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An energy management controller based on shortest path

stochastic dynamic programming (SP-SDP) is implemented

and tested in a prototype vehicle. The controller simul-

taneously optimizes fuel economy and powertrain activ-

ity, namely gear shifts and engine on-off events. Previous

work reported on the controller’s design and its extensive

simulation-based evaluation. This paper focuses on imple-

mentation of the controller algorithm in hardware. Practical

issues concerning real-time computability, driver perception,

and command timing are highlighted and addressed. The

SP-SDP controllers are shown to run in real-time, gracefully

handle variations in engine-start and gear-shift-completion

times, and operate in a manner that is transparent to the

driver. A hardware problem with the test vehicle restricted

its maximum engine torque, which prevented a reliable fuel

economy assessment of the SP-SDP controller. The data that

were collected indicated that SP-SDP controllers could be

straightforwardly designed to operate at different points of

the fuel economy tradeoff curve and that their fuel economy

may equal or exceed that of a baseline industrial controller

designed for the vehicle.
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1 Introduction

Hybrid vehicles are coming on the market at an increas-

ing rate. At the heart of a hybrid vehicle is an energy man-

agement controller which determines the amount of power

to be delivered by each energy source in the vehicle [4]. In

order to improve drivability, power commands may be co-

ordinated with transmission shifts. Many different energy

management algorithms have been proposed for an array of

vehicle configurations. There are relatively few results in the

literature that test such controllers in hardware [5–11], or that

address the many practical considerations during the imple-

mentation process. There is a significant gap between the

number of published results based on simulations and results

that report hardware testing.

This paper describes the implementation and hardware

testing of an energy management controller based on shortest

path stochastic dynamic programming (SP-SDP) [12–14], a

specific variant of stochastic dynamic programming [15,16].

The controller is designed to address both fuel economy

and constraints on powertrain activity. The controller de-

sign and its simulation-based evaluation using a detailed ve-

hicle model were reported in [17, 18]. Based on the simula-

tion results, it was decided to further evaluate the controller

on a prototype Volvo S-80 provided through a University of

Michigan and Ford Motor Company alliance; the vehicle is

shown in Figure 1.

Three main issues were addressed to obtain a functional

controller in the vehicle. The first is the development of a

real-time implementation that operates within current com-

putation and memory requirements. One of the oft-perceived



Fig. 1: The Prototype Hybrid: A Modified Volvo S-80.

drawbacks of dynamic programming algorithms is the com-

putational burden. The SP-SDP algorithm used here does

require extensive off-line computation, but the on-line com-

putations are shown to be feasible with current technology.

The second major issue was to provide rapid pedal response.

Most optimization-based energy management algorithms are

designed for a 1s update period, but a typical driver will not

be satisfied with a 1s delay in pedal response. A multi-rate

implementation of the controller is proposed which updates

electric machine and engine torque commands rapidly in re-

sponse to pedal variations, but updates the gear and engine

on-off commands more slowly. The third topic is a technique

to reliably operate the controller when the execution of an

actuator command, such as a gear shift or engine start, takes

longer than expected in the model used for controller design.

The controller was implemented in a progressive man-

ner, first in a hardware-in-the-loop (HIL) system, and then

in the vehicle. The test environments used in each step are

described in detail. Most of the topics addressed in this pa-

per are applicable to any optimization-based energy manage-

ment controller and are not specific to SP-SDP.

Partway through testing, the engine controller detected

a fault and limited engine torque to 150 Nm, whereas 300

Nm is full scale. This issue was not repaired and the fuel

economy data reported here reflects this limitation. Figure 2

shows the tradeoff between fuel economy and engine activ-

ity for both simulations and hardware tests. The results that

were obtained do not contradict the general trends shown in

simulation, but certainly there is insufficient data to confirm

those trends. The hardware tests do confirm that an SP-SDP

controller can be executed in real-time on an an embedded

microprocessor, drive cycles, deal with non-ideal real hard-

ware, and generate acceptable vehicle behavior.

The remainder of the article is organized as follows.

Section 2 describes the vehicle configuration and the 5 mod-

eling and testing environments used in controller develop-

ment. Section 3 summarizes the controller design process

developed in [18]. Section 4 demonstrates real-time com-

putability of the SP-SDP controller. Section 5 discusses a
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Fig. 2: Fuel economy and engine activity for simulation

and hardware testing on the Federal Test Procedure (FTP72).

A component failure limited engine torque for all hardware

testing, resulting in decreased fuel economy. All results are

normalized to the simulated baseline controller.

technique for issuing actuator commands at multiple rates,

while Section 6 describes how to handle unpredictable ac-

tuator response timing. Section 7 details further refinement

to the controller implementation that occurred once it was

running in the vehicle. Section 8 provides test data.

2 Vehicle

2.1 Description

The vehicle studied in this paper is a prototype Volvo S-

80 series-parallel electric hybrid and is shown schematically

in Figure 3. A 2.4 L diesel engine is coupled to the front

axle through a dual clutch 6-speed transmission. An electric

machine, EM1, is directly coupled to the engine crankshaft

and can generate power regardless of clutch state. A second

electric machine, EM2, is directly coupled to the rear axle

through a fixed gear ratio without a clutch and always rotates

at a speed proportional to vehicle speed. Energy is stored in

a 1.5 kWh battery pack. The system parameters are listed in

Table 1.

The vehicle hardware allows three main operating con-

ditions:

1. Parallel Mode-The engine is on and the clutch is en-

gaged.

2. Series Mode-The engine is on and the clutch is disen-

gaged. The only torque to the wheels is through EM2.

3. Electric Mode-The engine is off and the clutch is dis-

engaged; again the only torque to the wheels is through

EM2.

These mode definitions do not restrict the direction of power

flow. The electric machines can be either motors or genera-

tors in all modes.



Table 1: Vehicle Parameters

Engine Displacement 2.4 L

Max Engine Power 120 kW

Electric Machine Power EM1 (Front) 15 kW

Electric Machine Power EM2 (Rear) 35 kW

Battery Capacity 1.5 kWh

Battery Power Limit 34 kW

Battery SOC Range 0.35-0.65

Vehicle Mass 1895 kg
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Fig. 3: Vehicle Configuration

2.2 Operational Assumptions

Several operational assumptions were imposed based on

the prototype vehicle used. Specifically, the clutch cannot

slip to start the vehicle. Starting torque from a full stop is

provided by EM2. The clutch allows the diesel engine to

be decoupled from the wheels. There are no traction control

restrictions on the amount of torque that can be applied to

the wheels. In terms of the controller, regenerative braking

is used as much as possible up to the actuator limits, with the

friction brakes providing any remaining torque.

3 Controller Design and Development

The controller design process is briefly summarized

here. The interested reader should consult [17, 18] for fur-

ther information.

3.1 SP-SDP Controller

The controller is designed using Shortest Path Stochas-

tic Dynamic Programming (SP-SDP), which, as explained

in [12–14, 19], is a specific formulation of Stochastic Dy-

namic Programming (SDP) that allows infinite horizon op-

timization problems to be addressed without the use of dis-
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Fig. 4: The overall development process

counting. In the energy management problem, the acceler-

ation requested by the driver, which is the equivalent of a

drive cycle, is modeled as a stationary, finite-state Markov

chain [20]. The controller minimizes the expected value of

a cost function, which was chosen to reflect a tradeoff be-

tween fuel consumption and powertrain activity, with the lat-

ter measured by accumulated number of engine starts and

gear shifts over a drive cycle.

The controllers generated through SP-SDP are causal

state feedbacks and hence are directly implementable in a

real-time control architecture. The controllers are provably

optimal if the driving behavior matches the assumed Markov

chain model and the vehicle model is accurate. In this paper,

the Markov chains representing driver behavior are modeled

on standard government test cycles, as in [12, 20]. It is also

possible to build the Markov chains on the basis of real-world

driving data, as reported in [17].

The controller design process consists of two steps, one

off-line and the other on-line, as shown in Figure 4. The

off-line solution of the optimal control problem yields the

value function V ∗(x) and the optimal control u∗(x), both as a

function of the state x . The optimal control is a minimizer of

the sum of the current cost c(x,u,w) and the expected future

cost V ∗( f (x,u,w)),

u∗(x) = argmin
u∈U

Ew[c(x,u,w)+V ∗( f (x,u,w))] (1)

where w is a random variable representing the drive cycle,

Ew is the expectation, f (x,u,w) is the system dynamics, U

is the set of admissible controls, and V satisfies the Bellman

equation,

V ∗(x) = min
u∈U

Ew[c(x,u,w)+V ∗( f (x,u,w))]. (2)

A standard iterative method of solving (1) and (2) is given in

[13, 14]. The state and control values are first quantized into

finite grids. At each step of the iteration, the optimal control

and value function are evaluated only at the grid points of the



Fig. 5: The increasing complexity of controller testing in this

work.

state variables, while the value function at the next time step

of the dynamics, V ∗( f (x,u,w)), is determined off the grid

points through interpolation.

3.2 Development Environments

The path from the controller representation (1) to indus-

trial hardware requires dealing with many challenges beyond

those faced in most theoretical analyses. The process fol-

lowed here involved five different models and testing envi-

ronments, as illustrated in Figure 5. The first two steps have

been reported in [17,18]. Controllers were initially designed

and tested on a control-oriented model. They were then ex-

tensively evaluated using a High-Fidelity Vehicle Simulation

Model.

Model and Testing Environments:

1. Control-Oriented Model-Simple, table-based model

used for controller design.

2. High-Fidelity Vehicle Simulation Model-Ford’s in-

house model used to simulate fuel economy. Complex,

MATLAB/Simulink based model with a large number of

parameters and states [21].

3. Model in the Loop (MIL)-Simulink-based vehicle

model combined with simulated implementation of

Ford’s real-time vehicle controller, which is a combina-

tion of C and autocoded Simulink.

4. Hardware in the Loop (HIL)-Vehicle model simulated

in real-time on dedicated hardware. Real-time controller

runs on actual vehicle processor and interacts with sim-

ulated vehicle in real time over the same interface used

in the vehicle.

5. Vehicle- Full-up testing with real-time controller and ve-

hicle hardware.

After the simulation-based testing showed promising re-

sults, the algorithm was implemented in the prototype’s real-

time Vehicle System Controller, which is a combination of

C and autocoded Simulink. The vast majority of the vehicle

controller was reused, only the high-level energy manage-

ment function was replaced. This step is challenging because

the SP-SDP algorithm had to interact with all the existing

vehicle control modules, such as the engine start sequence,

braking logic, and mode switching coordination. The real-

time controller was subsequently implemented in a model-

in-the-loop (MIL) testbed with a simulated vehicle [22]. The

controller was then compiled and run on the actual real-time

embedded processor, which was connected to a simulated ve-

hicle in a hardware-in-the-loop (HIL) testbed. The final step

was to place the real-time embedded processor in the actual

vehicle.

This systematic process allowed progressive develop-

ment of the algorithm and its real-time implementation. Each

step of the process was roughly equivalent in terms of diffi-

culty and time, with attendant opportunities to identify er-

rors and validate results. Section 4 describes the high-level

decisions about the algorithm structure, while Section 5 de-

scribes the multi-rate implementation. Section 6 addresses

unpredictable actuation delays.

4 Real-Time Implementation

The real-time implementation of the optimal control (1)

can be done in at least two ways. As mentioned in Section

3, the off-line calculation of the optimal control policy yields

both the policy itself u∗ and the value function V ∗ at a set

of grid points, say {xi |1 ≤ i ≤ N}, used in the numerical

solution of the Bellman equation from dynamic program-

ming. Hence, the optimal policy can be stored as a state-

feedback lookup table. To keep the off-line problem com-

putationally feasible, however, the continuous control inputs

(engine torque and motor torques) are discretized into a rela-

tively coarse grid of about 20 possible values. The stored op-

timal feedback policy would carry this coarse discretization,

namely, u∗(xi) ∈ {u j |1 ≤ j ≤ 20}, with the nearest neighbor

interpolation being used, for example, to define the controls

at state values not in the grid used for computing the optimal

policy.

It was observed in [12, 23] that a better approximation

of the optimal policy can be obtained as follows. The value

function V ∗(xi) is stored at grid points and V ∗(x) is approx-

imated by linear interpolation. The optimal policy is deter-

mined by on-line minimization of (1), in which the engine

torque control input is discretized into 100 possible values,

yielding increments of 3 Nm. Because the minimization in-

volves selecting a value from a discrete set of fixed size, its

execution is fast and deterministic. Simulations have shown

that this on-line refinement of control inputs is important,

yielding 2-3% better fuel economy than simply implement-

ing the coarse policy u∗(xi) ∈ {u j |1 ≤ j ≤ 20}. Minimizing

with a continuous control input does not yield significant im-

provement over a control space with 100 values. Conducting

the minimization in (1) on-line allows the flexibility to incor-

porate additional features, as will be discussed later.

4.1 Code structure

The calculations represented by (1) were coded in

Simulink for the MIL and subsequent models to allow easy



integration with the existing Vehicle System Controller, au-

tomatic code generation, and interaction with MATLAB. The

HIL was used to set table sizes, memory allocation, and as-

sess precision. Three functions must be stored as tables: the

cost function c(x,u), the system dynamics f (x,u,w), and the

value function V ∗(x). The largest table was actually the sys-

tem dynamics function f (x,u,w), rather than the value func-

tion V ∗(x). The size of these stored tables scales with the

desired numerical accuracy of the solution. The expected

values in (1) can be pre-computed to reduce the on-line com-

putation.

For each update, the algorithm is passed a 2D array of

700 possible control choices along with the current state.

This array represents 100 possible engine torques and 7 pos-

sible transmission states including the six gears and series

mode. The instantaneous expected cost of each possible con-

trol along with the expected future cost Ew[V ( f (x,u,w))] are

similarly stored as a 700 element array. Selecting a cost-

minimizing command is then a matter of determining the

minimum total cost.

4.2 Results

The vehicle control system runs on a DSPACE Mi-

croAutoBox DS1401 which contains an IBM PPC603 pro-

cessor at 300 MHz with 8 MB of local RAM. The baseline

Vehicle System Controller uses this hardware, and the SP-

SDP energy management software is added to the existing

control system. Both controllers continuously run in parallel

to enable easy transitions between the two.

The compiled version of the SP-SDP controller requires

900 kB of memory, including all code and data tables. All

calculations are implemented in a manner identical to sim-

ulation work reported in [17, 18]. The dynamics f (x,u,w)
are implemented analytically, with the exception of the next

SOC, which is stored as an array of 54,978 single-precision

values. The array size was limited by 16-bit memory ad-

dressing (65,536 points). Simulations typically used an ar-

ray 5 times larger, but little numerical precision is lost with

the smaller table. The value function is stored as an array

of 21,384 double precision values, the same size as used in

simulation.

The SP-SDP controller calculations, running in parallel

with the baseline controller, could be completed in less than

16ms on the HIL. Because the controller easily ran with the

available resources, little effort was expended to reduce com-

putation requirements. The controller would likely run on a

significantly less powerful processor.

5 Multi-Rate Updates to Enhance Driver Perception

Hardware implementation of any energy management

controller requires dealing with issues that are commonly

ignored in simulation studies. Update rate is the focus of

this section. The SP-SDP controllers used here are designed

to update with a ∼1s period, as are many energy manage-

ment controllers in the literature. One reason for using a

relatively slow update rate in the controller design process
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Fig. 6: One of the early HIL simulations on NEDC. The ve-

hicle speed, gear, and engine state show reasonable behavior.

The automated driver model was not well-tuned at this point,

so the velocity tracking shows some lag and overshoot.

is that computing the value function for shorter time steps

requires greater numerical accuracy and yields slower off-

line solution convergence. Decreasing the sample interval

below ∼1s is difficult because discrete control actions, such

as engine start and gear shift, take roughly one second to

complete. Shorter update periods would invalidate the sim-

ple gear and engine on-off state representation used in our

controller design model, where intermediate states, such as a

partially started engine, were not used. The ∼1s update cap-

tures the relevant dynamics of the system while ignoring fast

transients. While controllers with this relatively slow update

rate can follow drive cycles, deliver good fuel economy, and

in general look good in simulation, a real driver is bothered

by a pedal with a 1s lag.

5.1 Multi-rate updates

Our solution to perceived pedal lag was a multi-rate im-

plementation of the controller in which actuators are updated

at different rates based on their capability, as illustrated in

Figure 7. The engine on-off and transmission gear transi-

tions are relatively slow and thus are updated with a period

of 1.2 s, or 0.83 Hz. Both engine torque and sound are very

noticeable to a driver, so commanded engine torque is up-

dated at 2.5 Hz to provide improved pedal responsiveness.

Finally, the two electric machines are updated at 60 Hz to

yield fast pedal response.

The real-time controller continued to execute without

problems in the embedded hardware at these faster rates.

Figure 6 shows the result of early testing of the multi-rate

updates on the HIL simulation. The simulated vehicle shows

reasonable behavior, although with poor velocity tracking

due to a poorly tuned automatic driver.
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Fig. 7: Multi-rate actuator commands

5.2 Implementation details

The process of selecting control commands is shown

pictorially in Figure 8a. Possible control choices are orga-

nized as a matrix, where the columns correspond to trans-

mission gear commands plus series mode, and the rows cor-

respond to possible engine torque values. The series column

on the far right in Figure 8a represents the clutch disengaged,

and one entry in this column is used to represent engine off.

The value in each entry of the matrix is the estimated total

cost for the corresponding control values. The min opera-

tion selects the entry of minimum value, with the columns

and row indexes of the minimum providing the control com-

mands. For a given vehicle speed, certain gear choices will

be infeasible because they violate a constraint, such as an

engine speed limit, and are disallowed when the minimum is

computed. As described in [17,18], the required electric ma-

chine torques are uniquely determined from engine torque,

transmission gear, and driver power request.

Figure 8b represents a time series of controller updates.

At each 1.2s update, a matrix of controls is evaluated. At the

initial time step t=0, four possible gears are valid, and the

algorithm selects one. This fixes the gear and engine state

commands over the next 1.2s interval. At the intermediate

updates, t=0.4 and t=0.8 in the figure, engine torque is re-

computed with a constrained minimization of (1) over the

limited control space

u(x) = argmin
u∈Ueng,gear

Ew[c(x,u,w)+V ∗( f (x,u,w))], (3)

where Ueng,gear restricts the engine state and gear to the val-

ues at the last full update. When the next 1.2s interval occurs,

the engine and gear commands are once again updated.

The 1.2s engine and gear update period for the hard-

ware test is longer than the 1s interval used in the simula-

tions reported in [17, 18] to increase the likelihood that the

engine and transmission will execute their commands before

the next time step. Actuator response time is discussed next.

6 Variable Actuator Response Times

The controller design and simulation models assign dis-

crete values to states that are actually somewhat continuous.

1 2 3 4 5 6 Series

E
ngine T

e Torque

(a) For a given vehicle state, the expected costs for possible control choices

are strategically organized as a matrix. The columns represent the 6 possible

transmission gears along with series mode. Possible engine torques are rows

in the matrix. Electric mode (engine off) is represented by a zero torque

point in the series mode. For a given vehicle state, some gear choices will be

infeasible, as shown by the dark (red) columns, and others will be feasible,

as shown by the light (green) columns.
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(b) Transmission gear and engine state commands are updated with a 1.2s

sample interval, while engine torque commands are updated at a 0.4s sample

interval. The selected column for gear and engine state is hashed, and is

fixed for the intermediate updates at 0.4, 0.8, and 1.6s.

Fig. 8: Illustration of the command update scheme. Controls

are organized to easily permit updates at multiple rates while

respecting appropriate constraints.

For example, the controller design model assumes the en-

gine is either on or off. The more detailed simulation model

assumes the engine will spin up to its nominal idle speed

within 1s, and then be available to provide torque, support-

ing the controller design model. In the prototype vehicle,

however, it was observed that starting the engine and engag-

ing the clutch sometimes takes 1.5s or longer. Consequently,

a controller update may occur at a time when the engine has

not completely started, and is thus neither on nor off. In

a similar manner, the transmission gear command may not

complete within 1s. A related but different issue is that the

transmission controller may override the gear requested by

the energy management controller.

The basic SP-SDP controller used here is not equipped

to handle these problems as it assumes the engine can only

be on or off, the clutch is fully engaged or not, and the trans-

mission is in a specific gear.

A ready solution is available when commanding torque

at the 0.4s sample intervals: the engine is considered off un-

til ready to deliver torque, which is a discrete yes/no signal

available in the engine control module. Furthermore, engine

torque is computed on the basis of current gear, as reported

by the transmission controller module, independent of what

gear was commanded at the previous 1.2s update.

Issuing correct engine on-off and gear change com-



mands at the 1.2s update intervals is more subtle. As an

example, if the engine is off, at some point in time the algo-

rithm will issue an engine start command. At the next major

update (1.2s later) the engine may be in the process of start-

ing but not fully started. If the engine is considered off, the

optimal decision may be to leave the engine off, that is, is-

sue an engine-off command. The resulting off-on-off change

in the engine state is very undesirable. A similar scenario is

clear for the transmission hunting between gears.

The solution is for the algorithm to issue new engine

state and transmission commands assuming that the com-

mands issued at the previous update have in fact completed,

even if they are still in the process of being completed. This

yields much more consistent behavior.

The ability to deal with delayed or uncertain actuation

completion was quite useful. In the final implementation, the

transmission manufacturer was unable to modify the trans-

mission controller to accept external gear commands over the

vehicle CAN bus. Consequently, gear selection was made by

the existing transmission controller, while the SP-SDP con-

troller handled engine and clutch state. The controller im-

plementation described above could be used with no further

modifications. The inability to independently command gear

turned out to be a only a minor setback to the controller eval-

uation process for two reasons: comparison of the SP-SDP

gear commands to the gear selection made by the transmis-

sion controller revealed almost no differences; and the pre-

vious simulation work had showed that fuel economy of the

prototype vehicle is more sensitive to engine on-off activity

than gear number.

7 Refining the Controller in Hardware

After standard testing and debugging in the MIL/HIL

setup, the SP-SDP controller was tested in the vehicle on a

two-axle dynamometer as shown in Figure 1. The vehicle

is chained in place, and electric motors on the dynamometer

rolls simulate the vehicle drag and rolling losses. The al-

gorithm is implemented in the on-board vehicle system con-

troller and is transparent to the driver. The driver uses stan-

dard controls and pedals, while a laptop provides real-time

vehicle monitoring and data capture. Desired vehicle behav-

ior is set off-line by changing the penalties used in the cost

function, solving the optimal control problem, and building

the associated look-up tables. The look-up tables for several

different controllers are stored simultaneously in the real-

time processor and can be selected without recompiling.

7.1 Initial Test

The SP-SDP algorithm worked correctly the first time

thanks to extensive validation in the MIL/HIL setup. Fig-

ure 9 shows data from one of the initial tests with a human

driver following the New European Drive Cycle (NEDC). At

this point, the controller deliberately had limited functional-

ity: it used neither the front electric machine EM1 nor se-

ries mode. The controller provided reasonable behavior and

performance on the first set of hardware tests with no debug-
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Fig. 9: The first driving attempt in the vehicle, which cor-

responds to the first three hills of NEDC. The difference

between targeted and actual speed is due to driver inexpe-

rience. Accurately following speed traces on a chassis roll

dynamometer is an acquired skill.

ging or tuning. The poor velocity tracking is primarily due to

the human driver; tracking cycles is quite difficult and takes

practice.

Full controller functionality, including series mode and

the front electric machine EM1, was implemented in a sec-

ond step. The interaction with the existing vehicle controller

became more complex as these additional vehicle modes

were used. The MIL, HIL and vehicle itself were all used

in this part of the development process.

7.2 Model Improvement

Once the controller was fully functional and had suc-

cessfully driven a number of cycles, the test data were ana-

lyzed to check the accuracy of the controller design model.

In a vehicle prototyping process such as the one reported

here, it is common for hardware changes to be made without

models being fully updated. Another source of inaccuracy

is the model reduction process used to obtain the controller

design model, where dynamics are neglected, lumped, and

simplified.

Some of these simplified dynamics depend partly on the

controller, rather than the vehicle model. One would like to

imagine the model as not depending on the controller, but

this is not always the case with reduced-order models. One

example is engine start. The control-oriented model lumps

the process of starting the engine and engaging the clutch

into three parameters: the time to execute a start, the fuel

burned during the start, and the battery charge used to spin

up the engine. In hardware, the way the baseline and SP-SDP

controllers execute this process is similar but not identical.

Therefore, the parameters for the reduced-order model are

different depending on which controller is used.

Using the test data, the basic vehicle parameters were

identified and adjusted in the control-oriented model. The



SP-SDP controllers were recomputed on the basis of the up-

dated model.

7.3 Smoothing torque delivery

The next phase of the development addressed issues re-

lating to driver perception that only became apparent when

we were driving the vehicle on the chassis rolls. One such

issue was the smoothness of torque delivery. The SP-SDP

controller updates commands in a discrete fashion, includ-

ing continuous variables such as torque. In the absence of

discrete events, such as shifts or engine starts, drivers ex-

pect the torque delivery to be smooth. The discrete SP-SDP

updates can occasionally yield jumps in engine torque that

feel jarring. A set of low-pass filters and initialization val-

ues was developed to yield a smooth, yet responsive, torque

command.

7.4 Infeasible Conditions

At the intermediate update times, depicted by 0.4s and

0.8s in Fig. 8b, it can happen that it is impossible to meet

the driver’s power demand with the current engine state and

gear number. When no valid torque commands are available

at an intermediate update, a full update of all controls oc-

curs regardless of the normal waiting time. Such updates are

termed “feasibility” updates.

Feasibility updates are especially important in two

cases. The first is for a so-called “gorilla stomp” in which the

driver suddenly demands large torques that are unavailable in

electric mode or higher gears. The full update occurs imme-

diately, forcing an engine start or a downshift. The transition

out of electric mode is especially important for driver per-

ception because otherwise the driver could wait more than a

second before hearing an engine start. A second case is dur-

ing rapid deceleration with the engine on. The clutch cannot

remain engaged below a certain vehicle speed or it will pull

the engine speed below its minimum allowed value. It can

happen that first gear will be valid at one full update, but be-

come invalid before the next full update due to vehicle speed

change. Executing a feasibility update allows the clutch to be

disengaged at one of the intermediate updates if the current

gear becomes infeasible.

7.5 Engine torque oscillation

During testing, it was observed that the engine torque

would oscillate while the vehicle was seemingly at steady

state. One example of this is shown in Figure 10, where

commanded engine torque is varying by 100 Nm while the

pedal position is nearly constant. Similar events were never

observed in simulation. In the vehicle, they occurred at low

pedal and nearly constant vehicle speed, usually around 25

kph. Because the pedal input is almost constant, there is no

obvious reason for these torque oscillations. Such behavior

is clearly unacceptable to a driver.

The underlying reason becomes clear when studying the

SP-SDP total cost estimate. The engine torque command is

selected by minimizing the total cost per (1) at a major up-
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Fig. 10: Engine torque and driver pedal commands. The up-

per plot shows the original SP-SDP engine torque command

as a dotted line (red) oscillating at relatively constant pedal.

The solid (blue) line shows the command after this problem

was fixed with a “bowl” penalty. Both commands are the

raw output of the SP-SDP algorithm before low-pass filter-

ing. The bottom plot shows accelerator pedal command in

percentage of full range.

date, or (3) at an intermediate update. The left column of

Figure 11 shows the total cost versus engine torque at suc-

cessive intermediate update times, that is, multiples of 0.4 s.

It is seen that the total cost function has two local minima

that are very close in value, indicated by the dotted vertical

lines in Figure 11. Small variations in vehicle state are caus-

ing the torque command to oscillate between the two values.

In the design of the SP-SDP controller, the rate of

change of engine torque was not considered. The algo-

rithm is free to use a jump in torque so as to minimize cost.

Although perceptible jumps in torque rarely occurred, they

were disconcerting and we sought to eliminate this behavior.

One possible solution is to augment the controller design

model with a state that stores the last commanded engine

torque, per xe = (x,ulast
eng ), and modify the cost function to

penalize rapid torque changes,

ce(xe,u) = c(x,u)+ caug(ueng −ulast
eng ). (4)

A new value function would be computed for the modified

cost function and the controller implemented as in (1) using

the augmented state,

u∗(xe) = argmin
u∈U

Ew[ce(xe,u)+V ∗
e ( fe(xe,u,w))]. (5)

We estimated that this approach would increase off-line com-

putation of the value function by roughly a factor of ten.

Instead we choose to implement an idea from [23] and

[1], which incorporates additional control objectives into the
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Fig. 11: The value function during an unexpected pedal oscillation. The recorded vehicle data is shown on the left for

controller updates at 6 consecutive time steps. The total expected cost for each possible engine torque command is shown

as a heavy solid line (red). The minimizing torque selected by the controller is indicated by the vertical dashed line (black),

and demonstrates the cause of the oscillations shown in Figure 10. This oscillation is removed by adding a “bowl” penalty

on engine torque which adds a cost for torque changes. The column on the right represents this improved control response

applying (6) to the same vehicle data. The bowl penalty is marked with a solid line and circles (blue) at the bottom of each

plot. The bowl penalty is centered at the last commanded torque and visibly changes position from t=16.8s to t=17.2s due to

the change in torque command. The minimizing torque selection no longer oscillates.

running cost c(x,u) without recomputing the value function.

The real-time controller is then

u∗(xe) = argmin
u∈U

Ew[ce(xe,u)+V ∗( f (x,u,w))]. (6)

The penalty term caug(ueng−τ
last
eng ) in (4) was selected to have

a “bowl” shape as shown in Figure 12. The penalty is zero

for small torque changes and saturates to allow large jumps

in torque if they are sufficiently less costly. The most impor-

tant parameter is the saturation value, which is set just high
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Fig. 12: Additional penalty added to the value function based

on the change in engine torque. This is termed a “bowl”

penalty due to its shape.

enough to eliminate “frivolous” oscillations.

This method is computationally very advantageous, but

suboptimal. The modified controller (6) was evaluated on the

detailed simulation model and no reduction in fuel economy

was observed. The modified cost term was then implemented

on the vehicle, with results given in the right column of Fig-

ure 11. The actual bowl penalty is shown as a line in the

bottom of each plot. The bottom of the bowl moves with the

last commanded torque, and the total penalty is very small

compared to other variations in the cost. This small penalty

is sufficient to eliminate the torque oscillations, as shown by

the minimizing values and the torque command in Figure 10.

8 Hardware testing results

The test vehicle experienced a hardware failure that was

not repaired; more on this given in Sec. 8.3. The results

in this section reflect the malfunctioning vehicle. The con-

trollers still function largely as designed, though the fuel

economy numbers are unreliable.

8.1 Overall performance

Figure 13 shows the baseline controller and two SP-SDP

controllers driving the Federal Test Procedure, FTP72 cycle.

The two SP-SDP controllers use a different penalty for en-

gine start/stop, yielding different behavior observed in the

data. Changing the penalties does effectively modify vehicle

behavior, as predicted by the simulation studies in [17, 18].

Figure 14 presents three controllers run on NEDC. As

predicted by the analysis in [17, 18], on NEDC, the two SP-

SDP controllers yield similar numbers of engine events. This

is due to the contrived nature of NEDC; because it is com-

posed of repeated ramps with constant acceleration, engine

starts will naturally occur at the same places unless large

penalties are used to change behavior.

The raw fuel economy results are shown in Table 2 along

with the final SOC deviation. Both raw and corrected fuel

consumption (i.e., adjusted for difference final and initial

SOC) are normalized to the baseline controller running in

hardware on FTP72. .

The vehicle fuel economy and engine activity of the

baseline and SP-SDP controllers are plotted along side the

values from a simulation study for FTP72 cycle in Figure 2.

In this case, all fuel economy values are normalized to the

simulated baseline controller. This type of plot is used to

characterize the optimal tradeoff curve between fuel econ-

omy and engine activity as discussed in [17, 18]. The vehi-

cle test data suggest a trend similar to the simulated trade-

off curve, but the limited number of cycles executed on the

vehicle, due to the hardware failure, makes any meaningful

comparison impossible.

8.2 Hardware fault

The torque-speed engine operating points are shown in

Figure 15 for the baseline controller and the SP-SDP con-

troller running FTP72. The plots show both the commanded

torque and delivered torque. The nature of the hardware

failure is clear: the engine control unit is clipping the com-

manded engine torque. The source of the error was not iden-

tified before the termination of the project.

The dark black line in Figure 15 is the operational limit

for noise and vibration specified during the design phase.

The SP-SDP controller generally respects this constraint, al-

though the baseline controller calculates the limit differently.

The SP-SDP controller slightly overshoots the limit when

operating on the boundary if the engine speed drops before

the next engine torque update.

8.3 Detailed Vehicle Response

For a more detailed view of the system dynamics, a

zoomed view of the third NEDC “hill” is shown in Figure

16. The vehicle accelerates from rest in electric mode, the

engine starts, the transmission engages, and the engine be-

gins delivering torque. Transmission gear shifts are clearly

visible as sawtooth profiles in engine speed. The bottom two

plots show the electrical dynamics, namely SOC as well as

the EM1 and EM2 commands. Before the engine starts, the

vehicle is propelled by EM2 only and the SOC drops. EM1

is then used to start the engine. The engine then provides the

motive power and charges the battery through EM1, while

EM2 is idle. After the engine shuts off, the vehicle is again

in electric mode with EM2 providing propulsion and brak-

ing.

As mentioned in Section 6, the engine start dynamics

are more complex than originally modeled. The engine start

event of Figure 16 is shown in greater detail in Figure 17.

The SP-SDP controller selects parallel mode, so the low-

level controllers start the engine and engage the clutch. This

command is issued as “Parallel Mode Request” at 124.5s,

and the “Parallel Mode Actual” responds at 126s once the

engine is on and the clutch engaged. The engine start is ex-

ecuted by a low-level controller. During the start process,

EM1 applies positive torque to spin the engine. The torque

delivered to the wheels is zero until the clutch engages. Once

the clutch is engaged, the SP-SDP controller starts issuing

torque commands. The SP-SDP torque command is initial-

ized at the engine torque estimate from the Engine Control

Unit to avoid rapid transients.

9 Conclusions

An energy management controller based on Stochastic

Dynamic Programming has been successfully implemented

in a prototype HEV. Theoretical and practical issues affecting
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Fig. 13: Driving the FTP72 cycle with the baseline controller and two different SP-SDP controllers.
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Fig. 14: Driving the NEDC with the baseline controller and two different SP-SDP controllers.



Table 2: Fuel economy summary for malfunctioning hardware with SOC correction

Controller Cycle Normalized

Uncorrected Fuel

Economy (MPG)

∆SOC Normalized

Corrected Fuel

Economy (MPG)

Improvement Engine Events

Baseline FTP72 1.078 -14.0% 1.000 74

SP-SDP FTP72 1.028 1.4% 1.035 3.528% 64

SP-SDP FTP72 1.006 2.2% 1.018 1.764% 52

Baseline NEDC 0.966 0.5% 0.969 20

SP-SDP NEDC 0.921 12.2% 0.983 1.439% 28

SP-SDP NEDC 0.933 16.7% 1.024 5.662% 26

(a) Baseline controller: commanded torque-speed operating points on

FTP72

(b) SP-SDP controller: commanded torque-speed operating points on

FTP72

(c) Baseline controller: achieved torque-speed operating points on FTP72 (d) SP-SDP controller: achieved torque-speed operating points on FTP72

Fig. 15: Engine torque-speed operating points demonstrating the effects of a hardware failure. The plots on the left (15a and

15c) show the baseline controller, while the plots on the right (15b and 15d) show the SP-SDP controller. The top plots show

the commanded torques, while the bottom plots show the delivered torque. The engine control computer clips the delivered

torque at about 170 Nm.
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real-time implementation were addressed. The controllers

run in real-time on embedded hardware with typical automo-

tive computing capacity.

Optimization-based energy management algorithms are

typically designed based on relatively slow (∼ 1s) update

rates, but directly implementing such an algorithm would

yield poor driving characteristics. A method was developed

and tested that allows different update rates for various ac-

tuators to improve driver perception of pedal response. The

proposed implementation specifically deals with actuator de-

lays and infeasible operating points.

These results demonstrate the practical feasibility of us-

ing advanced optimal control techniques for energy manage-

ment controller design. There is a large gap between the

simple models used for optimization in the literature and

the tremendous complexity of production vehicle controllers.

Although additional issues must be addressed in a real vehi-

cle, the fundamental optimization based on relatively simple

models is effective. The controllers can be directly imple-

mented in hardware and yield good performance with mini-

mal manual tuning.
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