

in the covariance matrix tend to zero, causing the estimation

algorithm to become insensitive to certain parameter changes.

In [20], two different methods to enable tracking of time-

varying parameters were presented. Here, only the constant

forgetting factor is considered.

If a forgetting factor less than unity is used, i.e., λ < 1,

the elements of the covariance matrix P are prevented from

tending to zero. The choice of the forgetting factor is a trade-

off between sensitivity to disturbances and capability to track

parameter variations. The smaller the forgetting factor is, the

more aware the estimation algorithm becomes of parameter

variations. However, as the sensitivity to parameter changes

increases, so does the sensitivity to disturbances. Thus, feasible

values for the forgetting factor are often limited close to unity,

typically between 0.98 and 0.995 [21].

In estimating the realistic filter model, lower frequencies are

given more weight in the estimator by low-pass filtering the

samples input to the RPE algorithm (cf. Fig. 5). This improves

the accuracy of the estimated model at lower frequencies at

the cost of decreasing the accuracy at higher frequencies [22].

For filtering, a simple first-order low-pass filter (LPF) with

the bandwidth of αf = 2 kHz was employed. The choice

of the LPF bandwidth αf is a trade-off between accuracy of

the identified series resistance and the accuracy of the high-

frequency behavior of the LCL filter. For the system used in

the experiments, the bandwidth of 2 kHz was found to be

a good compromise between the two. In case the frequency

response of the system for a wide range of frequencies is

desired, the LPF bandwidth should be maintained relatively

high. On the other hand, if only the series resistance is of

interest, low LPF bandwidth should be employed. Generally,

the frequency range of interest in identification depends on the

use case of the estimation result.

D. Translation to Inductance, Capacitance, and Resistance

Values

Finally, depending on the identified discrete-time model, the

model parameter estimates are translated either into inductance

and capacitance values or into series resistance seen by the

converter. In the following, the dependency on time k is

omitted to maintain a level of simplicity.
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In case the realistic filter model is identified, the series

resistance estimate R̂s, consisting of the estimated converter-

side and grid-side resistances R̂c and R̂g, respectively, is

obtained as the inverse of the DC-gain of the identified model,

i.e.,

R̂s =
Â(1)

B̂(1)
=

1 + α̂1 + α̂2 + α̂3

β̂1 + β̂2 + β̂3

. (23)

In case the ideal filter model is identified, the inductance and

capacitance values are obtained by expressing the parameters

Lc, Cf , and Lg as functions of the discrete-time model

parameters in (6) as [17]

ω̂p =
1

Ts
cos−1

(

− α̂1 + 1

2

)

L̂c =
2
sin(ω̂pTs)

ω̂p
[cos(ω̂pTs)− 1]

2β̂1

[

cos(ω̂pTs)− sin(ω̂pTs)
ω̂pTs

]

+ β̂2

[

1− sin(ω̂pTs)
ω̂pTs

]

L̂g = − ω̂pL̂c[L̂cβ̂2 + 2Ts cos(ω̂pTs)]

ω̂pL̂cβ̂2 + 2 sin(ω̂pTs)

Ĉf =
L̂c + L̂g

ω̂2
pL̂cL̂g

. (24)

The above equations can either be calculated every sampling

period or more sparsely. To summarize, a flowchart of the

identification algorithm is shown in Fig. 7.

V. RESULTS

The proposed identification method (cf. Figs. 5 and 7) is

evaluated by means of simulations and experiments using

a 50-Hz 12.5-kVA grid converter system. During the iden-

tification, the converter is controlled using a state-feedback

current controller [5] tuned according to Appendix C. The

switching frequency of the converter is 5 kHz and the sampling

frequency is 10 kHz. An MLBS generated with 9 shift registers

Fig. 8. Simulated evolution of the LCL filter parameter estimates assuming
an ideal system. The identification algorithm is initiated at t = 0.55 s and two
stepwise changes occur: from 8.7 mH to 3.2 mH in the grid-side inductance
Lg at t = 2 s; from 8.9 µF to 7.5 µF in the filter capacitance Cf at t = 3 s.

Fig. 9. Simulated evolution of the grid-side inductance estimate under dif-
ferent violations of the inductive-resistive grid assumption. The identification
algorithm is initiated at t = 0.55 s and a step-wise change of 2 mH occurs
in the grid-side inductance Lg at t = 2 s.

is used [23]. The amplitude of the MLBS is selected as ±0.1
p.u. and it is generated at a frequency equal to the sampling

frequency. The converter is operating under constant load of

0.4 p.u. The base value of voltage is
√

2/3 · 400 V and the

base value of current is
√
2 · 18 A. The length of the mSDFT

buffer is selected as N = 200 to match the lowest trackable

harmonic frequency with the fundamental frequency of the

grid voltage. The initial values of the mSDFT sample buffer

are set to zero. A forgetting factor of λ = 0.995 is used in

all of the presented results. In the following, both the realistic

and ideal models are estimated in parallel to yield estimates

for Lc, Cf , Lg, and Rs. However, it is possible to estimate

only one of the models. Unless otherwise stated, the nominal

values of the LCL filter reactive parameters are Lc = 3.3 mH,

Cf = 8.9 µF, and Lfg = 3.2 mH.

A. Simulation: Validating the Proposed Identification Method

A simulation model of the system shown in Fig. 4 was

built in Simulink for validating the presented method. PLECS

blockset was used to model the physical system in Simulink.

Initially, no grid harmonics or losses of either the filter com-

ponents or the grid are included in the model. For validation,

the PWM is modeled as a zero-order hold as assumed in the
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Fig. 10. Simulated evolution of the LCL filter parameter estimates. The
identification algorithm is initiated at t = 0.55 s and two stepwise changes
occur: from 8.7 mH to 3.2 mH in the grid-side inductance Lg at t = 2 s;
from 1.5 Ω to 0.2 Ω in the grid-side resistance Rg at t = 3 s.

LCL

filter

dSPACE DS1006

12.5-kVA converter under test

Adjustable

impedance

udc ic,{abc} ug,{ab,bc}

20kV

grid
400V/20kV

500-kVA

Fig. 11. Block diagram of the experimental setup.

system model. Some noise is assumed in the identification

model (8), and thus white noise with standard deviation of

0.002 p.u. is included in the current and voltage measurements.

A simulation case using the aforementioned model is presented

in Fig. 8. The identification algorithm is initiated at t = 0.55
s. In the figure, a stepwise change of grid-side inductance Lg

from 8.7 mH to 3.2 mH occurs at t = 2 s and a similar

stepwise change of filter capacitance Cf from 8.9 µF to 7.5
µF occurs at t = 3 s. The nominal values of the estimated

parameters are given by the red dashed lines. While the

parameters remain constant and the estimation is not in a

transient state, the average relative errors of the estimates with

respect to their nominal values are all 0%.

B. Simulations: Violating the Assumption of Inductive-

Resistive Grid Impedance

Additionally, the effect of violating the assumption of

inductive-resistive grid was investigated. In total, three differ-

ent cases were simulated. Due to space constraints, only the

grid-side inductance estimates are shown. As in the previous

subsection, all the resistances are assumed zero. The LCL filter

reactive parameters are as defined by default (Lc = 3.3 mH,

Cf = 8.9 µF, and Lfg = 3.2 mH). In the simulations presented

for all of the three cases, the total grid inductance Lgr is

initially 3 mH, i.e., Lg = Lfg + Lgr = 6.2 mH. At t = 1
s, the grid inductance Lgr drops to 1 mH, i.e., Lg = 4.2 mH.

Fig. 12. Measured MLBS excitation signal (first), the space-vector compo-
nents of the converter voltage reference (second), and the converter phase
currents (third).

Fig. 13. Sequences of preprocessed voltage u (first) and current i (second)
used in the RPE method.

1) High-Frequency Grid Resonances: First, the grid was

assumed to have resonant characteristics at higher frequencies.

For this, the grid beyond the point of common coupling (PCC)

was assumed to be of LCL-type (cf. Fig. 1) without any

resistive components. Several different resonance frequencies,

ranging from 1 kHz to 22.5 kHz, were simulated. It was

found that for grid resonances below the Nyquist frequency

of the converter (5 kHz), all of the estimates obtained from

the method may be erroneous. However, as the resonance fre-

quency increases, the estimates become increasingly reliable.

For grid resonances above the Nyquist frequency, the estimates

are hardly affected. The estimate of the grid-side inductance

in the case of grid resonance at 6 kHz is shown in Fig. 9.

The 2 mH drop in the grid inductance occurs beyond the grid

capacitance. Thus, the applicability of the proposed method is

limited in grids with resonances below the Nyquist frequency

of the converter.

2) Another Converter Connected in Parallel to the PCC:

Next, an identical converter was connected in parallel with the

identifying converter. The estimate of the grid-side inductance

under these conditions is shown in Fig. 9. As can be observed,

when the grid impedance is high, most of the excitation flows

to the parallel converter, causing distortion in the estimate.

The estimates of the resistance Rs and the filter capacitance

Cf are distorted similarly while the estimate of the converter-

side inductance Lc is unaffected. However, for strong grids, the
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Fig. 14. Experimental evolution of the LCL filter parameter estimates. The
identification algorithm is initiated at t = 0.55 s and two stepwise changes
occur: a relative change of 5.5 mH in the grid-side inductance Lg at t = 2
s; a relative change of 1.3 Ω in the grid-side resistance Rg at t = 3 s.

LCL

filter

50-kVA grid emulator

Dewetron

DEWE-50-PCI-32
uc,{ab,bc}

ic,{abc}
eg,{abc}

Z

Fig. 15. Block diagram of the LCL filter open-loop frequency response
measurement setup.

effect of the parallel converter is lesser. Thus, the applicability

of this method is limited for parallel-connected converters in

weak grids.

3) Series-Compensated Transmission Line: Lastly, the grid

beyond the PCC was assumed to be a series-compensated line,

i.e., consisting of a series capacitance and an inductance. The

compensation factor is assumed to be kc = XC/XL = 0.5,

where XC is the capacitive reactance and XL is the inductive

reactance. The estimate of the grid-side inductance under the

aforementioned conditions is shown in Fig. 9. The series-

compensation capacitance of 6.7 mF remains constant while

the grid inductance changes. As can be observed, the series

compensation of the transmission lines has an insignificant

effect on the estimate. The estimates of converter-side induc-

tance Lc and filter capacitance Cf are unaffected as well.

However, a small low-frequency oscillation is present in the

estimate of the series resistance Rs. This is because the series

compensation only affects the grid characteristics below and

around the fundamental frequency while the grid remains

inductive for higher frequencies.

C. Simulation: Stepwise Change in the Grid-side Inductance

and Resistance

The simulation model was modified to include grid harmon-

ics, inductor losses, and grid resistance. The grid harmonics

consist of 5th and 7th harmonics and both have an amplitude

of 0.05 p.u. The filter inductors are modeled to include the

effects of DC resistance and eddy currents. Therefore, they

Fig. 16. Identified frequency response of Yc(s) compared to the measured
frequency response of the LCL filter. Both frequency responses are obtained
from the same operating point.

TABLE I
NUMBER OF OPERATIONS TO UPDATE THE PARAMETER ESTIMATES

Multiplications Additions Divisions

mSDFT 40 25 0

RPE 101 71 1

Translation to physical parameters 18 8 1

Total 159 104 2

are modeled as an inductance in parallel with a resistance

and a resistance in series with the parallel connection of

the resistance and the inductance [17]. For the converter-side

inductor, the resistance value for the series resistor is Rc = 100
mΩ and for the parallel resistor Rc,p = 420 Ω. Similarly for

the grid-side inductor, Rg = 100 mΩ and Rg,p = 630 Ω. A

1.3 Ω resistance is initially included in the grid-side series

resistance, i.e., Rg = 1.4 Ω. Thus, the total series resistance

seen by the converter is initially Rs = Rc +Rg = 1.5 Ω. The

series resistance Rf of the filter capacitor is set to 5 mΩ.

Measurement noise with standard deviation of 0.02 p.u. is

added to the current and voltage measurements.

The evolution of the parameter estimates is presented in

Fig. 10. In the figure, a stepwise change in the grid-side

inductance Lg from 8.7 mH to 3.2 mH occurs at t = 2 s,

and a stepwise change in the grid-side resistance Rg from

1.5 Ω to 0.2 Ω at t = 3 s. After the stepwise parameter

changes, the average relative errors of the parameter estimates

with respect to their nominal values are 3% for L̂c, 3% for Ĉf ,

and 5% for L̂g. Furthermore, the half-second average value for

the estimate of the series resistance Rs is 0.35 Ω. Out of the

added non-idealities, the increased measurement noise induces

the greatest error to the parameter estimates while the effect of

grid harmonics is roughly 0%. The filter inductor resistances

cause relative errors of 1% on the inductance estimates.

D. Experiment: Stepwise Change in the Grid-side Inductance

and Resistance

The estimation case presented in Fig. 10 is repeated ex-

perimentally with a system depicted by the block diagram
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in Fig. 11. The converter under test is connected to a 20

kV grid through a 500-kVA 400-V/20-kV transformer and

an adjustable impedance. The converter is controlled using

a dSPACE DS1006 processor board. The DC-bus voltage,

converter currents, and PCC voltages are measured. The

PCC voltages are used only in the control system. Stepwise

changes in the grid-side inductance and resistance are created

by bypassing inductors and resistors with a switch. Fig. 12

shows the injected MLBS excitation vβ , the converter voltage

reference components ucα,ref and ucβ,ref , and the converter

phase currents ic,abc, when the MLBS is active. Fig. 13

shows the preprocessed current and voltage sequences i and

u from which the grid-frequency harmonics m = [0, 1, 5, 7]
have been removed from. These current and voltage sequences

are used as an input to the RPE algorithm. Under constant

load of 1 p.u. with the excitation applied, the total harmonic

distortion (THD), calculated according to IEEE 519-2014, of

the first 50 harmonics injected to the grid is approximately

3.9% for a-phase, 5.0% for b-phase, and 5.1% for c-phase.

Thus, the THD during identification practically complies with

the limit (5%) set by IEEE 519-2014. The total rated current

distortion (TRD), calculated according to IEEE 1547-2018, is

approximately 4.6% for a-phase, 8.3% for b-phase, and 8.1%

for c-phase. To comply with the standard, the amplitude of

the excitation could be reduced and the identification could be

run intermittently to reduce the average TRD below the limit

defined in the standard.

The evolution of the parameter estimates are presented in

Fig. 14. In the figure, a stepwise change of 5.5 mH occurs

in the grid-side inductance Lg at t = 2 s, and a stepwise

change of 1.3 Ω occurs in the grid-side resistance Rg at

t = 3 s. After the stepwise changes of the grid-side inductance

and resistance, the average relative errors of the parameter

estimates with respect to their nominal values are 4% for

L̂c, 8% for Ĉf , and 3% for L̂g. The reference value for the

series resistance seen by the converter is biased, as it does not

include the resistive behavior of the converter or the grid. The

difference between the half-second averages of the resistance

estimates before and after the stepwise change is 1.35 Ω,

which is close to the nominal change of 1.3 Ω.

To further validate the proposed method, the estimated

pulse-transfer function of the system (5) was formed based on

the half-second averages of the estimated model coefficients θ̂r
of the realistic LCL filter. The estimated pulse-transfer func-

tion Ŷ (z) was then transformed into Ŷc(z) by multiplication

with the forward-shift operator z, i.e., Ŷc(z) = zŶ (z), and

finally converted into the s-domain equivalent transfer function

Ŷc(s). The frequency response of Ŷc(s) was compared to the

corresponding experimentally measured open-loop frequency

response of the LCL filter. The measurement setup to obtain

the open-loop frequency response of the LCL filter is shown

in Fig. 15. The grid-side input terminal of the filter was

short circuited while the filter was excited with a 50-kVA

grid emulator (Regatron TopCon TC.ACS) through an external

impedance. The voltages and currents used to calculate the

frequency response of the filter were measured at the input

terminals of the filter with a data acquisition device (Dewetron

DEWE-50-PCI-32) employing a sampling frequency of 100

kHz. The operating point of the filter was set to correspond to

that used in the experiments. The comparison of the frequency

response of the identified transfer function Ŷc(s) obtained

from the proposed method and the measured open-loop filter

frequency response is shown in Fig. 16. Overall, the iden-

tified model agrees with the measured open-loop frequency

response. The difference in the magnitude at low frequencies

is partly due to the bias in the DC gain of the identified system

and partly due to the fact that the validation measurements do

not contain the effect of the converter parasitic resistances or

the grid resistance, which are included in the identified system.

However, as seen in Fig. 14, the identification method can

accurately track relative changes in the series resistance R̂s

corresponding to the DC gain of Ŷc(s).
As the estimation result obtained from the ideal simulation

model shows (cf. Fig. 8), the identification method yields exact

estimates in an ideal case. Therefore, the estimation errors in

the experiments are caused by unmodeled dynamics, nonlin-

earities of the system, unbalances in the filter components,

and inaccuracies in the transfer characteristics of the actuator

and the measurement devices, as also seen in the simulations

including some of these non-idealities (cf. Fig. 10).

E. Computational Aspects of the Proposed Method

Regarding the feasibility of the real-time implementation,

Table I shows the number of multiplications, additions, and

divisions executed at each sampling period to update the

reactive filter parameter estimates. In the table, the harmonics

m = [0, 1, 5, 7] are assumed to be removed from the samples.

By comparing the number of floating point operations required

to update the estimates, around 3 · 102, to the roughly 104 op-

erations required in [19], the benefits of the proposed method

become evident. The computational burden of the mSDFT

can be further alleviated at the cost of increased memory

consumption by precomputing the coefficients W−mn
N for

each m and n = {0, 1, 2, . . . , N} [26].

VI. CONCLUSIONS

This paper presented a real-time identification method for

the inductance and capacitance values of LCL filters used in

grid converters and the series resistance seen by the converter.

The method indirectly estimates the grid inductance as a

part of the grid-side inductance of the LCL filter. As a

result, the parameters of an inductive-resistive grid can be

obtained indirectly. The presented method can be embedded

to a control system of PWM-based converters in a plug-

in manner. An SDFT algorithm is used for computing the

grid-frequency harmonics to enable computationally efficient

real-time harmonic computation. A single recursive parameter

estimation algorithm is used to estimate the identification

model parameters. A forgetting factor is employed in the

recursive parameter estimation algorithm to enable tracking of

time-varying parameters. Simulation and experimental results

show that the method converges to correct estimates from its

initial state and it is capable of tracking time-varying LCL

filter parameters with good accuracy.
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APPENDIX A

DISCRETE-TIME MODEL OF THE LCL FILTER

A discrete-time model of an LCL filter in stationary co-

ordinates is presented below. The state vector is selected as

x = [ic,uf , ig]
T

. The sampling of the converter currents and

grid voltages is synchronized with the PWM, which is modeled

as a zero-order hold. Under these assumptions, the system

matrix Φ and the input vector Γc required for solving Yc(z)
are obtained from [28]

Φ = eATs Γc =

(

∫ Ts

0

eAτdτ

)

Bc (25)

where

A =







−Rc+Rf

Lc
− 1

Lc

Rf

Lc

1
Cf

0 − 1
Cf

Rf

Lg

1
Lg

−Rf+Rg

Lg






Bc =







1
Lc

0

0






(26)

are the corresponding continuous-time counterparts of the

system matrix and the input vector for the converter voltage,

respectively. The input vector Γg can be obtained similarly to

Γc.

In the case of an ideal LCL filter, i.e., when the resistances

are omitted, the closed-form expressions for the system matrix

Φ and the input vector Γc become

Φ =









Lc+Lg cos(ωpTs)
Lc+Lg

− sin(ωpTs)
ωpLc

Lg[1−cos(ωpTs)]
Lc+Lg

sin(ωpTs)
ωpCf

cos(ωpTs) − sin(ωpTs)
ωpCf

Lc[1−cos(ωpTs)]
Lc+Lg

sin(ωpTs)
ωpLg

Lg+Lc cos(ωpTs)
Lc+Lg









(27)

and

Γc =
1

Lc + Lg







Ts +
Lg sin(ωpTs)

ωpLc

Lg[1− cos(ωpTs)]

Ts − sin(ωpTs)
ωp






. (28)

APPENDIX B

RECURSIVE PREDICTION ERROR METHOD

The RPE algorithm [22] is presented below. It calculates an

estimate θ̂ based on the prediction error

ê(k) = y(k)− ϕ̂T(k)θ̂(k − 1) (29)

where ϕ̂(k) is the regressor vector with true noise terms e(k−
1) and e(k− 2) replaced with their estimated values ê(k− 1)
and ê(k − 2), respectively. The parameter vector is estimated

recursively as

θ̂(k) = θ̂(k − 1) + K(k)ê(k) (30)

where the gain K is calculated as

K(k) = P(k)ψ(k) =
P(k − 1)ψ(k)

λ+ψT(k)P(k − 1)ψ(k)
(31)

P(k) =
P(k − 1)

λ
− P(k − 1)ψ(k)ψT(k)P(k − 1)

λ[λ+ψT(k)P(k − 1)ψ(k)]
(32)

where ψ(k) is an approximate gradient. For the realistic filter

model, the approximate gradient is given by

ψr(k) = [− iF(k − 1),−iF(k − 2),−iF(k − 3), uF(k − 2),

uF(k − 3), uF(k − 4), êF(k − 1), êF(k − 2)]T.
(33)

For the ideal filter model, the approximate gradient is given

by

ψi(k) = [iF(k − 2)− iF(k − 1), uF(k − 2) + uF(k − 4),

uF(k − 3), uF(k − 4), êF(k − 1), êF(k − 2)]T.
(34)

The elements of the approximate gradients for both (33) and

(34) can be solved from

iF(k) = i(k)− ĉ1(k)iF(k − 1)− ĉ2(k)iF(k − 2)

uF(k) = u(k)− ĉ1(k)uF(k − 1)− ĉ2(k)uF(k − 2)

êF(k) = ê(k)− ĉ1(k)êF(k − 1)− ĉ2(k)êF(k − 2). (35)

The equations (29)–(32) are applicable to both the realistic

and ideal filter models. Initial values for θ̂ and P are required

in order to start the algorithm. The initial values are θ̂(0) = 0
and P(0) = I p.u for both models.

If convergence issues arise due to the nature of the RPE

method, a slightly modified version of the method should be

used to obtain initial estimates. This modification is accom-

plished by setting the estimates of the noise polynomials zero,

i.e., ĉ1 = 0 and ĉ2 = 0, in the equations for calculating the

approximate gradient (35). After the initial transients in the

estimates have subsided, the approximate gradient should be

calculated normally according to (35).

APPENDIX C

DESIGN PARAMETERS FOR THE CONTROL METHOD

The parameters for the observer-based current control

method of [5] are ωcd = 2π · 150 rad/s, ζcd = 1, ωcr = ωp,

ζcr = 0.01, ωod = 3ωcd, ζod = 1, ωor = ωp − ωg, and ζor =
0.7. The notation follows that used in [5]. The synchronous

reference frame of the control system was established using

a SRF-PLL tuned with with ζPLL = 0.7 and ωPLL = 2π · 15
rad/s. The DC-bus voltage is assumed constant.

For direct identification in closed-loop systems, the noise

e affects the input signal u [cf. (8)] through the feedback

loop and results in biased estimates [21]. The level of bias

depends on the accuracy of the selected noise model and on the

controller tuning. Therefore, reduced bandwidth and damping

factors are used for the duration of the identification to reduce

the bias caused by the feedback loop.

REFERENCES

[1] M. Liserre, F. Blaabjerg, and S. Hansen, “Design and control of an LCL-
filter-based three-phase active rectifier,” IEEE Trans. Ind. Appl., vol. 41,
no. 5, pp. 1281–1291, Sep./Oct. 2005.

[2] V. Blasko and V. Kaura, “A novel control to actively damp resonance in
input LC filter of a three-phase voltage source converter,” IEEE Trans.

Ind. Appl., vol. 33, no. 2, pp. 542–550, Mar./Apr. 1997.
[3] C. A. Busada, S. G. Jorge, and J. A. Solsona, “Full-state feedback

equivalent controller for active damping in LCL-filtered grid-connected
inverters using a reduced number of sensors,” IEEE Trans. Ind. Electron.,
vol. 62, no. 10, pp. 5993–6002, Oct. 2015.



11

[4] J. Dannehl, F. W. Fuchs, S. Hansen, and P. B. Thogersen, “Investigation
of active damping approaches for PI-based current control of grid-
connected pulse width modulation converters with LCL filters,” IEEE

Trans. Ind. Appl., vol. 46, no. 4, pp. 1509–1517, Jul./Aug. 2010.
[5] J. Kukkola, M. Hinkkanen, and K. Zenger, “Observer-based state-space

current controller for a grid converter equipped with an LCL filter:
Analytical method for direct discrete-time design,” IEEE Trans. Ind.

Appl., vol. 51, no. 5, pp. 4079–4090, Sep./Oct. 2015.
[6] H. Soliman, H. Wang, and F. Blaabjerg, “A review of the condition

monitoring of capacitors in power electronic converters,” IEEE Trans.

Ind. Appl., vol. 52, no. 6, pp. 4976–4989, Nov./Dec. 2016.
[7] T. Roinila, M. Vilkko, and J. Sun, “Online grid impedance measurement

using discrete-interval binary sequence injection,” IEEE Trans. Emerg.

Sel. Topics Power Electron., vol. 2, no. 4, pp. 985–993, Dec. 2014.
[8] S. Cobreces, E. J. Bueno, D. Pizarro, F. J. Rodriguez, and F. Huerta,

“Grid impedance monitoring system for distributed power generation
electronic interfaces,” IEEE Trans. Instrum. Meas., vol. 58, no. 9, pp.
3112–3121, Sep. 2009.
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