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Since the infectious coronavirus disease (COVID-19) was first reported in Wuhan, it has become a public health problem in China
and even around the world. This pandemic is having devastating effects on societies and economies around the world. The increase
in the number of COVID-19 tests gives more information about the epidemic spread, which may lead to the possibility of
surrounding it to prevent further infections. However, wearing a face mask that prevents the transmission of droplets in the air
and maintaining an appropriate physical distance between people, and reducing close contact with each other can still be
beneficial in combating this pandemic. Therefore, this research paper focuses on implementing a Face Mask and Social Distancing
Detection model as an embedded vision system. The pretrained models such as the MobileNet, ResNet Classifier, and VGG are
used in our context. People violating social distancing or not wearing masks were detected. After implementing and deploying the
models, the selected one achieved a confidence score of 100%. This paper also provides a comparative study of different face
detection and face mask classification models. The system performance is evaluated in terms of precision, recall, F1-score, support,
sensitivity, specificity, and accuracy that demonstrate the practical applicability. The system performs with F1-score of 99%,
sensitivity of 99%, specificity of 99%, and an accuracy of 100%. Hence, this solution tracks the people with or without masks in a
real-time scenario and ensures social distancing by generating an alarm if there is a violation in the scene or in public places. This
can be used with the existing embedded camera infrastructure to enable these analytics which can be applied to various verticals, as
well as in an office building or at airport terminals/gates.

1. Introduction

Since the end of 2019, infectious coronavirus disease
(COVID-19) has been reported for the first time in
Wubhan, and it has become a public damage fitness issue in
China and even worldwide. This pandemic has devastating
effects on societies and economies around the world
causing a global health crisis [1]. It is an emerging re-
spiratory infectious disease caused by Severe Acute Re-
spiratory Syndrome Coronavirus 2 (SARS-CoV-2) [2]. All
over the world, especially in the third wave, COVID-19
has been a significant healthcare challenge [3]. Many
shutdowns in different industries have been caused by this

pandemic. In addition, many sectors such as maintenance
projects and infrastructure construction have not been
suspended owing to their significant effect on people’s
routine life [4, 5].

By now, the virus has rapidly spread to the majority of the
countries worldwide [2]. The last statistics (04/05/2021)
provided by the World Health Organization (WHO) show
152,543452 confirmed cases and 3198528 deaths. According
to the centers for Disease Control and Prevention (CDC),
coronavirus infection is transmitted predominantly by re-
spiratory droplets produced when people breathe, talk, cough,
or sneeze [3] with common droplet size 5-10'm but aerosol
emission increases when humans speak and shout loudly [6].
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Therefore, to prevent rapid COVID-19 infection, many
solutions, such as confinement and lockdowns, are suggested
by the majority of the world’s governments. However, this
COVID-19 management inefficacy can be additionally ex-
plored with game-theoretic scenarios beyond the public
goods game. In particular, some researchers have focused on
the hesitancy of governments in enacting difficult but
necessary virus containment measures (e.g., stay-at-home
orders and lockdowns), as well as noncooperation for rea-
sons other than free riding. For instance, authors in [7]
argued that because strict stay-at-home measures can greatly
impact people’s livelihoods, the cost of staying home
(coupled with lockdown fatigue) can end up outweighing the
risk of infection from going out. As individual-level deci-
sions have a direct impact on the society-level effectiveness
of stay-at-home orders, governments may refrain from
implementing them because of anticipated low rates of
compliance, especially from socioeconomically disadvan-
taged individuals who do not have the luxury of staying
home [8]. Some governments may have also been hopeful
that herd immunity from recoveries and vaccinations would
allow them to avoid imposing such unpopular measures
altogether [9].

With rising numbers of cases and stretched health fa-
cilities, as well as the lack of a vaccine throughout 2020 and
difficulties associated with achieving herd immunity for
COVID-19 [10], government inaction became increasingly
unviable. Hence, to increase people’s adherence to strict
regulations, authors in [7] suggested using social programs
such as emergency relief funds and unemployment insur-
ance to lower the costs of compliance, particularly for lower-
paid workers [11]. As vaccines became available at the end of
2020, authors in [12] argued that programs driving vacci-
nation uptake will surpass other aspects such as vaccine
efficacy and isolation procedures in importance. Using EGT,
social network analysis, and agent-based modeling, the
authors proposed that individuals’ vaccination decision-
making will be influenced by “demographics, physical lo-
cation, the level of interaction, the health of the vaccine,
epidemic parameters, and perceptions about the vaccine
being introduced, and similarly, the decision-making of the
government will be influenced by epidemic parameters, the
nature of the vaccine being introduced, logistics, the
management of human resources needed for the vaccination
effort, and the number of vaccine doses available” [12]. In
summary, holistic COVID-19 management would involve
an appreciation of the many factors that calibrate payoffs so
that both individual and governmental decisions shift to-
ward safety.

It is true that COVID-19 is a global pandemic and affects
several domains. Nevertheless, it created a path for re-
searchers in computer science. We have seen multiple re-
search topics, such as creating new automatic detection
methods of COVID-19 and detecting people with or without
masks. Considering that there are some errors in the results
of the early laboratory tests and their delays, researchers
focused on different options [13]. Therefore, the application
of advanced artificial intelligence (AI) techniques [14-17]
coupled with chest radiological imaging (computed
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tomography (CT) and X-ray) can lead to a more accurate
detection of the COVID-19 and can help to control the
problem of loss of specialized physicians in isolated villages
[18]. In this context, authors in [13] suggested a novel
convolutional neural network (CNN)-based method for
detecting COVID-19, with analyzing chest X-ray (CXR)
images. This method allows to detect patients with COVID-
19 atan accuracy of 91.34%. In [18], the authors introduced a
new automatic COVID-19 detection model using CXR
images. The model is called “DarkCovidNet.” For binary
classes (COVID-19 VS no findings), the classification ac-
curacy produced by this model is 98.08%, but, for multiclass
cases (COVID-19 VS pneumonia VS no findings), the ac-
curacy is 87.02%. The main objective is to use such models to
diagnose supplementary chest-related diseases such as tu-
berculosis and pneumonia. For the COVID-19 case detec-
tion from X-ray images, a deep CNN model is proposed in
[19]. This model, denoted COVID-Net, is open source and
accessible to the general public. The detection accuracy
achieved by this model (93.3%) proves that the model makes
good predictions in improved screening. In [20], distinct
deep learning techniques are introduced to differentiate CT
scan images of both COVID-19 and non-COVID-19. From
the different techniques, we list a self-developed model
(CTnet-10), VGG-16, ResNet-50, InceptionV3, VGG-19,
and DenseNet-169, which have, respectively, accuracy values
of about 82.1%, 89%, 60%, 53.4%, 94.52%, and 93.15%. The
accuracy of VGG-19 is the highest one as compared to other
models. The CTnet-10 method is a well-organized model,
which is useful for doctors, especially in mass screening.

In [21], two deep learning models are suggested: a CNN
and a convolutional long short-term memory (ConvLSTM).
To simulate them, two datasets are assumed. A dataset in-
cludes CT images, and the other includes X-ray images. The
models are tested four times. When they are examined on
CT images, the dataset is split into 70% for the training set
and 30% testing set. The accuracy value for the CNN model
and for the ConvLSTM is the same, equal to 99%. When
tested on the augmented dataset A, the testing accuracy of
the CNN is 99%, but it is 100% for the ConvLSTM. When
tested on the augmented dataset B, the testing accuracy of
the CNN is 100%, but it is 99% for the ConvLSTM. When
both models are tested on the combined dataset, containing
both X-ray and CT images, the testing accuracy is 99% for
the CNN and 98% for the ConvLSTM. Finally, when they are
tested on the radiography dataset, the testing accuracy is 95%
and 88% for the CNN and the ConvLSTM, respectively. We
can consider this scenario as a challenging one, because it is
called to distinguish between two diseases (COVID-19 and
pneumonia) with a high closeness in features.

Before coronavirus, some people put masks to protect
themselves from air pollution, while other people put face
masks to hide their faces and their emotions from others.
Protection against coronavirus is a mandatory counter
measure, according to the WHO [1]. Indeed, wearing a mask
is an effective method of blocking 80 of all respiratory in-
fections [3]. Also, the WHO recommends practising
physical distancing to mitigate the spread of the virus. All
over the world, governments are struggling against this type
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of virus. Many organizations enforce face mask rules for the
personal protection. Checking manually if individuals en-
tering an organisation are wearing masks is cumbersome
and possibly conflicting [1]. In this context, authors in [6]
proposed a deep learning-based model, named MobileNet
Mask, to prevent human-to-human transmissions of the
SARS-CoV-2 and detect faces with or without mask. Two
different datasets (IDS1 and IDS2) with over 5200 images
are used to train and test the model. All the experimental
cases are controlled on Google Colab that runs in the
cloud. In IDSI, the proposed model achieved a testing
accuracy of 93%. However, in IDS2, the accuracy achieved
is almost 100%.

In [22], the authors aim to detect and delimit medical
face masks in real images. The proposed model is composed
of YOLO-V2 and ResNet-50. In the training phase, the
authors used two optimizers which are Adam and SGDM.
During this process, SGDM is better than Adam on vali-
dation root mean square error (RMSE), time, and validation
loss. However, Adam is better than SGDM in loss and
minibatch RMSE. The average precision (AP) of the Adam
optimizer is 0.81, which is better than the AP of SGDM that
is equal to 0.61. Moreover, the log-average miss rates of the
Adam optimizer are 0.4, which are better than the log-av-
erage miss rates of the SGDM optimizer (0.6), in all the recall
levels. From these studies, we found also, in [23], a system
which triggers an alarm in the operating room when the
healthcare personnel do not wear face masks. The system
combines two detectors, for faces and for masks. In the
testing phase, by utilizing images from the BAO dataset and
from an own image dataset, above 95% of true positive and
below 5% of false positive rates are achieved.

Authors in [1] proposed a hybrid model utilizing deep
learning with classical machine learning to detect masked
faces. The proposed model consists of two components:
the feature extraction applying ResNet-50 and the clas-
sification process. The three classifiers used are the de-
cision trees (DTs), support vector machine (SVM), and
ensemble algorithm. The Real-World Masked Face
Dataset (RMFD), the Simulated Masked Face Dataset
(SMFD), and the Labeled Faces in the Wild (LFW) are the
three face masked datasets, selected for examination. The
SVM classifier is greater than the other classifiers. It
reached 99.64%, 99.46%, and 100% of testing accuracy,
respectively, in RMFD, SMFD, and LFW.

In summary and without forgetting the legal side of AI,
the deep learning technique inherently touches upon a full
spectrum of legal fields, from legal philosophy, human
rights, contract law, tort law, labor law, criminal law, tax
law, procedural law, etc. While in practice, Al is just be-
ginning to come into its own in terms of its use by lawyers,
and within the legal industry, legal scholars have been
occupied with Al for a long time. Furthermore, as col-
lecting and analyzing data is progressively spreading from
software companies to manufacturing companies, which
have started to exploit the possibilities arising from col-
lection and exploitation of potential data, so that added
value can be created, this information deluge unlocks
various legal concerns that could stimulate a regulatory

backlash. Considering Al legal concerns and benefits in
combating COVID-19 pandemic, AI technique-based
solutions are still an open window for development and
legal interpretation [24].

The reminder of this paper is organized as follows: Section
2 summarizes the recent related work in the proposed context.
Section 3 presents the proposed framework. After that, a
preliminary study is given in Section 4. Section 5 denotes the
dataset collection. Thereafter, we introduce the evaluation
metrics in Section 6, while the numerical result is discussed in
Section 7. Finally, we conclude this paper in Section 8.

2. Related Works

Deep learning is an important breakthrough in the AI field.
It has recently shown enormous potential for extracting tiny
features in image analysis. Due to the COVID-19 epidemic,
some deep learning approaches have been proposed to
detect patients infected with coronavirus. In this context,
and unlike bacterial pneumonia, many other types of lung
infections caused by viruses are called viral pneumonia.
These viruses, such as the COVID-19, infect the lungs by
blocking the oxygen flow, which can be life-threatening. This
motivated researchers to develop many frameworks and
schemes based on Al tools in the fight against this dangerous
virus. Hence, we divide this section into two sections to
provide an in-depth overview of the proposed techniques.

2.1. COVID-19 Detection Methods

2.1.1. Deep Learning Tools and CXR Image-Based COVID-19
Detection. Radiography is a technique used to quantify the
functional and structural consequences of chest diseases, to
provide high-resolution images on disease progression.
Several works have been carried out in this context. Echtioui
et al, in [13], proposed a new CNN-based method for
COVID-19 recognition, through analyzing radiographic
images of a patient’s lungs. The aim of this scheme is to
provide clinical decision support for healthcare workers and
also for researchers. Hence, performance results, as well as
the accuracy value of about 91.34%, and the other metrics in
terms of recall, precision, and F1-score, prove the efficiency
of the method. In the same context, Ozturk et al., in [18],
introduced a new automatic COVID-19 detection model
using CXR images denoted by the “DarkCovidNet.” It is
used to provide correct diagnosis for both a binary classi-
fication (COVID-19 VS no findings) and a multiclass
classification (COVID-19 VS pneumonia VS no findings).
For binary classes, the classification accuracy produced by
this model is about 98.08%, but, for multiclass cases, the
accuracy is 87.02%. To validate their initial screening, ra-
diologists can use the model to assist them. This model can
be employed also via cloud to screen patients immediately.
As a solution to the shortage of radiologists, this method can
be used in remote places especially in countries affected by
COVID-19. The most important advantage of this method is
that such models can be used to diagnose supplementary
chest-related diseases such as tuberculosis and pneumonia.
However, the proposed work fits well into the COVID-19



detection phase, but to ensure its efficiency and model re-
liability, the authors may augment the dataset and retrain the
proposed model. With the same idea, Wang et al. proposed a
deep CNN model which is presented in [19]. Their model,
called COVID-Net, is open source and accessible to the
general public. The test accuracy achieved by this model is
93.3%. Therefore, this model makes predictions which can
assist clinicians in improving screening, transparency, and
trust.

2.1.2. Deep Learning Tools and CT Image-Based COVID-19
Detection. Computed tomography scan or CT scan is a
medical imaging technique utilized in radiology in order to
get detailed images of the body for diagnosis purposes.
Accurate and fast COVID-19 screening is achievable using
CT scan images. Various works have been carried out in this
context. In [20], Shah et al. proposed distinct deep learning
techniques to differentiate CT scan images of both COVID-
19 and non-COVID-19, which helps in diagnosis. In the
dataset, we find 349 images corresponding to patients with
COVID-19 and 463 images corresponding to patients
without COVID-19. These images were divided into three
sets: 80% of them for training set, 10% for validation, and
10% for testing. From the different techniques presented in
this work, we cite CTnet-10, which is a self-developed model
having an accuracy of 82.1%. We can also cite VGG-16,
ResNet-50, InceptionV3, VGG-19, and DenseNet-169,
having an accuracy of 89%, 60%, 53.4%, 94.52%, and 93.15%,
respectively. The accuracy of VGG-19 is the best as com-
pared to other models. To predict the results, CTnet-10 takes
only 12.33 ms. This method is well-organized. It is useful for
doctors, especially in mass screening. All the automatic
diagnosis methods presented previously can be used by
doctors for COVID-19 screening.

2.1.3. Methods Using CXR and CT Images. Combining two
types of images in one dataset is an effective method to detect
a disease. In this context, in [21], Sedik et al. presented two
deep learning models: CNN and ConvLSTM. To simulate
the models, two datasets are assumed. The first dataset in-
cludes CT images while the second set includes X-ray im-
ages. Each dataset contains COVID-19 and non-COVID-19
image categories. The image categories, COVID-19 and
pneumonia, were classified to certify the proposed models.

The first model based on CNN includes five convolu-
tional layers (CNVLs) accompanied by five pooling layers
(PLs). Two layers (fully connected layer (FC) and classifi-
cation layer) make up the classification network. The second
model is a hybrid one. It combines ConvLSTM and CNN at
the same time.

The classification network, too, is in the first model. To
reduce the complexity of the planed deep learning structure,
training, validation, and testing are the three phases that
make up the two modalities. An optimization methodology
is necessary in the training. To minimize the errors between
the real and the estimated targets, Sedik et al. used the Adam
optimizer. This type of model needs to be held carefully. The
proposed models are evaluated by measuring accuracy,
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Matthews correlation coefficient (MCC), and F1-score. The
specificity, negative predictive value (NPV), sensitivity, and
positive predictive value (PPV) are considered also in the
evaluation process.

The models were tested four times: firstly, on the dataset
containing CT images with 288 COVID-19 and 288 normal
images, this dataset is augmented by diverse rotations and
operations of scaling, and the number of COVID-19 and
normal images becomes 2880 and 2880, respectively; sec-
ondly, on the dataset containing X-ray images, this dataset
includes two distinct augmented subsets, and each subset,
named “augmented dataset A” and “augmented dataset B,”
contains 304 COVID-19 and 304 normal images; thirdly, on
the dataset, named COVID-19 radiography dataset, con-
taining COVID-19 and viral pneumonia X-ray images; and
fourthly, on a combined dataset, which combines both X-ray
and CT images in the two cases, normal and COVID-19.

When the models were examined on CT images, the
dataset is split into a training set (70%) and a testing set
(30%). They were trained on 40 epochs. The testing accuracy
for the CNN model and for the ConvLSTM was the same,
equal to 99%. This is due to their methodical design and the
nature of images. And when they are tested on the aug-
mented dataset A, the testing accuracy was 99% for the first
model and 100% for the second. However, when they were
tested on the augmented dataset B, the testing accuracy was
100% for the first model and 99% for the second model. As
for testing on the combined dataset, containing both X-ray
and CT images, the testing accuracy was 99% for the first
model and 98% for the second model. Finally, when they
were tested on the radiography dataset, the testing accuracy
of the first model was 95%, but 88% for the second model.

We can consider this scenario as a challenging one,
because it is called for differentiating between two diseases
(COVID-19 and pneumonia) with a high closeness in fea-
tures. The proposed models achieved the same accuracy of
99% when they were tested on X-ray and CT images, while,
in previous works, they achieved a range of 95% to 98% and a
range of 83% to 90.1%, for X-ray and CT images, respec-
tively. Therefore, the two proposed models can be consid-
ered as efficient COVID-19 detection systems. Table 1
presents a comparison of different COVID-19 methods.

2.2. Face Mask Detection. Another task in research is
detecting people with or without mask, to prevent the
transmission of SARS-CoV-2 between humans.

2.2.1. MobileNet Mask Model. All governments around the
world are struggling against COVID-19, which causes se-
rious health crises. Therefore, the use of face masks regu-
latory can slow down the high spread of this virus. In this
context, Dey et al. proposed in [6] a deep learning-based
model for detecting face mask. This model named “Mobi-
leNet Mask” is multiphase. A pretrained model of the
ResNet-10 architecture is utilized to find faces in video
stream. Also, numerous steps are used such as charging the
classifier (MobileNet), building the FC layer, and testing
phase. All the experimental cases are supervised on Google
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TaBLE 1: Comparison of different coronavirus detection methods.

Ref Model used Image type Acz;)r)acy Advantages Disadvantages
A simple but effective CNN model
[13] CNN-based model Chest X-ray 91.34 for trl)le detection of COVID-19
Able to perform binary and
multiclass tasks can be used to
[18] DarkCovidNet Chest X-ray 87.02 diagnose other chest-related
diseases including tuberculosis and
pneumonia
[19] COVIDX-Net Chest X-ray 933 An open source and aFcessible to A limited number of images
general public available
Self-developed model 821
(CTnet-10) ’ All the automatic diagnosis
VGG-16 89 presented previously can be used
[20] ResNet-50 CT 60 by doctors as an efficient and quite
InceptionV3 53.4 method for coronavirus disease
VGG-19 94.52 screening
DenseNet-169 93.15
CT 99

Augmented dataset A 99
Augmented dataset B 100
Radiography X-ray 95
Combined dataset
(CT scan and X-ray)

CT 99
Augmented dataset A 100
Augmented dataset B 99

Radiography X-ray 88
Combined dataset 99
(CT scan and X-ray)

CNN modality

(21]

ConvLSTM

The proposed modalities can be

99 considered in an efficient diagnosis
system for the detection of

COVID-19 and other relevant

The proposed modalities achieve
poor performance in some cases
especially for the ConvLSTM
modality due to the dependency on
the previous states in the structure

infections of the ConvLSTM modality

Colab that runs in the cloud and is provided with over 12 GB
of RAM. Different performance metrics (accuracy, F1-score,
precision, and recall) are used to judge the performance of
the proposed model.

Two distinct face mask datasets are used to train and test
the model. The first dataset, named IDS1, consists of 3835
images, divided into two classes: 1916 images of faces with
masks and 1919 images without masks. Kaggle dataset,
RMEFD, and Bing Search API are the source of the typical
images of this dataset. The second dataset, named IDS2,
consists of 1376 images, divided into two classes: 690
images of faces with masks and 686 images without masks.
The sample images of this dataset are gathered from the
SMFD.

For all experiments, 80% of the datasets are dedicated for
training and 20% for testing. When testing the model, it
achieved an accuracy of 93% in IDS1, but almost 100% in
IDS2. Comparing the results of their model with those of
state-of-art models available in the literature, Dey et al.
found that the accuracy of theirs is higher. The main ad-
vantage is that their model can be implemented on light-
weight embedded computing devices.

2.2.2. ResNet-50 with YOLO-V2 Model. Annotating and
localizing medical face masks in real-life images is among the
most important object detection applications. In this con-
text, the main objective of Loey et al. in [22] is to explain and

delimit the objectives of the medical face masks, especially in
real images. They proposed a model consisting of two steps:
medical face masks and feature extraction.

The two public datasets of medical face masks are
merged in one dataset to be explored in their research. The
first one is Medical Masks Dataset (MMD). It contains 682
images with more than 3000 faces wearing masks. The
second one is Face Mask Dataset (FMD), which contains 853
images. Combining both datasets resulted in a dataset of just
1415 pictures after deleting bad quality pictures.

Three main components compose the introduced model:
the number of anchor boxes, data augmentation, and the
detector. To evaluate the performance of the YOLO-V2 with
the ResNet-50 in noticing and isolating masked faces, Loey
at al. conducted different experiments. The model was ex-
ecuted on the system which has specifications such as
CuDNN that is a library of the deep neural network for GPU
learning. 70% of the dataset is dedicated for the training
phase, 10% for the validation phase, and 20% for the testing
phase. Learning rate is initialized with ¢ = 0.001, the number
of epochs with 60, and the minibatch size with 64. To
ameliorate detector performance, they used Adam and
Stochastic Gradient Descent with Momentum (SGDM)
optimizers.

In the training, SGDM took less time than Adam. When
comparing the performance of Adam and SGDM, in the
process of training and validation, Loey et al. found that
SGDM is better in time, validation loss, and validation



RMSE. However, Adam is better in loss and minibatch
RMSE. AP and log-average miss rate scores are performance
metrics studied for both Adam and SGDM optimizer ex-
periments. In all the recall levels, the AP of the Adam op-
timizer (0.81) is better than the AP of SGDM (0.61) and the
log-average miss rates of the Adam optimizer (0.4) are better
than the log-average miss rates of the SGDM optimizer (0.6).
Therefore, the proposed model is powerful in detecting
masked faces.

2.2.3. Detecting Masks in the Operating Room. Wearing
medical masks in an operating room is mandatory, to
prevent the transmission of viruses from human to human. In
this context, in [23], Nieto-Rodriguez et al. introduced a system
which detects the existence or the absence of the medical masks
in hospitals especially in the operating rooms. The system
triggers an alarm for only the healthcare personnels who do not
put on surgical masks. It consists of four components: two
detectors, one for unmasked faces and one for masked faces,
and also two color filters, one filter for each detector.

The well-known face detector, named “Viola and Jones,”
is the base of the face detector. Generally, face detectors
utilize a succession of classifiers. In this paper, a form of
AdaBoost, named LogitBoost, is used. The same strategy is
followed by mask detectors. However, instead of LogitBoost,
Gentle AdaBoost is used.

The two types of detectors work only on gray images.
Reducing the number of false positives and trying to keep
away from the false negative number is the objective of the
stage of color filters. All the detections produced by the
detectors which proceeded the color filters are then classified
in the identical category. The face detectors include two
stages: one stage on gray scale and the other stage with color.

For the gray-case sample, the training phase is accom-
plished in the LFW image dataset. 10000 positive images
with 5000 negative images are used during the training
process. The test process is run on the CMU Frontal Face Set.
A succession of 20 classifiers is present in the face detector.
Each one is a decision tree accompanied with two depth
levels escorted by 0.999 threshold and 0.5 as false positive
threshold. The color filter used for the face detection is built
in the color space of HSV, for over 13000 pictures from
LFW. More than 4000 images are used in the training phase.
Images from the BAO dataset are used for testing.

In the training phase, on gray scale images, 4000 positive
with 15000 negative images are used. The color filter for
masks finds the position, definitions, threshold, and size of
the features. The detectors, for face and for mask, are
combined by the face classifier. Images with unmasked faces
from the BAO dataset and images with masked faces from an
own dataset are used in the test phase. As a result, the true
positive ratio is throughout 95% and the false positives are
under 40. The main objective of this system is working in
real-time especially on a conventional PC.

2.2.4. Hybrid Model. All over the world, the trend of wearing
masks is rising because of COVID-19 pandemic. In this
context, a hybrid model utilizing deep learning with classical
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machine learning (ML) to detect masked faces is presented
by Loey et al. in [1]. The model proposed by the authors
includes two phases: the feature extraction process applying
ResNet-50, and the classification process. The ResNet-50
model used like a feature extraction is composed of 50 deep
layers. A convolutional layer (CNVL) is the start of the
model, a fully connected layer (FCL) is the end of the model,
and 16 residual bottleneck blocks are in between them.

To improve the performance of the model, three tra-
ditional classifiers replaced the last layer of the ResNet-50
during the classification process. The classification of face
masks is released by three algorithms: the DT, the SVM, and
the ensemble algorithm. The SVM is a machine learning
algorithm designed for classification. It is one of the most
popular supervised learning techniques. The DT is a model
of classification based on information gain and entropy
function. Ensemble methods are a combination of algo-
rithms of machine learning which generate a collection of
classifiers. The most adopted ensemble methods are linear
regression, K-nearest neighbors (K-NNs) algorithm, and
logistic regression (LR).

Three datasets are selected for examination: RMFD,
SMED, and LFW. The RMFD dataset contains 5000 masked
faces with 90000 unmasked faces. However, Loey et al. used
just 5000 masked face images and 5000 unmasked face
images to stabilize the dataset. The SMFD dataset contains
785 simulated masked face images and 785 unmasked face
images. As for the LFW dataset, it consists of 13000 masked
face images for celebrities all over the world. It is used only in
the testing phase. During the training and the testing phase,
the RMFD is referred to as DS1, SMFED is referred to as DS2,
a combination of DS1 and DS2 is referred to as DS3, and
LFW is referred to as DS4 which is used only for the testing
process. The datasets used for the training and the testing are
divided into 70%, 10%, and 20%, for training, validation, and
testing, respectively. The most frequent performance mea-
sures used to judge the performance of the three classifiers
are accuracy, recall, precision, and F1-score.

Table 2 shows the performance of validation accuracy of
98%, achieved by the DT classifier. The highest testing ac-
curacy is achieved by the DT classifier when the training is
completed over DS3. On DS4, which is used for testing only,
a competitive accuracy of 99.89% is achieved. The validation
accuracy achieved by the SVM classifier for the different
datasets exceeds the accuracy of the DT classifier.

Additionally, while the training is above DS2, the top
validation accuracy possible reached by the SVM is 100%,
while the highest validation accuracy achieved by the DT
classifier in DS3 was 98%.

Another essential factor to evaluate the performance of a
classifier is the time it takes to perform a task. For all the
datasets, the time taken by the SVM classifier is shorter than
that taken by the DT classifier. In terms of validation ac-
curacy, testing accuracy, consumed time, and performance
metrics, the SVM classifier is better than the DT classifier.

The same experimental cases conducted on the previous
classifiers (DT and SVM) are performed on the ensemble
algorithms classifier. During the validation on DS3, the
ensemble achieved an accuracy of 100%. According to the
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TaBLE 2: Validation accuracy and testing accuracy of the three
classifiers for different datasets.

. Validation Testing
Classifier Datasets accuracy (%)  accuracy (%)

DS1 92 to 94 96.78

DS2 96 95.64

DT DS3 98 96.5
DS4 — 99.89

DS1 98 99.64

DS2 100 99.49

SVM DS3 99 99.19

DS4 — 100

DS1 97 99.28

. DS2 94 99.49

Ensemble algorithms DS3 100 99.35

DS4 — 100

obtained results, the ensemble classifier is better than the DT
and the SVM classifier with regard to the validation accu-
racy, testing accuracy, and performance metrics, only when
the training is on DSI and DS3. Contrarily, when the
training process is on DS2, the SVM classifier outperforms
the other classifiers. Moreover, the time consumed by the
SVM while the training process is the short one.

3. Proposed Face Mask Detection Framework
Based on Deep Learning Models

Figure 1 depicts the whole proposed framework, in this
paper, which consists of two principal blocks. The first block
includes the training and the testing models, whereas the
second block consists of the whole framework testing (the
best model with social distancing step). For the first block,
our labeled dataset was divided into three classes. The first
class is focused on the training and represents 70% of the
dataset images. However, the validation step required only
10% to validate the performance for the trained models. 20%
of the dataset was devoted to the testing phase. For each
epoch, each model is trained on the training dataset. The
training results, as well as the training accuracy and the
training loss, are presented in the form of curves in figures of
“accuracy in terms of epoch” and “loss in terms of epoch,”
respectively. After training, each model is validated on the
validation dataset. Like the training results, the obtained
validation results are the validation accuracy and the vali-
dation loss. Then, the two results are compared with the loss
function. An error function value tending toward zero
means a well-trained model. Otherwise, the hyper-
parameters are tuned to train the model in another epoch.
The process of calculating errors and updating the network’s
parameters is called backward propagation, which is the
second important process elaborated in the training phase of
any neural network, after the forward propagation process.

The hyperparameters, as well as learning rate, batch size,
number of epochs, optimizer, anchor boxes, and loss
function, are tuned to build an optimal model. However, the
learning rate is denoted as the learning step where the model
updates its learned weights. It contains inputs which are fed

into the algorithm and also an output to calculate the errors.
The batch size defines the number of trials to work along
before updating the parameters of the internal model. In
other words, it is the number of trials that will be proceeded
across the network at the same time.

A training dataset could be dissected into just one or
supplemental batches. The number of epochs is a hyper-
parameter defining the number of times the learning al-
gorithm will labor through the full training dataset.
Optimizers are assisted to minimize the loss function. They
update the model in regard to the loss function output. The
loss function is also called error function. We can say that the
heart of the different algorithms of the ML is the loss
functions. The loss function could be used to estimate the
model’s loss. Thus, the weights can be renovated to minimize
the loss of the following evaluation. In the testing phase, our
seven various models will be scanned to choose the best one
to be exploited in the next step.

The second block, which is the testing framework phase,
was developed to operate with the best model. The best
loaded model is used to confirm the face mask detection
technique. In addition, the pairwise distance algorithm was
evolved to calculate social distance between peoples.
However, the distance between the centers of the bounding
box of detected people will be calculated. The center point
C(x, y) of bounding boxes is measured using the equation as
seen in

C(x) y) = Xmln -;XInaXS

(1

. Ymin + Ymax
2

>

where C is the center point of the bounding box. X, in and
X,,ax are the minimum and maximum values for the
corresponding width of the bounding box. Y ;, and Y, are
the minimum and maximum values for the corresponding
height of the bounding box. To measure the distance C1
(Ximax — Xmin) and C2 (Y.« — Y,nin)> between the center of
each bounding box, we used the Euclidean formula, see
equation (2), where the distance between pixels is translated
in a metric distance (knowing the range and field of view
covered by the camera) and then compared to a threshold
value:

D(Cl’ CZ) = \/(Xmax - ‘Xmin)2 + (Ymax - Ymin)z‘ (2)

In case of finding color function detects two bounding
boxes and the distance is less than the threshold value, these
boxes will have a red color. If this function detects two
bounding boxes and the distance is more than the threshold
value, the color will be green for these boxes. Figure 2
provides the measured distance (D) between the center of
each bounding box for a detected person, where D is the
distance between the centers of bounding boxes [25].

After that, the proposed framework with the best trained
deep learning model will be implemented on an embedded
vision system that consists of Raspberry Pi 4 board and
webcam.
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FIGURE 1: Proposed framework for the face mask and social distancing.
4. Preliminary Study from the image’s data (the input) [26]. In a considerable

There are many categories of neural networks such as CNNss,
which have proven very powerful in areas such as classification
and face recognition. CNNs are a sort of feedforward neural
networks which consists of many layers. The structure of
CNN s mostly accommodates CNVLs, PLs, rectified linear unit
(ReLU) layers, and FC layers. Other structures contain batch
normalization layers and softmax and classification layer [26].

4.1. Convolutional Layer. Figure 3 represents the CNVL
which is the key construction block of any convolutional
networks. The main goal of CNVL is to take out features

image, a small section is taken and passed throughout all
points in the big image (the input). At the time of passing at
every point, they are convoluted within a single position (the
output). Each small section which passes over the big image
is called kernel or filter [27]. This creates an activation map
or a feature map in the output image. After that, the acti-
vation maps are sustained like input data to the following
CNVL [26].

A typical convolution operation, shown in Figure 3,
denotes the input image by X (ny, ny,, and n.), where ny,,
nyy, and ng are the height, the width size of the feature map,
and the number of channels, respectively, while K ( f, f,n¢)
is the filter kernel, where f x f is the size of the convolution
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FIGURE 2: The measured distance (D) between the center of each bounding box.
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FiGure 3: Convolutional layer.
kernel. Thus, the CONV formula is denoted in equation (3),
and the output dimension is given by equation (4), where s
designates the stride parameter [27, 28]:
ny My Nc
CONV (X’ K)x,y = Z Z Z Ki,j)kXx+i—1,y+j—l,k’ (3)
i 7k
ng+2,— Ny +2, —
Dim(CONV (X, K),., :<|:H7pf+ 1], [Wif’f+ 1 );s>0,
> s s (4)
:(nH +2, - fimy +2, —f);s =0.

4.2. Pooling Layer. Figure 4 depicts an example of max-
pooling operation [27]. The pooling layer or subsampling
means simply downsampling each image. It reduces the

dimension of each activation map but keeps the most
necessary information [26]. Therefore, a single output is
produced by subsampling a small region of convolutional
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FIGURE 4: Pooling layer.

output. The max pooling, the average pooling, and the mean
pooling are pooling techniques. Max pooling takes the
biggest pixel value of the region [27]. Equations (5) and (6)
present how to calculate the max pooling and the average
pooling, respectively [29]. The main advantage of this layer is
achieving faster convergence, better generalization, robust to
distortion, and translation and is habitually placed in the
middle of convolution layers [26]:

Max; = mag (X (5)
1 fxs

Avg,=— ) X. 6

) (6)

There are alternatives to CNNs which allow to further
decrease the parameters. Among these options, one can cite
stride [30].

4.3. Rectified Linear Unit Layer. The rectified linear unit layer,
known as the ReLU layer, is a nonlinearity activation operation,
applied in feature maps produced by the convolutional layers.
Equation (7) presents how to calculate the ReLU [31]:

Relu (g (x) = max (0, x)). (7)

It is an operation which replaces all the negative values in
each feature map by zero [26].

4.4. Fully Connected Layer. Figure 5 depicts the FCL [26, 27].
However, it is a finite number of neurons that takes one
vector as input and return another. Let us consider a j node
of an i layer, and the output Z; is defined as equation (9):

. nx;l . . .
z0 =Y wila/ ™+ bl (8)
I=1

The al~!! is denoted as a convolution or a pooling
result with a dimension of (n[' U pli 1], =11y Therefore,
to plug the fully connected layer, we ﬂatten the tensor to a

1-dimension vector having the dimension (nH n‘[,f,_”x
[’ U 1); thus,
n_, = ng I [H] X ng_”. 9)

However, the learned parameters at the [ layer are the
weights w;; x n; parameters and the bias with n; parameters.

4.5. The Batch Normalization Layers. To reduce the training
time of any CNN and the sensitivity to initialize the network,
we used the batch normalization layers.

The input (x;), the minibatch mean (), and also
minibatch variance (v;,) are the three variables to compute
the normalized activations. The formula is presented in the
following equation:

% = X;—my
i_i)
\/v§+0 (10)

where 0 is a constant which develops the numerical state if
the v, is small. Equations (11) and (12) present the calcu-
lation of m,, and v, respectively:

1 n
m,=— ) X 11
bn; (11)
1 & )
== (xi=my)” (12)
i=1

In the batch normalization layers, the activations are
calculated as shown in

y;=axx;+b, (13)

where a is a balance factor and b is a scale factor. During the
training process, these factors are two learnable factors
renovated to the most suitable values [31].

4.6. Softmax and Classification Layer. The classification
layer is habitually the last layer in a CNN. Softmax
function is utilized generally in CNNs, in order to match
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FiGure 5: Fully connected layer.

nonnormalized values of the previous layer to allow
distribution of above-predicted class scores. Equation
(14) designs the softmax function:

e

o(x;) = e ji=1...,K (14)

K ¢
where o refers to the softmax output corresponding to each
x; and x; denotes the input vector values [31].

5. Dataset Collection

Figure 6 illustrates an example of faces wearing and not
wearing masks. The experiments of this research are con-
ducted on one original dataset. It consists totally of 3835
images. This is a balanced dataset containing two categories,
faces with masks (1919 images) and without masks (1916
images) with a mean height of 283.68 and mean width of
278.77. It comprises two categories. This dataset is used not
only for training and validation, but also for testing, and if an
individual is wearing a mask or not, then the social distance

between two individuals will be estimated (violated distance
alert or not) [32].

6. Evaluation Metrics

Accuracy is the overall number of the correct predictions
fractionated by the whole number of predictions created for
a dataset. It can inform us immediately if a model is trained
correctly and by which method it may perform in general.
Nevertheless, it does not give detailed information con-
cerning its application to the issue. Precision, called PPV, is a
satisfactory measure to determination, whereas the false
positives cost is high. Recall is the model metric used to
select the best model when there is an elevated cost linked
with false negative. Recall helps while the false negatives’ cost
is high. Fl-score is required when you desire to seek
symmetry between both precision and recall. It is a general
measure of the accuracy of the model. It combines precision
and recall. A good F1-score is explained by having low false
positives and also low false negatives.
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FIGURE 6: Dataset example.

Equations (15), (16), (17), and (18) present how to cal-
culate the accuracy, precision, recall, and Fl-score, re-
spectively [1]:

accuracy = 1P+ TN (15)
WY = TP + FP) + (TN + EN)’
... TP (16)
preClSlOn = (TP n FP),
TP
N 17
et = TP + BN) (17)

2 * Precision * Recall
F1 — score = — , (18)
(Precision + Recall)

with TP being the computation of the samples of true
positives, TN is the calculation of the samples of true
negatives, FP is the counting of the samples of false positives,
and FN is the enumeration of the samples of false negatives,
from a confusion matrix. The sensitivity and specificity are
two statistical measures of the binary classification test
performance which are largely used in medicine. Sensitivity,
known as true positive rate, measures the proportion of
positives which are correctly identified. The specificity,
known as true negative rate, measures the proportion of
negatives which are correctly identified.

The terms “TP,” “FP,” “IN,” and “FN” refer to the test
result and the classification correctness. As a sample, if a
disease is the condition, “TP” signifies “correctly diagnosed
as diseased,” “FP” refers to “incorrectly diagnosed as dis-
eased,” “TN” means “correctly diagnosed as not diseased,”
and “FN” denotes “incorrectly diagnosed as not diseased.”
Therefore, if the sensitivity of the test is 98% and the

specificity is 92%, then the rate of the false negatives is equal
to 2% and the rate of the false positives is equal to 8%.

Macro-averaging is used for models with 2 targets and
more. Some macro-averaged measures are described [33].
First, macro-averaged precision computes the average
precision per each class. It is known as macro-precision.
Macro-precision score can be determined arithmetically by
the mean of all the precision scores of the different classes. It
is defined in equation (19) by

YL, Precision;

macro — precision = (19)

number of classes’
Macro-precision is low for models which not only ac-
complish well on common classes but also accomplish
poorly on rare classes. Thus, it is a harmonious metric to the
all-inclusive accuracy. Second, macro-average recall is the
mean of recall scores of all different classes. It is known as
macro-recall. We can compute the macro-recall as

Y, Recall,

o L=l RO (20)
number of classes

macro — recall =
Third, the macro-averaged Fl-score, also called the
macro Fl-score, represented the harmonic mean of the
macro-precision and the macro-recall. Equation (21) shows
how to calculate macro F1-score:
MAP « MAR

Fl - -2 , 21
macro score = 2% o pe o e (21)

where MAP denotes macro average precision and MAR
refers to the macro-average recall.

Weighted average (weighted avg) is a computation that
accounts for the varying degrees of the numbers’ importance
in a dataset. When a weighted avg is calculated, each number
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in the dataset is multiplied by a prearranged weight before
the final calculation. A weighted avg can be more accurate
than a simple average in which all numbers in a dataset are
assigned an identical weight.

To explain in depth the formula of the weighted avg, we
follow these steps: determine the weight of all data point,
multiply the weight by every value, and the results of step
two are added together. Among weighted avg scores, we find
weighted avg precision, weighted avg recall, and weighted
avg Fl-score.

7. Numerical Results

In this section, the numerical results will be introduced. For
all simulated deep learning models, as well as DenseNet,
InceptionV3, MobileNet, MobileNetV2, ResNet-50, VGG-
16, and VGG-19, the TensorFlow-GPU is used as a deep
learning framework to train the deep learning models. The
hyperparameters used in our experiments are summarized
as follows: the batch size is set to 32, the training epochs are
from 20 to 40, and the learning rate is set to 0.0001, with the
Adam optimizer used to update network weights. The
training platform uses Windows 10 OS with Intel® Core TM
i7-3770 @3.4 GHz CPU and 16 GB RAM and an NVIDIA
GeForce RTX 2070 GPU.

7.1. DenseNet Results. DenseNet is a contemporary archi-
tecture of CNN. Among distinct DenseNet (DenseNet-201,
DenseNet-160, DenseNet-121, etc.), in our study we
employed DenseNet-201. Our DenseNet model was trained
to classify images into masked faces and unmasked faces for
20 epochs. The training and validation loss and accuracy
graphs of DenseNet-201 are shown in Figures 7(a) and 7(c),
respectively. Figure 7(a) shows that after inputting the data
of our algorithm, this model nearly tends to maintain a high
accuracy greater than 80% without overfitting.

A confusion matrix is a particular table layout which
allows to visualise the performance of the algorithm. For the
trained model, we can compute a plenty of parameters, based
on TP, FP, FN, and TN. In our case, TP means that a human
is wearing a mask and the system shows a person wearing a
mask, FN means that a human is not wearing a mask but the
system shows a person not wearing a mask, FP means that a
human is wearing a mask but the system shows a person not
wearing a mask, and TN means that the human is not
wearing a mask and the system shows that person not
wearing a mask. Figure 7(b) illustrates the confusion matrix
for the DenseNet model in the testing phase. Table 3 shows
all the evaluation parameters: precision, recall, F1-score,
support, accuracy, sensitivity, and specificity, for masked
faces and unmasked faces cases, macro avg precision, macro
avg recall, macro avg F1-score, macro avg support, weighted
avg precision, weighted avg recall, weighted avg F1-score,
and weighted avg support. For the cases of masked faces, the
resulted surpassed 0.92 accuracy and Fl-score, with 0.91
recall, accuracy, and sensitivity.

Different DenseNet architectures have been used in
research. In this context, numerous works focused on
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detection of COVID-19 from CXR or CT images. In [34], a
DenseNet-121 model used a promising technique to predict
COVID-19 patients from 2482 CT images using CNN. It
achieved a total accuracy of 92%, a precision of 84%, a recall
0f 95%, an F1-score of 89%, and a macro-precision, F1-score,
recall, and weighted-precision of 92%. All parameters are
over 84%. Therefore, DenseNet-121 is an efficient model to
detect COVID-19. In [35], an approach used DenseNet-121
to detect COVID-19 patients from radiology images. The
model was trained and tested on a COVIDx dataset of 13800
images corresponding to 13725 patients. It achieved 96.49%
and 93.71% accuracies for two-class and three-class classi-
fications. These results outperformed the robustness of the
model. In [36], an automated method was used to classify CT
and X-ray images into coronavirus, bacterial pneumonia,
and normal classes using DenseNet-201 architecture. Re-
garding coronavirus class, specificity and precision were
satisfactory, with rates of 96.10% and 90.33%, respectively.
As the sensitivity, it was equitable and reached 75.14%. We
can explain these values by the fact that the sum of the TNs
was high, the sum of the FPs was low, and the sum of the FNs
was low, respectively. For bacteria class, the sum of FNs was
low, which justifies the acceptable sensitivity (92.95%). The
sum of TNs was relatively high, and the sum of the FPs was
relatively low, which justifies the reasonability of specificity
and precision values. For normal class, the sum of FNs was
low, the sum of FPs was low, and the sum of TNs was high,
which justifies the good sensitivity (95.88%), precision
(92.59%), and specificity (96.28%), respectively. Here, FNs,
TNs, and FPs mean false negatives, true negatives, and false
positives, respectively.

In the end, we can say that the family of DenseNet is a
methodical architecture to detect COVID-19 patients and
faces with or without mask.

7.2. InceptionV3 Results. InceptionV3 is one of the CNNs
dedicated for classification. It contains 48 deep layers and
employs inception modules, which requires a connected
layer with 1 x 1, 3 x 3, and 5 x 5 convolutions. It is referred to
as a GoogleNet architecture. Figure 8(a) shows the training
and validation loss for our InceptionV3 model, as it de-
creases with the continuous epochs, to achieve 0.4.
Figure 8(c) depict the training and validation accuracy of our
model as it upgrades with the successive epochs achieving a
high accuracy greater than 80% without overfitting.
Figure 8(b) shows the confusion matrix of testing data of the
InceptionV3 model.

When discussing the evaluation parameters in Table 3,
we note that precision, recall, Fl-score, and support, ob-
tained in “masked faces” case, are higher than “unmasked
faces” case. The accuracy and the sensitivity are over 80%. To
conclude, InceptionV3 learned the information well, but
DenseNet is better.

Among works which interested in detecting and ana-
lyzing COVID-19 on chest X-ray images, we cite the work
in [37], which utilized a method based on the InceptionV3
model. 6432 images collected from the Kaggle repository
were used for training, validation, and testing phases. Three
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FIGURE 7: DenseNet evaluation metrics, (a) training and validation loss, (b) confusion matrix, and (c) training and validation accuracy.

TaBLE 3: Performance evaluation of the proposed models.

Precision Recall F1-score Support Accuracy Sensitivity Specificity

With mask 0.92 0.91 0.92 524
DensNet Without mask 0.88 0.90 0.89 390 091 091 099
Macro avg 0.90 0.91 0.90 914 — — —
Weighted avg 0.91 0.91 0.91 914 — — —

With mask 0.83 0.85 0.84 524
IncentionV3 Without mask 0.80 0.77 0.78 390 088 0-86 0.77
b Macro avg 0.81 0.81 0.81 914 — — —
Weighted avg 0.82 0.82 0.82 914 — — —

With mask 0.98 0.98 0.98 524
MobileNet Without mask 0.97 0.98 0.98 390 0.98 0.98 0.98
Macro avg 0.98 0.98 0.98 914 — — —
Weighted avg 0.98 0.98 0.98 914 — — —

With mask 0.95 0.96 0.96 524
MobileNetV2 Without mask 0.95 0.94 0.94 390 0-95 0-96 0-94
Macro avg 0.95 0.95 0.95 914 — — —
Weighted avg 0.95 0.95 0.95 914 — — —

With mask 0.99 0.98 0.99 524
ResNet-50 Without mask 0.97 0.99 0.98 390 0-99 0.98 0-99
Macro avg 0.98 0.99 0.99 914 — — —
Weighted avg 0.99 0.99 0.99 914 — — —

With mask 0.99 0.98 0.99 524
VGG-16 Without mask 0.98 0.99 0.99 390 0-99 0.98 0-99
Macro avg 0.99 0.99 0.99 914 — — —
Weighted avg 0.99 0.99 0.99 914 — — —

With mask 0.99 0.99 0.99 524
VGG-19 Without mask 0.98 0.99 0.99 390 0-99 099 0-99
Macro avg 0.99 0.99 0.99 914 — — —
Weighted avg 0.99 0.99 0.99 914 — — —

classes of classification (normal, COVID-19, and pneu-
monia) are discussed. The highest precision (0.97) is ob-
tained for detecting COVID-19. The highest recall (0.97)
and F1-score (0.95) are obtained for detecting pneumonia.
And the overall accuracy of this model is 0.93. We can say
that InceptionV3 is a satisfactory model. Also, in [36], an
automated method aimed to classify CT and X-ray images
into coronavirus, bacterial pneumonia, and normal classes
using InceptionV3 architecture. Regarding coronavirus
class, it was identified quite well because of the reasonable
sensitivity and precision values and the good specificity

whose respective values were 75.88%, 88.06%, and 95.01%.
These values are explained as follows: the sum of FNs is
practically low, the sum of FPs is relatively low, and the sum
of TNs is high, respectively. Bacteria class is distinguished
well since specificity and sensitivity are equivalent to
90.00% and 92.42% and with the tolerable precision
(83.06%). The high value of the sum of TNs and the low
value of the sum of FNs explain the values of specificity and
sensitivity, respectively. On the other hand, the low value of
the sum of TN justifies the value of precision (83.06%). The
normal class is well identified since sensitivity, precision,



Scientific Programming

<InceptionV3>: Training and Validation Loss

0.8

Loss

0.4

0.2
without_mask

0.0

0 5 10 15 20 25 30 35 40

Epoch

with_mask
Predicted label

train_loss

val_loss

()

Confusion matrix

400

. 0.8
with_mask 448 76 350

0.6 0.6
300

()

15

<InceptionV3>: Training and Validation Accuracy

W

Accuracy

15 20 25 30 35 40
Epoch

100 0 5 10

without_mask

train_acc

val_acc

(©)

FIGURE 8: InceptionV3 evaluation metrics, (a) training and validation loss, (b) confusion matrix, and (c) training and validation accuracy.

and specificity attained 95.51%, 93.76%, and 96.91%, re-
spectively. The low values of the sum of FNs and FPs and
the high value of the sum of TNs explain the performance
of the evaluation parameters, respectively.

To conclude, we can affirm that the InceptionV3 is a
systematic architecture to detect COVID-19, pneumonia, or
normal patients as well as masked and unmasked faces.

7.3. MobileNet Results. MobileNets are one of CNN-based
networks, which are primarily built from depthwise sepa-
rable convolutions. Figures 9(a) and 9(c) analyze the results
of the training and validation loss and accuracy of the
MobileNet model, respectively. After inputting the data of
our algorithm, the graphs of loss nearly tended to zero and
the graphs of accuracy showed that after five training epochs,
the model maintained a high accuracy close to 100% without
overfitting. The confusion matrix of the MobileNet model
during the testing phase is shown in Figure 9(c). Table 3
shows that all the evaluation parameters values, especially
support, are over 0.97. Therefore, the MobileNet is a me-
thodical model to detect masked faces and unmasked faces.
In fact, MobileNet outperforms previous models.

Among the several works interested in detecting
COVID-19, a DNN named RAM-Net is presented in [38].
The RAM-Net is a combination of MobileNet with DDSC
which is a dilated depthwise separable convolution, three
residual blocks and two attention augmented convolution.
One of the most popular public datasets containing CXR
images is used to learn and validate the network. This dataset
is called COVIDx. Thanks to this network, positive COVID-
19 cases can be identified. While testing the network on the
COVIDx dataset, the overall accuracy, precision, and sen-
sitivity achieved are, respectively, 95.33%, 99%, and 92%.

In conclusion, we can say that when using MobileNet
architecture solely or combined with other blocks for object
detection, we always achieve high performances. Moreover,
it is useful for a lot of object detection.

7.4. MobileNetV2 Results. MobileNet is one of the deep
learning models intended to be utilized in low-hardware cost
gadgets. Classification, segmentation, and object identification

can be performed by operating the MobileNet model. The
MobileNetV2 model is developed from the MobileNetV1.
Figure 10(a) presents the MobileNetV2 training and validation
loss. Also, Figure 10(c) shows the graphs of training and
validation accuracy. Then, after seven training epochs, the
graph shows that this model is prone to overfit but still gives a
high accuracy close to 100%. Figure 10(b) illustrates the
confusion matrix of the MobileNetV2 model in the testing
phase. In Table 3, we note that all evaluation parameters except
for the support are over 0.94. This means that the MobileNetV2
is well trained and is an efficient model in detecting faces with
and without masks. Comparing this model with the previous
ones, we see that it is a little bit less efficient than MobileNet,
but more coherent than DenseNet and InceptionV3.

Many studies are focused on detecting COVID-19 using
MobileNetV2 as a classifier. Among them, we cite the
classifier presented in [39]. The principal aim of the authors
is to distinguish between people who are normal, people who
have pneumonia, and people having COVID-19 (with
damaged lungs), from CXR images. The overall testing
accuracy of this model is 96.32%. The testing Fl-score,
sensitivity, specificity, precision, and accuracy obtained
when classifying COVID-19 data are, respectively, 99.43%,
100%, 97.72%, 98.87%, and 99.24%. The values of these
metrics in the classification of normal and pneumonia in-
dividuals are all over 89%.

It is obvious that the MobileNetV2 model could con-
tribute to detecting not only COVID-19 disease efficiently
but also faces with or without masks.

7.5. ResNet-50 Results. ResNet is the abbreviation of Re-
sidual Networks. It is a network employed as a backbone for
countless computer vision tasks and a winner of the Image
Net challenge in 2015. It is a variant of the ResNet model
family. It consists of 48 convolutional layers with 1 max
pooling and also 1 average pooling layer. As Figures 11(a)
and 11(c) of the training and validation accuracy, and loss,
respectively, show, the loss nearly tends to zero and the
accuracy is high close to 100%. The confusion matrix after
testing is given in Figure 11(b). When evaluating the pa-
rameters in Table 3 of the ResNet-50 model, we note that all
parameters’ values except for “support” are over 0.97.
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FIGURE 9: MobileNet evaluation metrics, (a) training and validation loss, (b) confusion matrix, and (c) training and validation accuracy.
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FIGURE 11: ResNet-50 evaluation metrics, (a) training and validation loss, (b) confusion matrix, and (c) training and validation accuracy.

Compare ResNet-50 with the other four preceding models,
and we note that ResNet is the best.

In Al, many research works are focused on detecting
objects using the ResNet-50 model as a classifier. In [40], the
authors are concentrated on detecting and classifying
COVID-19 individuals with the ResNet CNN architecture.
The used CXR images are created with more than one

dataset. The sources of the created dataset are as follows:
SIRM, which is the Italian Society of Medical Radiology,
dataset generated by assembling diagnosed images from
different articles, coronavirus open-source shared dataset,
and CXR image dataset. Augmentation techniques are
elaborated due to the tiny dataset. The dataset consists of two
classes: people having COVID-19 and normal people. By
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appealing 5-fold-cross-validation, the results are evaluated.
As a result, a classification accuracy of 99.5% is achieved.
Therefore, the obtained results are encouraging regarding
the exploitation of computer-aided models, especially in the
pathology field. It can be also operated in situations when the
possibilities are deficient, such as RT-PCR tests, radiologist,
and doctor.

7.6. VGG-16 Results. VGG-16 is a CNN proposed by
A. Zisserman and K. Simoniyan. They utilized small con-
volutional filters and a stride of 1. This CNN has 16 layers.
Figure 12(a) shows that both the training loss and validation
loss are reduced ensuing each epoch for the VGG-16 model.
The graph nearly tends to zero after 10 epochs. Moreover,
Figure 12(c) shows the overall training and validation ac-
curacy throughout each epoch for the VGG-16 model. Then,
after six training epochs, the graph shows that this model
maintains a high accuracy close to 100% at epochs 6 to 20. The
confusion matrix for the VGG-16 model in the testing phase
is presented in Figure 12(b). Table 3 reveals all the evaluation
measures of VGG-16. It shows over 0.98 performance beyond
all measures except for the “support.” These values are in-
dicative of strong performance of VGG-16. Compared with
other models, we can say that VGG-16 and ResNet-50 have
the same effectiveness and outperformed the DenseNet,
InceptionV3, MobileNet, and MobileNetV2 models.

VGG-16 is exploited in many research works. In [41], a
deep CNN method “VGG-16” is demonstrated not only to
detect but also to diagnose COVID-19 cases using CXR
images. Three separate studies in this article with three dif-
ferent datasets are used. According to study one, a miniature
and balanced dataset is used. It contains CXR images of 50
patients acquired from an open-source repository given by
Dr. Joseph Cohen. The performance of the VGG-16 is
weighted on both the training and the test sets. It showed a
100% performance covering all measures (accuracy, precision,
recall, and F1-score) in the two sets. Concerning study two, an
imbalanced and a larger dataset is elaborated. It includes 1845
CXR images of patients, obtained from the Kaggle COVID-19
dataset. VGG-16 achieves 99% across all metrics in the
training phase. However, the performance results of accuracy,
precision, recall, and Fl-score are, respectively, 99%, 100%,
97%, and 98%. During stage three, the VGG-16 is imple-
mented on the multiclass dataset with 2637 images procured
also from the Kaggle COVID-19 X-ray dataset. The accuracy
remained over and above 90% on the training and test runs.
Therefore, VGG-16 shows an extremely high performance
with both binary and multiclass datasets.

7.7. VGG-19 Results. VGG-19 is a CNN also proposed by
A. Zisserman and K. Simoniyan. It has 19 layers. As a result
of the three more layers than VGG-16, the number of pa-
rameters in VGG-19 is greater than VGG-16. Therefore, it is
more costly to train. Figure 13(a) provides evidence that
both training and validation losses were minimized fol-
lowing each epoch for the VGG-19 model. It shows that the
graph nearly tends to zero. Moreover, Figure 13(c) suggests
that the overall training and validation maintain a high
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accuracy close to 100% without overfitting, after seven
training epochs. Figure 13(b) illustrates the confusion matrix
for the VGG-19 model in the testing phase. It shows that the
VGG-19 performance is satisfactory on the test set. Table 3
expresses the evaluation metrics of the VGG-19 model. All
the metric values, except for the support, are over 0.98.
Compare the performance of this model with the previous
ones, and we note that the VGG-19 is the best one.

Many researchers applied nonidentical deep learning
algorithms for detecting COVID-19 automatically, and many
of these algorithms reported a significant accuracy. In [42], a
current deep learning framework is proposed to identify the
presence or absence of COVID-19. The main purpose of the
authors is to judge the effectiveness of the pretrained VGG-19
architecture in detecting COVID-19 cases using CXR images.
The used dataset is gathered from different hospitals in
Tehran, Iran. It includes 464 high quality images; 345 of them
are for COVID-19 cases, and 119 are for normal cases.
Posterior-anterior (PA) projection is used to train the model.
5-fold-cross-validation is applied to use all images in the
training phase. In each fold, 20% of all images are used for
testing and 80% for both training and validation.

The network’s weights are initialized with the pre-
trained model’s weights on the ImageNet database. The
Adam optimizer with two standard parameters 3, =0.9 and
B,=0.999 and the batch size equal to 16 are used in the
training phase of the model. The learning rate is initialized
at le-5. After that, it decreased by 0.2. le-7 is the minimum
learning rate. If the accuracy of validation does not boost
after 20 epochs, the training will stop. Furthermore, a
heatmap is created to aid radiologists in refining decision-
making. A PC, with Intel Core i9 CPU and NVIDIA
GeForce GTX 2070 with 8 GB of RAM, is used to conduct
the experiment. Many metrics, such as accuracy, specificity,
sensitivity, F1-score, and AUROC [43], are calculated in
order to estimate the model’s effectiveness. The heatmaps
are plotted to confirm that the VGG-19 is extracting the
valid features in order to distinguish COVID-19 versus
normal cases. A high AUROC equal to 0.91(0.03) is
achieved by the neural network in 2-class classification.
When classifying COVID-19 VS normal cases, VGG-19
achieved different sensitivities equal to 94.21%, 87.18%, and
71.91% when the specificities are equal to 60%, 75%, and
90%. Therefore, the VGG-19 is a model structured to detect
COVID-19 cases, in addition to masked and nonmasked
faces.

7.8. Comparative Study between the Proposed Models.
Table 3 shows the performance of the different models
network. These metrics are as follows: precision, recall,
Fl1-score, support, accuracy, sensitivity, and specificity,
for masked and unmasked cases, macro avg precision,
macro avg recall, macro avg F1-score, macro avg support,
weighted avg precision, weighted avg recall, weighted avg
Fl-score, and weighted avg support. We note that the
highest precision in detecting masked faces case is for
ResNet-50, VGG-16, and VGG-19 models. The highest
precision in detecting unmasked faces case, highest
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FIGURE 12: VGG-16 evaluation metrics, (a) training and validation loss, (b) confusion matrix, and (c) training and validation accuracy.
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FIGURE 13: VGG-19 evaluation metrics, (a) training and validation loss, (b) confusion matrix, and (c) training and validation accuracy.

macro avg precision, and weighted avg precision are for
VGG-16 and VGG-19 models. The highest recall in
detecting people wearing mask is for the VGG-19 model.
The highest recall in detecting people not wearing mask
case, the highest macro avg recall, and the highest
weighted avg recall are for ResNet-50, VGG-16, and VGG-
19 models. The highest F1-score in wearing mask case, the
highest macro avg Fl-score, and the highest macro
weighted F1-score are for ResNet-50, VGG-16, and VGG-
19 models. However, the highest F1-score in not wearing
mask case is only for VGG-16 and VGG-19 models. The
support in wearing and not wearing mask cases, macro
avg support, and weighted avg support have the same
values for the different models. The highest accuracy and
specificity are for ResNet-50, VGG-16, and VGG-19
models. Finally, the highest sensitivity is for the VGG-19.
Therefore, we can say that the VGG-19 is the best trained
model, when we compared it with the other models.

7.9. Embedded Face Mask and Social Distancing Detection:
Raspberry Pi Implementation. After evaluating the proposed
face mask detection models, in this step, the best model with
high accuracy rate (ResNet-50, VGG-16, and VGG-19) will
be applied to the embedded vision system. Figure 14 depicts

the proposed embedded vision system that consists of a
Raspberry Pi 4 platform coupled with a webcam and
touchscreen and sounds a buzzer when someone is not
wearing their face mask (green or red LED) or social dis-
tancing is violated.

Thus, after installing Raspberry Pi OS and all libraries,
such as TensorFlow, OpenCV, and imutils, the embedded
vision system will be able to detect if a user is wearing a face
mask or not and if the distance between peoples is main-
tained or violated. Figure 15 shows the implementation
results. Hence, when someone is not wearing a face mask, it
will be designated with a red box around their face with the
text, “No Face Mask Detected,” and when wearing a face
mask, it will be seen a green box around their face with the
text, “Thank you. Mask On.” The same thing is depicted by
Figures 15(a) and 15(b). On the other hand, the proposed
model with social distancing task detects peoples and
provides the bounding box information. After that, the
Euclidean distance between each detected centroid pair is
computed using the detected bounding box and its centroid
information based on (x, y) dimensions for each bounding
box. Figure 15(c) illustrates the social distancing detection
task where an alert message displayed with a red box for
violated distance and a green box for the maintained
distance.
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8. Conclusion

Due to the urgency of controlling COVID-19, the appli-
cation value and importance of real-time mask and social
distancing detection are increasing. This work reviewed,
firstly, many research works that seek to surround COVID-
19 outbreak. Then, it clarified the basic concepts of deep
CNN models. After that, this paper reproduced the training
and testing of the most used deep pretrained-based CNN
models (DenseNet, InceptionV3, MobileNet, MobileNetV2,
ResNet-50, VGG-16, and VGG-19) on the face mask dataset.
Finally and after evaluated the numerical results, best models
are tested on an embedded vision system consisted of

Raspberry Pi board and webcam where efficient real-time
deep learning-based techniques are implemented with a
social distancing task to automate the process of detecting
masked faces and violated or maintained distance between
peoples.

This embedded vision-based application can be used in
any working environment such as public place, station,
corporate environment, streets, shopping malls, and ex-
amination centers, where accuracy and precision are highly
desired to serve the purpose. It can be used in smart city
innovation, and it would boost up the development process
in many developing countries. Our framework presents a
chance to be more ready for the next crisis or to evaluate the
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effects of huge scope social change in respecting sanitary
protection rules.

In future works, we will exploit this methodology on
smart sensors or connected RP nodes that will be considered
as an Edge Cloud to collect multimedia data, e.g., an au-
tonomous drone system, which can provide capture (by the
camera) of the detected objects from different angles and
send them to the Edge Cloud system to be analyzed.
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