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Abstract— In this paper, we present a system that enables
humanoid robots to imitate complex whole-body motions of
humans in real time. In our approach, we use a compact human
model and consider the positions of the endeffectors as well as
the center of mass as the most important aspects to imitate. Our
system actively balances the center of mass over the support
polygon to avoid falls of the robot, which would occur when
using direct imitation. For every point in time, our approach
generates a statically stable pose. Hereby, we do not constrain
the configurations to be in double support. Instead, we allow
for changes of the support mode according to the motions to
imitate. To achieve safe imitation, we use retargeting of the
robot’s feet if necessary and find statically stable configurations
by inverse kinematics. We present experiments using human
data captured with an Xsens MVN motion capture system. The
results show that a Nao humanoid is able to reliably imitate
complex whole-body motions in real time, which also include
extended periods of time in single support mode, in which the
robot has to balance on one foot.

I. INTRODUCTION

Nowadays, a variety of technologies exist that allow

for highly accurate capturing of human motions with high

frequency. The human data can, for example, be used to

generate human-like motions for the high number of degrees

of freedom of humanoid robots. By imitating captured human

motions, humanoids can be tele-operated and also easily

learn new motions.

However, direct imitation of captured movements is typi-

cally impossible, e.g., due to differences in the human and

humanoid kinematics and the different weight distribution.

Depending on the complexity of the motion, it can be

challenging to generate feasible motions for the robot and

ensure stable execution. Especially, when the human motion

leaves the double support mode and contains support mode

changes or even extended periods of time in single support,

stafe imitation on the humanoid is difficult.

So far, a variety of approaches to imitation of human

whole-body or upper body motions have been presented.

Many of them rely on an offline step that performs opti-

mization on the human data so as to adapt it to the robot’s

kinematic structure and constraints [1], [2], [3], [4], [5],

[6]. On the other hand, several systems that allow for real-

time imitation have been presented. Most of them focus on

generating upper-body motions while the legs are neglected

or mainly used for balancing [7], [8], [9], others do not

consider changes of the support mode [10], [11].
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Fig. 1. Imitation of a complex whole-body motion with a humanoid for a
tele-operated manipulation task. Note that the robot imitates configurations
in which it is required to balance on one foot over a longer period of time.

In this paper, we present an approach that enables hu-

manoids to imitate complex whole-body motions in real

time. Instead of relying on a high number of parameters

to optimize, we use a compact human model to reduce the

computational effort. In particular, we consider the positions

of the endeffectors, i.e., the position of the hands and feet,

as well as the position of center of mass (CoM) and generate

the robot’s motion as close as possible to the original

motion. Our approach applies inverse kinematics (IK) to

generate joint angles for the four kinematic chains given the

endeffector positions. Afterwards, we modify the joint angles

so as to match the human’s CoM position and ensure stability

at the same time by using retargeting of the robot’s feet and

finding statically stable configurations by inverse kinematics.

To the best of our knowledge, our technique is the first one

that explicitly imitates also motion sequences with extended

periods of time in single support mode, in which balancing

on one foot is inevitable. We present experiments with a Nao

humanoid reliably imitating complex whole-body motions

in real time (see Fig. 1). The human motion is captured

with an Xsens MVN motion capture system consisting of

inertial sensors attached to the individual body segments.

We thoroughly evaluated our approach regarding stability,

similarity to the human motion, and computational effort.

As the results show, our system generates safe motions for

the robot while achieving high similarity to the human and

allows for tele-operation in real time. Preliminary results of

this work have been published in [12].

II. RELATED WORK

Riley et al. [13] described one of the first approach to real-

time control of a humanoid by imitation using a simple visual

marker system attached to the upper body. The authors apply

IK to estimate the human’s joint angles and then map it to the



robot. Ott et al. [7] proposed to use a spring model, in which

control points on the robot’s skeleton are virtually connected

to the markers on the human body. Based on the forces acting

on the springs, joint angles are determined that consider the

robot dynamics. The authors present experiments in which

a humanoid imitates human upper-body motions in real

time, the legs are mainly used for balancing. The work by

Dariush et al. [8] considers imitation as task space control

based on low dimensional motion primitives. the authors use

a separate ZMP-based balance controller and the lower body

is only controlled so as to ensure stability.

Also Yamane et al. [11] presented a control-based ap-

proach to imitate human motions with a force-controlled

robot. Using this technique, joint trajectories for the whole-

body of a humanoid can be generated online. The legs are

also controlled so as to follow the human motion while

maintaining stability. The only assumption is that both feet

have ground contact. The authors plan to lift this assumption

by integrating techniques to detect stepping motions and

adapting the CoM trajectory in the controller according

to [14]. In the latter approach, the authors proposed to predict

the trajectory of the desired CoP for a number of frames

based on the captured motion and then modify the CoM to

ensure stability.

Cela et al. [15] presented a motion capture system con-

sisting of eight sensors to measure joint angles of the leg and

acceleration of the arms. The authors ensure stability during

real-time imitation using a feedback control system based on

data of an accelerometer placed on the robot’s back. With

this system, changes from double support to singe support

are possible, however, due to the limited set of sensors, no

complex motions can be imitated. Recently, Vuga et al. [16]

introduced an approach to dynamically stable imitation of

human motions. The authors use a separate controller for

the lower body that ensures stability by allowing imitation

in the null space of the balance controller only. In this way,

imitation of walking motions is possible.

Stanton et al. [10] described a learning approach to

determine kinematic mapping between the human and the

robot. This technique relies on an initial training phase in

which the human is asked to imitate the motions of the robot.

Afterwards, the human can tele-operate the robot in real time.

Since in this approach no balance controller ist used, the

range of motions the robot is able to imitate is constrained.

Suleimann et al. [2] focus on the imitation of the upper

body. The authors treat the imitation as a constrained opti-

mization problem on a given sequence of captured human

motions. Nakaoka et al. [17] consider dance movements. In

this approach, motion primitives and their parameters are

learned offline from observed human motions. Here, the

leg motions are not directly imitated but generated from

the primitives. In a latter work, Nakaoka et al. [4] use

a set of models for different leg motions of the robot to

ensure that characteristic motions are executed stably during

imitation of the dance movement. Also here, the motion

models and their parameters are learned in an offline step.

For imitation, the particular type of motion primitive is

recognized from captured motion data and the leg trajectory

are chosen accordingly, so that the robot can safely execute

the corresponding sequence. Kim et al. [1] also focus on

dance movements and use an offline optimization step for

determining a kinematic mapping between the human and the

robot and ensuring stability of imitated whole-body motions,

also during support mode changes. During execution, three

online controllers are used for balancing and soft stepping.

Chalodhorn et al. [3] proposed to apply dimensionality

reduction and transform the high-dimensional human motion

data in a low-dimensional subspace. The offline optimization

of the motions, which takes into account the robot dynamics

and stability, is then performed in the reduced subspace. The

authors applied the approach to the task of learning to walk

by imitation.

In contrast to all the methods above, our system enables a

real humanoid to imitate complex whole-body motions that

include support mode changes in real time while ensuring

static stability. Our approach does not rely on a preprocessing

step or on a high number of variables, but uses a compact

model of human motions.

III. HUMAN MOTION MODEL

Typically, the captured motion data allows for precisely

reproducing the human motions on a virtual model of the

human body. However, the execution of the same motion on

a robot platform is naturally impossible due to the differences

in the number of degrees of freedom and joint range between

the two models. In this work, we consider a motion as a

sequence of postures fi

fi = [pLShoulderLHand , p
LHip
LFoot , p

RShoulder
RHand , p

RHip
RFoot ], (1)

thus, each posture is defined as the 3D position of the

endeffectors, i.e., the hands and feet, relative to the left or

right shoulder/hip frame at time i (see Fig. 2). Currently,

we just include the endeffectors’ positions in the model.

However, the model can be easily extended to include the

endeffectors’ orientations and further features such as the

elbow and knee positions. As the proposed method is based

on inverse kinematics, additional constraints can be included

in an augmented Jacobian or can be solved in the projected

Nullspace of the Jacobian. For each posture, we additionally

take into account the position of the CoM and the support

mode of the demonstrator, which can be estimated from the

motion capture data.

By adopting this compact representation of body postures,

we account for the limited physical capabilities of humanoid

robot platforms with respect to the human body.

IV. HUMAN TO HUMANOID POSTURE MAPPING

A. Initialization

In order to map motions from the human to the robot

model, our system uses a common reference posture, the so-

called the T-pose (see Fig. 2). In the following, we will refer

to fref ,H and fref ,R as the posture of the human and the

robot in the T-pose, defined according to Eq. (1).
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Fig. 2. T-pose of the human and the robot model used as reference for
posture mapping.

B. Posture Mapping

To determine the posture change for a new human body

posture fi,H , our technique first computes the deviation of

the endeffector positions relative to their references in fref ,H

∆fi,H = fi,H − fref ,H . (2)

In order to imitate the motion of the human, we expect the

deviation of the robots endeffector positions ∆fR from their

positions in fref ,R to be proportional to the values obtained

from Eq. (2), as given by the following equation

∆fi,R = m ·∆fi,H , (3)

where m represents the proportionality constant, given by

the ratio between the limb length of the robot llimb,R and the

human llimb,H for the respective kinematic chain, defined as

m =
llimb,R

llimb,H
, (4)

where the length of the limbs are obtained from the T-pose.

Given ∆fi,R, the robot’s posture fi,R at time i is updated as

fi,R = fref ,R +∆fi,R. (5)

For the target positions for each endeffector contained

in fi,R, we find the corresponding joint angles by an nu-

merical inverse kinematics solver based on the damped least-

squares (DLS) method with a weighting matrix to avoid joint

limits as proposed in [18]. We chose an iterative solver as

opposed to an analytical method since it typically generates

continuous motions.

Executing the resulting joint angles will lead to a robot

posture that is similar to the captured human posture with

respect to the differences between the two models in scale

and kinematic structure. Nevertheless, the mapping proce-

dure is insufficient for safe imitation of human motions. First,

only the feet positions have been considered for the mapping.

Thus, the support feet of the robot may not be parallel to

the ground. Second, differences in the mass distribution of

the robot and the human have to be considered. Finally,

the dynamics of the human and the robot are different. For

simplification, our approach does not consider the dynamics

of the robot but generates a statically stable pose for every

point in time as described in the following.

pCoM

pLFootpRFoot

01 offset o = 0.3

Fig. 3. Determination of the normalized offset given the projection of the
center of mass onto the connection line between the feet.

V. POSTURE STABILIZATION

To keep the similarity to the human motion, the given

unstable robot’s posture should be modified as little as

possible. Thus, our stabilization method only modifies the

configuration of the robot’s leg chains. Further, it is important

to ensure that the support mode and the trajectory of the CoM

of the robot are close to that of the human. Thus, given the

unstable robot pose from posture mapping, the current CoM

of the human, and its support mode, the goal is to find a

statically stable robot posture with similar properties as the

human posture.

In summary, our approach works as follows. First, the

trajectory of the CoM is adapted to allow for support mode

changes and we constrain the changes in the CoM position

per time unit to ensure safe execution. Then, the support

mode for the robot is determined based on the support

mode of the human and the designated position of the CoM.

Finally, the endeffector positions of the feet are retargeted to

generate a statically stable pose and the corresponding joint

configurations are found by an IK solver. These steps are

explained in detail in the following.

A. Controlling the Center of Mass

We use a low-dimensional projection of the CoM to de-

scribe the position of the CoM pCoM relative to the positions

of the feet as a scalar factor. This offset o is determined by

the orthogonal projection of the CoM onto the connection

line between the feet (see Fig. 3). The offset is normalized

between 0 and 1 so that it describes the relative distances

of the projected CoM to the feet center positions pLFoot and

pRFoot . With this normalization, the offset from the human

motion data can be directly translated to the robot. The offset

is computed as follows:

o =
(pCoM − pLFoot) · (pRFoot − pLFoot)

‖pRFoot − pLFoot‖2
(6)

As the CoM of the human is not necessarily over a single

support foot when changing to the single support mode, the

trajectory of the offset has to be adapted for the robot to

allow for support mode changes. For example, before the

robot can safely lift its right foot to balance on a single

foot, first the offset has to be 0. Thus, whenever the human

stands on a single foot, the offset for the robot is forced to
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Fig. 4. Robot support mode states and transitions. HD , HL, and HR

indicate whether the human is in double, left, or right support mode. oR
refers to the normalized offset (see Fig. 3). Before a change to single mode
occurs, the CoM is smoothly shifted to the corresponding leg.

be 0 or 1. Obviously, this would result in fast changes in

the trajectory of the CoM. Thus, the velocity of the offset

is limited to generate smooth and safe trajectories of the

CoM. Here, we use a negative quadratic function with the

maximum at o = 0.5 and close to zero velocity at the

borders of the offset range. In practice, this results in safe

motion imitation, but on the other hand causes a slight delay

in the imitation process when support mode changes occur.

Reducing the delay by adapting the function parameters is

generally possible, though comes along with a higher risk of

loosing balance. A sample trajectory of the human and robot

offset is illustrated in Fig. 9 in the experimental section.

B. Controlling the Support Mode

The robot cannot directly imitate the support mode of the

human who can almost instantaneously change from double

to single support and vice versa. Instead, the robot first has

to carefully shift its CoM over the support foot to avoid

falling. Our approach uses a finite state machine to model

the support mode of the robot based on the support mode

of the human (which is either double (HD), left (HL), or

right (HR)), the robot’s current support mode, and the offset

of the robot oR. The state transitions are illustrated in Fig. 4.

When the robot is in double support, it will only change to

single support if the human is in single support and if its own

offset is 0 or 1. If the offset has a value in between, the robot

is not allowed to change to single support, even if the the

human is already on a single foot. To achieve single support,

the offset is smoothly shifted towards 0 or 1 by the offset

control described in the previous subsection. Accordingly,

the robot needs a few frames to change its support mode.

C. Endeffector Retargeting

It remains to describe how to generate statically stable

robot postures after posture mapping and determination of

the CoM position and support mode. Our approach finds a

new target for either one foot or both feet so that the given

offset (see Sec. V-A) is fulfilled.

1) Double Support: In the double support mode, one foot

is repositioned so that the CoM, projected on the connection

line between the feet, equals to the desired offset factor. The

repositioning in double support mode is illustrated in Fig. 5.

Here, the left foot position pLFoot is shifted in the direction

of the CoM position pCoM to its new target position p′LFoot

so that the desired offset o′R is met. Whether the right or

pCoM

pRFoot pLFooto′R

p′LFoot

oR

Fig. 5. Double support posture stabilization. Depending on the CoM and
the desired offset o

′

R
, the position of one foot is retargeted and the joint

angles of the corresponding leg chain are recomputed so that the resulting
posture is statically stable.

the left foot is moved, depends on the desired offset o′R and

on the current offset oR which is calculated from the given

pose. If o′R < oR, the left foot is repositioned, otherwise the

right foot.

Afterwards our approach calculates new target orientations

for the feet so that they have the same orientation and

span a plane on the ground. The orientation is given by the

direction of the up-pointing vector of the feet, which is the

normal n{L/R}Foot of the desired plane:

n{L/R}Foot = pCoM−(p′LFoot+o′R·(pRFoot−p′LFoot)) (7)

Accordingly, it points from the projected CoM corresponding

to the desired offset o′R to the new CoM position.

2) Single Support: In single support mode, the foot posi-

tions stay the same and it is sufficient to find a new target

orientation for the supporting foot so that the posture is

statically stable. The direction vector is given by the same

formula as above with an offset of either 0 or 1.

With the new target positions and orientations for the feet,

we can solve for the joint configurations with IK. We state

the IK problem as a 5 DOF problem by the target positions

and orientation, given by the new position p′{L/R}Foot and

the orientation n{L/R}Foot . In contrast to posture mapping,

precision is crucial for stabilization. Therefore, we run the

damped least-squares IK solver until the error is below a

certain tolerance.

D. Postprocessing

To make our system more robust, we implemented meth-

ods for limiting the velocity of the non-supporting endeffec-

tors and avoiding collisions. These methods can be easily

integrated into our approach by running the IK solver on the

modified target positions whenever a collision or a too fast

endeffector velocity is detected.

VI. EXPERIMENTAL RESULTS

We used a Nao v4 developed by Aldebaran Robotics for

evaluating our system. Nao is 58 cm tall, weighs 5.2 kg and

has 25 degrees of freedom. The human was wearing an

MVN Suit by Xsens for capturing the motions. This inertial

sensor based tracking device provides an accurate estimate

of the human’s posture from which the target positions of

the endeffectors, used as input for posture mapping, can be

extracted. For posture mapping, we run the damped least-

squares based IK solver with a fixed number of 30 iterations



Fig. 6. Nao humanoid imitating a human performing a motion to reach
a complex single support posture. Using our approach, the robot can even
keep its balance when it is in single support for longer periods of time.
The entire motion sequence is contained in the accompanying video. The
leftmost image shows the calibration posture for the mapping process.

for the arms and 5 iterations for the feet to avoid singular

configurations (e.g., leg stretched out). A rough tracking of

the feet is sufficient in the posture mapping as the positions

are adapted for stability in the stabilization step. Singular

configurations are hard to escape during the stabilization

process.

The IK solver in the stabilization method was executed

until a precision of at least 1 mm or 0.033 rad is reached.

We experimentally determined a damping factor of 0.3 for

the DLS method, which turned out to be a good compro-

mise between stability and convergence of the IK method.

Computations were performed on a single core of a standard

desktop CPU (Intel Quadcore i5-2400, 3GHz).

In the following, we evaluate our system in terms of

similarity of the robot motion to the demonstrated motion,

stability, and computational cost. Finally, we present a tele-

operation experiment as an application scenario of our ap-

proach.

A. Similarity to Human Motion

To evaluate the similarity of the robot’s motion computed

by our approach and the demonstrated motion, we measured

the differences of the corresponding endeffector positions in

a complex whole-body motion, which contained fast arm

movements and support mode changes. The demonstrator

stretched his right foot backwards and lifted the arms while

remaining in single support to reach the posture illustrated in

Fig. 6. Here, images from this motion sequence are shown

together with the humanoid robot imitating the given motion.

At the beginning, the demonstrator adopted the T-Pose to

calibrate the mapping.

We compare the trajectory of the controlled endeffector

position with the trajectory of the desired endeffector posi-

tions given by posture mapping from the human model (see

Sec. III). The errors are caused by the precision of the IK in

posture mapping, by preserving joint limits and by applying

endeffector and joint velocity limits in the postprocessing

step of the stabilization method. For the feet there is an

increased error due to the stabilization method, especially

in the case of support mode changes.

Fig. 7 shows the errors of the hand positions of the com-

plex single support sequence in Fig. 6. The hand positions
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Fig. 7. Deviation of the hand positions from the desired positions for the
motion depicted in Fig. 6. The average error is only 1.4 cm.
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Fig. 8. Deviation of the generated feet positions from the desired ones for
the sequence depicted in Fig. 6. The increased error in the left foot during
support mode changes results from shifting the CoM within our stabilization
method. Furthermore, the human right leg is moved fast backward and
forward, respectively, and the robot needs a few time steps to catch up.
The average error is only 1.6 cm.

have an increased error when the demonstrator raises and

lowers its arms due to the higher velocity. Fig. 8 plots the

corresponding errors of the foot positions. The stabilization

method uses the legs of the robot to shift its center of mass

and realize the changing of the support mode. In the first

double support phase, the deviation from the target positions

is small. When the demonstrator changes to the left foot,

the robot needs some time to shift its CoM to the left foot

while the demonstrator continues with the motion. As the

demonstrator makes a fast backwards movement of the right

leg, the error grows a bit larger for the right foot. This

effect is strengthened by the endeffector velocity control of

the postprocessing step of the stabilization method. In the

left support phase, the left foot keeps balance while the

right foot attempts to catch up with its desired position.

At the end of the left support phase, the right foot has a

high acceleration forwards and is then placed on the ground.

Finally, the CoM is shifted towards the neutral position by

the stabilization procedure using both feet, resulting in a

temporarily increased error in the left and the right foot.

To calculate the average error of the endeffector positions,

we repeated the experiment with the complex single support

posture of Fig. 6 10 times. Over all repetitions the average
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Fig. 9. Evolution of the offset value over time for the sequence depicted
in Fig. 6. As can be seen, the robot’s offset closely follows the human’s
value. During support mode changes, the speed of shifting the robot’s CoM
is limited to ensure stability.

TABLE I

COMPUTATIONAL EFFORT AND NUMBER OF IK ITERATIONS.

Mean Max

Posture mapping 1.04± 0.35ms 1.73ms
Posture stabilization 1.85± 3.50ms 27.08ms
Total time 3.30± 3.57ms 29.21ms
# IK iterations 54± 178 1784

error of the hands is 1.4 cm and of the feet 1.6 cm. Although

the sequences have to be adapted to ensure stability, the

motion of the robot is still very similar to the motion of

the demonstrator.

B. Ensuring Stability

In the next set of experiments, we evaluate our technique

to achieve stability during motion imitation. In particular,

we consider the offset value introduced in Sec. V, which is

the low-dimensional representation of the projected CoM. In

Fig. 9, the temporal evolution of the offset is plotted for the

sequence of Fig. 6. As can be seen from the figure, the offset

of the robot equals the offset of the demonstrated motion

in the double support phase, in which the center of mass is

slightly shifted to the left foot. Shortly before the left support

phase, the offset is forced to approach a value of 0. The speed

of changing the offset value is limited by the offset control

so that the CoM is not shifted too fast. The offset value

stays 0 during the left support phase until the demonstrator

places the right foot back on the ground. Then, the offset

approaches its specified value, with limited velocity forced

by the offset control.

As the experiments show, our technique controls the

robot’s CoM so as to imitate the human motion as close

as possible while ensuring stability. More specifically, our

system generates a trajectory of the robot’s CoM that closely

follows the human CoM trajectory, achieves the desired

support mode changes, and limites the velocity of the CoM

changes to ensure safe execution.

C. Computational Costs

To evaluate the computational costs, we measured the

calculation times for a long sequence of 1000 frames. It

Fig. 10. Tele-operation with visual feedback. Left: Human operator and
live view of the robot’s camera displayed on a monitor. Right: Tele-operated
Nao humanoid.

Fig. 11. Tele-operated walking and object manipulation. The complete
motion sequence is contained in the video accompanying this paper.

contains different movements such as stepping and reaching,

as can be seen in the tele-operation experiment in Sec. VI-

D. The calculation times are given in Table I. The time

for posture mapping includes finding the target positions

for all endeffectors and running the IK solver to find the

joint configurations for the robot. In the posture mapping

process, the transformations can be calculated in constant

computational time and the number of iterations of the IK

is fixed to a small number whereas the stabilization time

is dominated by the inverse kinematics calculations. Here,

the IK solver has to run many iterations to find a solution

within the desired precision. The number of iterations of the

damped least squares solver are also listed in the table. The

total time includes all computations of our system, beginning

when the captured human data is obtained, and ending when

a statically stable pose has been generated for the robot.

The calculation times are within a few milliseconds on

average. Some configurations require a larger amount of

iterations to converge to the desired precision, but the com-

putation time does still not exceed 30 ms in the worst case.

Even complex whole-body motions can be safely imitated

with a rate of 30 frames per second.

D. Tele-Operation

Finally, we use our system to control the robot in a tele-

operation setup for object manipulation. In this set of ex-

periments, only the image of the robot’s camera is projected

onto a screen to the demonstrator wearing the motion capture

suit. The camera is always pointing to the right hand of



the robot, so that the demonstrator gets a good view of the

manipulator and the object to be manipulated. An overview

of the experimental setup is shown in Fig. 10.

We performed two sequences including stepping, balanc-

ing in single support, and grasping an object. In the first

experiment, the demonstrator balances on the left foot while

he picks up the object. In this way, the robot is able to reach

a distant object as it leans forward and balances the CoM

by stretching the right foot backward. A snapshot of this

sequence is shown in Fig. 1. After successfully grasping

the object, the demonstrator changes to double support and

drops the object into the blue bucket. In this experiment, we

constrained the right hand of the robot to keep a upright

orientation.

In the second experiment, the robot is too far away to reach

the object (see Fig. 11). The demonstrator first performs two

steps to get closer to the object, before he stretches his right

arm to pick-up the object and drops it into the bucket. Both

tele-operation experiments were successfully performed on

the robot. They are included in the video accompanying this

paper.

VII. CONCLUSIONS

We presented a technique for real-time imitation of hu-

man whole-body motions. Our approach uses a compact

human model and applies inverse kinematics to find robot

postures that imitate the human demonstrator. To achieve

safe imitation of challenging sequences online, we generate

statically stable configurations and constrain the center of

mass velocity. The novelty of our system is that it also allows

for single support phases where the center of mass has to be

actively balanced over the support foot for a longer period

of time. Experiments with a Nao humanoid and a MVN

Suit by Xsens demonstrate the capability of our approach to

reliably generate safe motions of the robot closely following

the human reference also for complex motion sequences. The

required computational time is only 3 ms on average, thus

allowing for real-time tele-operation.
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