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ABSTRACT This work presents an investigation on Improved Extended Kalman Filter (IEKF) performance

for induction motor drive without a speed sensor. The performance of a direct sensorless vector-controlled

system through simulation and experimental work is tested. The proposed observer focuses on estimating

rotor flux and mechanical speed of rotor from the stationary axis components. Extended Kalman Filters’

estimation performance depends on the system matrix’s proper value (Q) and measurement error matrix

(R). These matrices are assumed to be persistent and are calculated by the trial-and-error method. But,

the operating environment affects these matrix values. They must be updated based on the prevailing

operating conditions to get high speed and accurate estimates. The values of Q and R in the Improved

EKF (IEKF) algorithm are obtained using the genetic algorithm. Besides, IEKF is incorporated to reduce in

computational burden for real-time applications.

INDEX TERMS Extended Kalman filter, inductor motor, real-coded-genetic algorithm, sensorless drives,

speed estimator.

I. INTRODUCTION

For precise control of Induction Motors (IMs), values of

speed, torque, rotor & stator fluxes have to be accurately

estimated. In the past decade, model-based methods of IM

using notations of space vector were developed. The infor-

mation needed for the model-based approach is obtained

by measuring the voltage and current at machine termi-

nals. But, these model-based methods were observed to be

very sensitive to machine parameters. Model-based methods

need past information on the motor’s electrical parameters

and characteristics. Different IM parameters are measured

at standstill and speed, and the current controller is tuned

accordingly; the machine changes parameters during nor-

mal operation. The parameters that change during normal

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhuang Xu .

operation are due to thermal conditions. There are changes

in rotor and stator resistances; the inductance parameters

depend on the flux level’s value. Also, the values of leakage

co-efficient change as flux and load vary. Over the last few

years, there is an increased interest in applying the speed

sensorless Field Oriented Control (FOC) method to high-

performance IM applications. It bases this on computing

the speed using machine via’s parameters, the instantaneous

value of current and voltage in stator [1], [2]. Also, few

Adaptive Observers, namely Luenberger observer/Extended

Kalman Filter (EKF) [3], [4] provide accurate speed estimates

under de-tuned operating conditions. Comprehensive reviews

on the sensorless drive viamodel-based computationmethods

failed to assure the machine’s stability [5]. The drive systems

are susceptible to inaccuracy and variations in motor equiva-

lent circuit parameters. This may induce errors that degrade

the speed holding characteristics. It intensifies the problem,
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due to unbalanced motor winding or any DC offset present in

current controllers. Unwanted DC offset can be eradicated by

auto-calibration of DC link current. [6], [7].

Various methods have been proposed over the last few

decades for speed estimation and control of IM. Conventional

speed estimation techniques include the MRAS [8], deriva-

tives of rotor flux [9], [10], voltages in stator [11], a modi-

fied version of stator model, full order observer [11], [12],

unscented extended Kalman filter [13], reduced-order

non-linear observer [14], [15], Extended Kalman filter

observer assisted with fuzzy optimization [16], sliding mode

observer [17], [18]. Few other speed estimators that don’t

depend on measured values of voltage and current are

Artificial intelligent (AI) based neural networks [19], [20],

harmonic rotor slotting [21], [22], high-frequency signal

injection [21]–[23]. These investigations [9]–[23] involve

closed-loop strategies that use speed estimation techniques,

considering the IM model to be linear. However, IM is a

non-linear machine and requires accurate parameter esti-

mation techniques and a robust speed control method. The

advancements in technology, fast computing processors

have led to robust speed estimation schemes. These works

let to the development of the Bi-Input Extended Kalman

Filter estimation method. But these methods have been

shown to use more time to determine the noise covari-

ance matrix’s proper values [24]–[29]. Neuro-fuzzy tech-

niques were applied for performance enhancement of the

drive [28]–[30]. The work reported involves AI techniques

using a state observer, which includes an adaptive intelligent

technique using human knowledge and fuzzy-based systems.

In [30], [31], new machine drive techniques are explained

through other estimationmethods to measure very low-speed.

A shaft encoder is used to calculate both speed and load

torque disturbances. The values of temperature and uncertain-

ties in frequency are also required for accurate flux and veloc-

ity computation in sensorless control [32]–[35]. Lyapunov’s

theorem has proved the stability of the adaptive schemes used

for speed estimation, and results obtained through simulation

are analyzed [36]. The estimation of stator resistance using

EKF by realizing Field Programming Gate Array (FPGA)

and IM operation at very low and near zero speed areas [37].

They introduce the implementation of EKFwith a fading term

in the covariance matrix and hence tune the gain matrix [38].

Investigations on optimizing the performance of EKF through

speed and torque fitness functions for direct torque-controlled

machines are provided in [39]. For improving the robustness

of the speed estimator and control system against parameter

uncertainties, and improved EKF scheme is developed that

rests on the correct choice of ‘System and Measurement

covariance matrices’.

The estimation performance of Standard EKF is observed

to deteriorate at low speed, transients, and under variations in

equivalent circuit parameters. A real-coded integer Genetic

Algorithm with improved precision using a new concept of

the chromosome was reported in [40]. It optimizes the EKF

with different values of fitness functions for speed-sensorless

control of IM. The work has reported real-time experiments

to state the best fitness function for accurate motion con-

trol [41]. Differential Evolution Algorithm is implemented to

optimize the covariance matrices of reduced-order Kalman

Filter in offline mode and realize the sensorless control of

induction motors [42]. Also, the use of differential evolution

algorithm for optimizing EKF is studied in [43]. This method,

however, cannot address the sensitivity of the observer to

stator resistance variations. Performance of GA-optimized

EKF of constant V/Hz controller considering variation in

parameters is proposed and implemented [44]. As speed

sensorless control applications to induction motors are pre-

dominantly increasing, especially in EV applications, IM’s

dynamic performance for several speed profiles and different

load torque disturbance conditions is to be achieved. The pro-

posed research work intends to identify IM parameters con-

sidering the associated non-linearities and achieve improved

speed estimation and control over an extensive speed zone.

The effect of stator resistance and sensitivity of observer to

variations in resistance of stator [43] is investigated.

In this research work, an improved Extended Kalman filter

for control of induction motor in sensorless mode is per-

formed. The values of the system (Q) and measurement (R)

matrices are updated in Improved EKF (IEKF) algorithm

using the genetic algorithm. The performance of sensorless

vector-controlled drive systems is tested through simulation

and experimental work. Earlier research investigations have

focused on the estimation of rotor speed under different

constraints. However, there is a need to address the vector

control scheme for achieving good dynamic performance.

Hence, in this research, the Bus Clamped Space Vector Mod-

ulation scheme is implemented, which has improved the IM

drive system’s complete performance. Re-configurability of

Digital Signal Processing (DSP) devices gives researchers the

chance to test and validate a novel controller; which does not

damage the actual system through co-simulation, also known

as Rapid Control Prototyping (RCP). The present work uses

the Code Composer Studio (CCS) environment [45] to estab-

lish and validate an adaptive Improved Extended Kalman

Filter (IEKF) speed estimator based on a Real-Coded-Genetic

Algorithm (RC-GA-EKF). The research work models the

system to improve the direct rotor field-oriented or the vector-

controlled speed sensorless induction motor.

The paper is organized as: Section II presents the parameter

estimation using an extended Kalman filter algorithm with

a modified machine model. Section III describes the basic

idea of Tuning Q & R Matrices Using Real-Coded-Genetic

Algorithm (RC-GA). Section IV presents the hardware con-

figuration of the process of EKF using RC-GA. The exper-

imental and simulation results with suitable discussion are

shown in section V. Finally, conclusions in section VI.

II. PARAMETER ESTIMATION WITH EXTENDED

KALMAN FILTER

An improved speed computation scheme using a Genetic

Algorithm based Extended Kalman Filter (EKF) is proposed.
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EKF is considered a recursive estimator with optimum

stochastic characteristics. A full order state observer is used

in the state-space model to estimate the components viz.,

the flux of rotor, rotor speed, and stator current. This approach

significantly reduces the execution time and simplifies the

tuning of the covariance matrix. The fundamental steps to

speed estimation using EKF include discretizing the machine

model. For determining state and noise covariance matrices,

and implementing and tuning the discretized EKF algorithm

using real coded Genetic Algorithm to get proper rotor speed.

A. DISCRETISED STATE SPACE MODEL OF

INDUCTION MOTOR

There are 4 state variables: stator currents in d & q axes (ids,

iqs) and the rotor fluxes (8dr , 8qr ) in the dynamic model

of 3-phase IM. Including the rotor speed ωr as an additional

variable a modified model of IM results [40]. The discretized

extended model is as got [39].






























X (n+ 1) = A×
⌢

X (n) + B× U (n);Y (n) = C × X (n)
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C =
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]

and τr = Lr
Rr

; Z = Rs + LmRr
L2r

; Z∗ =
(

1 −
L2m/Lr
Ls

)

∗ Ls
But, for an IM, the values of Rr , Rs, Lr , Ls, Lm, and ωr are

constant. Therefore, matrices of state vector input and output

are taken as constant.

B. EXTENDED KALMAN FILTER ALGORITHM

With the modified model of induction motor, it is noticed

that the state-space model is not linear. This is because it

has self-product terms of the state variables. The method’s

essence stems from the linearization of the non-linear model,

so use the system’s first derivatives and written the filter

structure according to this. The EKF is a recursive proce-

dure that helps produce estimations of unknown variables

using a series of measurements observed over time more

precisely [40]. The EKF uses a non-linear model and obser-

vations and assumes error propagation to be linear. The other

non-linear parameters are linearized. In the proposed method,

we have attempted to develop the estimator to give improved

performance using d-q axes stator current and flux values.

The rotor speed is estimated via the reference speed added as

a state variable and further tuning the EKF algorithm using a

real coded Genetic Algorithm. The estimates are got by EKF

as stated below:

• State Vector Prediction

This vector is predicted with a sampling interval of (n + 1).

The value is obtained from input vector U(n), state vector,

matrices A, and B.

X (n+ 1) = A×
⌢

X (n) + B× U (n) (2)

The values ofmatrices X̂ (n),U (n),A,B can be got from (1),

• Estimation of the Prediction Covariance matrix

P∗(n+ 1) =
∂

∂x
[AX + BU ]P(n)[

∂

∂x
[AX + BU ]]T + Q

(3)

The covariance matrix has the order of 5 × 5. A gradient

matrix f can represent the terms in (3) as,

∂

∂x
[AX + BU ] = f (n+ 1) (4)

where, X = X∗ (n+ 1)

• Computing Kalman filter gain value

The order of gain matrix of the filter is taken as 2 × 5, and it

is calculated as:

K (n+ 1) =







P∗(n+ 1)[
∂

∂x
[CX ]]T×

[
∂

∂x
[CX ]P∗(n+ 1)[[

∂

∂x
[CX ]]T + R](−1)]







(5)

where parameter CX is another gradient matrix represented

by h as follows.

∂

∂x
[CX ] = h(n+ 1) (6)

where X = X∗ (n+ 1)

• Estimating state vector

Correct estimation of state estimator is done at the time

interval (n+ 1) and is done as given,














⌢

Y (n+ 1) = CX∗(n+ 1)
⌢

X (n+ 1) = X∗(n+ 1) + K (n+ 1)
[

Y (n+ 1) −
⌢

Y (n+ 1)
]

(7)

• Error covariance matrix

This matrix is attained as,

⌢

P(n+ 1) = P∗(n+ 1) − K (n+ 1)
[

∂

∂x
[CX ]

]

P∗(n+ 1) (8)
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• Updating parameters is done as follows:

X (n) = X (n− 1), k = (n+ 1) and

P(n) = P(n− 1) (9)

In (2)-(9), ^refers to the estimated value, and ∗ refers to the

prediction parameter. Updated the algorithm with the values

arrived through the (2)-(9) and develops covariance matrix

that is modified upon iterations, and accurate estimates of

the states are obtained by a trial-and-error method. Getting

a faster response through correct tuning of Q and R matrices.

An improvisation in the observer’s performance is done in

the present work using a real coded genetic algorithm that

tunes matrices Q and R and gets accurate and quicker speed

estimates.

III. TUNING OF Q AND R MATRICES USING REAL- CODED

GENETIC ALGORITHM

In this study, the EKF algorithm is taken as an improved

current model-based observer where it can provide very low-

speed and high-speed zone operation. But, the values of filters

affect the performance of estimated state vectors. Hence,

in this work, a Real Coded Genetic Algorithm (RC-GA)

optimizes the EKF observer and, in turn, helps optimize the

controller’s multi-dimensional performance.The primary aim

is the minimization of error which is the mean squared value

of the speed estimate E1(x) which is given by,















E1(x) =
1

n

∑n

1
(ωre −

⌢
ωre)

ωre → actual speed;
⌢
ωre → estimated speed from EKF

(10)

where n is the sampling time, for improved speed estimate

through EKF, three of its initializesmatrices. It will update the

covariance matrix P at each sample period of EKF iterations

(10). Hence, only Q and R are optimized. Thus, RC-GA is

employed, and the corresponding algorithm flow diagram is

as in Fig. 1. The RC-GA for EKF (RC-GA-EKF) is imple-

mented using MATLAB. For tuning the matrices Q and R

of IEKF for vector control, parameters of RC-GA are set as

follows:

• The initial population size : 100

• The maximum number of generations : 20

• The probability of crossover : 0.8

• The mutation probability : 0.1

• The initial range of real coded strings : [.1; 5]

• The performance measure : MSE obtained from the

actual speed of the motor and estimated speed.

The selection of RC-GA parameters used to identify the

vector P and hence tune Q and R of IEKF is as given above.

The steps followed for implementing the RC-GA algorithm

is given:

1) The five diagonal elements which are the decision vari-

ables representing the population index are (q11, q22, q33, q44,

and q55) ofQmatrix, and the elements (r11, r22) are a diagonal

FIGURE 1. Flow diagram of RC-GA- EKF process.

representation of theRmatrix. These are taken as a long string

and coded further than shown below:

G =













q11 0 0 0 0

0 q22 0 0 0

0 0 q33 0 0

0 0 0 q44 0

0 0 0 0 q55













,

R =

[

r11 0

0 r22

]

(11)

2) The non-domination rule is applied and the initial pop-

ulation of variables is randomly generated.

3) Every variable is converted into diagonal terms of the

twomatrices Q&R of EKF observer at each time of iteration.

Then the diagonal components are sent to the RC-GA-EKF

speed observer, and hence the fitness function is obtained.

This method gives the fitness evaluation criterion and thus

provides solutions for fitness functions.

4) The operators of crossover and mutation are used to get

the off-springs. The present population is sorted along with

the current off-spring population based on the rule of non-

domination. This gives the best individual Pop (population

size), which is selected for further operations.
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5) Steps 3 & 4 are repeated till the maximum iterations

are reached. MATLAB coding is applied to optimize RC-GA

EKF observer thus, enhancing the performance.

The closed-loop controller comprises the training set: the

voltages and currents of the stator (vd , vq, isd , and isq). This

training set makes the EKF observer’s input and takes the

obtained rotor speed as the target set for getting the RC- GA

fitness evaluation. Around 40000 sets of vector generations,

training profiles are generated. These profiles have been seen

to provide wide speed range operation from low to high

speed both during the transient condition and steady-state

conditions.

A comparative analysis is made between the trial-and-error

method in EKF and RC-GA using simulation and experimen-

tal research. Also, this article presents the hardware configu-

ration for implementing the technique above in section IV.

IV. HARDWARE CONFIGURATION FOR REAL-TIME

IMPLEMENTATION OF EKF ON SENSORLESS

VECTOR CONTROLLED IM

The TMS320F28335 connects the improved EKF observer

and process implementation on target DSP [45] for the hard-

ware test. First, the observer is expressed in mathematical

form through the CCS toolbox and then it is optimized via the

processor and later is transferred to the hardware platform

This step occurs in two parts:

• First, the EKF observer is loaded in the target DSP and

the IM model is described in Simulink.

• Second, the IM model comprises the sensorless field-

oriented control strategy.

Building the hardware requires a few initial processes.

• The model is built, arranged, simplified, and tested in

a Simulink environment. This prevents timing errors.

Implementing the observer in this work has 3 sub-

blocks: 1) current estimator, 2) rotor flux estimator –

rotor flux is estimated from voltage model of IM and

3) parameter estimation as in Fig. 2.

• Fig. 2 represents a framework of the planned estima-

tor on the RCP platform or the so-called hardware

co-simulation platform.

• Using the CCS toolbox in the target DSP of Simulink

is the next step. Through this the hardware platform for

the estimator is set up. An environment of convenience

and precision is created to select the data size and allow

the same signal to traverse between the hardware blocks

built. The inner information of variables and precise

computation are two parameters that must be consid-

ered achieving the required data size. Time analysis is

performed and the instant at which the improved EKF

algorithm gets synchronized with the hardware at vari-

ous stages of the design process is noted.

• In the previous step before synchronization, the EKF

algorithm is verified along with the design. In this stage,

simulation along with time analysis and co-simulation

with hardware is performed. This process validates the

FIGURE 2. Architecture of the proposed estimator.

performance of the design parameters on the target DSP

board.

TMS320F28335 is used for the co-simulation function.

A code generator present will synthesize to give a DSP

program in C file from the hardware. A new JTAG is used

to replace the previously built design (Fig. 2). The block

obtained after this is now put in the design. Further, imple-

mentation of hardware through the board connected to the PC

is performed. In a hardware implementation, the JTAG has a

value at one of the input posts and this JTAG now sends the

data to the hardware. The hardware provides the estimates

and these values are read back to simulation through USB.

The output port further functions converting the data type to

simulink readable format and further feeds this data to the

vector control module (Fig. 2).

To exploit the advantages of the proposed research work,

both simulation analysis and experimental analysis are done

for diverse working environments of the drive and the estima-

tor, and discussion of results work in section V.

V. RESULTS AND DISCUSSIONS

This section demonstrates the dynamic response of the speed

sensorless control scheme of 2 HP IM using RC-GA-EKF.

A. SIMULATION RESULTS

Presented results of the speed response for various load

changes. Recorded typical measurements of speed behavior

to show the efficacy of the estimation scheme developed

in this work. The results show the quality of the speed

sensorless control, and relative speed errors. Simulated the

sensorless control of IM using GA based EKF on Simulink

platform of MATLAB software and study the performance

of the observer under different operating conditions. Real-

ization of the model is done using MATLAB language file.

Inserts a subsystem into the system that contains the RC-

GA-EKF, which is further made into the block as S-function.

The RC-GA-EKF in the drive system is implemented for
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FIGURE 3. Estimation of speed in the high-speed zone of [0 100 139 0]
rad/s under no load using improved EKF state observer model of IM.

FIGURE 4. Speed estimation in the low speed range of [0 30 50 0] rad/s
at no-load using improved EKF state observer model of IM.

Pulse Width Modulated inverter driven IM drive without

the need of an additional speed sensor. Fig. 3 depicts the

speed response of IM at No-load, over a speed range of [0

100 139 0] rad/s. Observed from Fig. 3 that the estimated

speed follows the set speed at every step change in speed

(the legends in red and blue colors are aligning one over the

other). The speed response got in the simulation is steady

with minor errors (in the band of [−0.001 to +0.001] as in

Fig. 3. It is witnessed that an improved EKF based estimation

mechanism overcomes drift and distortion issues that were

noticed in MRAS [46], [47] based speed adaptation scheme.

An accurate speed estimate at above 100 rad/s (i.e., near rated

speed of 139 rad/s) is achieved, as observed in Fig. 3. The

performance of the improved EKF at low speeds is entirely

satisfactory and the speed. The improved EKF state observer

gives better speed estimates even at a low-speed range of [0 30

50] rad/s as shown in Fig. 4, compared to the similar speed

range estimates got using the MRAS model [40]. However,

the simulation results corresponding to a load torque condi-

tion of 10 Nm are presented in this part of the work. The

results for different low and high speed values are shown

in Fig. 5 and Fig. 6. Fig. 5, shows that the speed estimation

obtained is matching with the set speed with an applied load

of 10 Nm at an instant of 1 second in a low-speed range which

FIGURE 5. Estimation of speed in low speed zone of [0 30 50 0] rad/s,
with 10 Nm load using improved EKF.

FIGURE 6. Speed Estimation in the range of [0 10 50 100 139 0] rad/s,
with 10 Nm load torque using improved EKF.

is between 30 and 50 rad/s. The simulation results for a speed

range of [0 10 50 100 139] rad/s for 10 Nm load are shown

in Fig. 6. It is observed that performing improved EKF is

satisfactory over a wide range of speeds. Thus, improved EKF

provides a better speed estimate.

To find out the robustness of improved EKF state observer,

performed simulation analysis for the effect of ‘Current

noise’ and ‘Machine parameter (Rs) changes’. Simulink

model of improved EKF observer subjected to noise in sta-

tor current and a 10% increase in the value of stator resis-

tance. The noise signal (randomly generated) was injected to

show the stator currents of IM in Fig. 7 [40]. The character-

istic of the noise is ‘‘zero mean, white and Gaussian’’. The

estimator’s response for a set speed of 30 rad/s is recorded,

when a load torque of 10 Nm is applied for 10% variation

in the stator resistance of the IM. The nominal value of

stator resistance Rs of IM is 4.57 �. 10% decrease in the

stator resistance applies to performing improved EKF state

observer. The result got for a set speed value of 30 rad/s

and 139 rad/s Figs. 8 and 9, respectively. Observed that

speed estimate tracks the set speed with minimal deviations

(± 0.3 rad/s). As shown in Figs. 8 and 9, for low-speed

and high-speed range, the computed value of speed is not

affected drastically by noise signal injected. From simulation
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FIGURE 7. Injected noise signal to the stator currents.

FIGURE 8. Estimated speed curve for speed of 30 rad/s and 10Nm load,
10 % decrease in stator resistance and noise in stator current.

analysis performed, find it that there are almost no differ-

ences between the set and the estimated values of speed.

Thus, performing the improved EKF model is stable even

under the presence of injected noise, variations in stator resis-

tance Rs, and load torque variations. Therefore, the Genetic

Algorithm used to tune the state matrices of the EKF state

observer, provides a better speed estimate at a widespread

speed range, justifying the efficacy of an improved EKF

observer. Simulation results presented correspond to a load

of 10 Nm and stator resistance variation of 10% of its nominal

value. Further, the performing improved EKF is analyzed for

load torque variations of 10%, 50%, and 100% of the nominal

value (10 Nm) at a common near the rated speed of 139 rad/s.

Table 1 show the Mean squared error of speed estimate values

got using the ‘Trial-and-error’ method and improved EKF

state estimator. Observed in Table 1 that the Mean squared

error of speed estimate recorded for different load torque

variations is substantially low compared to the Mean squared

error of speed estimate got through the ‘Trial-and-error’

process. Therefore, the improved EKF speed estimator is

proved to perform better than the ‘Trial-and-error’ scheme of

speed estimation. Also, performing improved EKF for stator

resistance Rs variation of 10%, 20%, and 50% are analyzed.

The nominal value of stator resistance Rs of IM is 4.57�. For

a set speed of 139 rad/s (near rated speed) of IM, the mean

squared error of speed estimate got upon 10%, 20%, and 50%

FIGURE 9. Estimated speed curve for speed of 139 rad/s and 10Nm load,
10 % decrease in stator resistance and noise in stator current.

TABLE 1. Mean squared error of speed estimate calculations for load
torque variations.

TABLE 2. Mean squared error of speed estimate calculations for stator
resistance variations.

variations of Rs is shown in Table 2. It is observed from the

values stated in Table 2 that the mean squared error of speed

estimate got through the ‘Trial-and-error’ method is more

sensitive to stator resistance variation than those obtained by

improved EKF state observer.

B. SIMULATION ANALYSIS OF RC-GA-EKF STATE

OBSERVER APPLIED TO SENSORLESS VECTOR

CONTROL OF IM DRIVE

The simulation analysis of sensorless Field Oriented Control

(FOC) of the IM using RC-GA-EKF state observer is per-

formed. Sample time of 10e-6s is selected. Fig. 10 shows

the generic diagram of a vector control scheme in sensor-

less mode using an improved EKF state estimator. For a

good performance of speed sensorless system accurate rotor

speed and flux estimation is necessary. This is because any

error in flux estimation can affect the estimated speed and

vice versa. Hence, in the presented work, improved EKF is

employed only for estimating speed. The flux estimator is

used extensively for tracking the position of the rotor-flux

linkage. In this subsection, discuss sensorless FOC of the IM
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FIGURE 10. Complete structure of RC-GA-EKF speed estimator.

TABLE 3. Values of PI controller used for tuning error signals.

subsequent results. The four PI controllers (flux controller,

speed controller, and two current controllers) in the control

system are tuned individually by adjusting the proportional

constant Kp and the Integral constant KI .

The gain values of the four PI controllers through the

‘Trial-and-error’ process. Tuning of these controllers enables

the controller error signal to zero. Initially, the inner current

loops are tuned (having speed and flux controllers disabled)

with constant values of their reference inputs. Later, speed

and flux PI controllers are tuned. Table 3 shows the value

of Kp and KI used in this part of the work for the four

PI controllers [40]. After tuning the current speed and flux

controllers appropriately with the values stated in Table 3,

simulation analysis of sensorless vector control for IM is

made. The corresponding responses got concerning phase

voltage (Vab) in volts, Phase Currents (Ia, Ib, Ic) in amperes,

rotor speed in rad/s, electromagnetic torque in Nm, is as

in Fig. 11.

Fig. 11 depicts vector control of IM at no load in the

sensorless mode for a value of speed 20 rad/s using an

improved state observer. It is realized that the estimated

speed tracks the reference speed, and the speed estimate is

smooth after initial oscillations die down. The initial drift and

distortions are because of integrators in PI controllers used

for speed control and current control. The performance of

the sensorless drive using an improved EKF speed observer

is satisfactory when operated under a very low-speed range,

between 10 rad/s- 20 rad/s. Attributes the higher amplitude

of the transients in stator currents to the inertia of the motor.

Observed these amplitudes to decrease drastically by the time

the steady-state is reached, as shown in Fig. 11. We make the

simulation runs for one load condition of 10 Nm common

FIGURE 11. IM Vector control operation in sensorless mode under
no-load and speed 20 rad/s employing EKF state observer with improved
performance.

for two-speed ranges. The low-speed range of [30], [50] rad/s

and high-speed 139 rad/s are considered. The responses got

in this context are shown in Figs. 12 and 13, respectively. The

results got to imply that there are few deviations among the

set and estimated speed during load and speed changes in both

cases. The conditions realized with such reduced deviations

are deemed as a stable operation of sensorless vector con-

trol of the IM. It is seen from simulation results, improved

EKF overcomes the problem of the MRAS speed estimation

scheme for achieving shorter settling time and tuning of PI

controller gain value [46], [47]. Therefore, in the present

research work, an improved EKF state observer provides

accurate speed estimation at a higher speed range. Even at

low speeds, even a slight variation in stator resistance does

not affect the performance of the drive system. Hence, for

high and low-speed estimates in connection with sensorless

control of IM, improved EKF stably responds.

Table 4 shows the response of speed sensorless control and

relative speed error at different speeds. The measurements for

four reference speed settings. The values stated in Table 4
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FIGURE 12. Sensorless FOC in low speed range of 30 and 50 rad/s with
10 Nm load.

FIGURE 13. Sensorless FOC of IM for speed of 139 rad/s and 10 Nm load.

TABLE 4. Response of speed sensorless control of IM employing
improved EKF.

show the efficacy (speed control errors being close to zero)

of the control scheme using improved EKF. Thus, accurate

speed estimate, sensing, and control are got at an extended

speed range, starting from high values of speed down to very

low values of speed. Further, the comparative values of speed

recordings under no-load condition got through simulation

analysis of improved EKF and Model Reference Adaptive

System (MRAS) speed estimator are stated in Table 5. The

values specified in Table 5 show the capability of improved

EKF speed estimator in estimating the rotor speed of IM

over a wide speed range demanded. Whereas, the speed

estimates using MRAS for high-speed demand like 120 rad/s

and 139 rad/s were not at all achieved. Further, comparative

analysis of speed estimates got by earlier investigators and

made those got in the present research work. The results

got under No-load conditions for different ratings of IM and

different speed estimation techniques reported in the litera-

ture are compared and presented in Table 6. It is observed

TABLE 5. Comparison of speed estimates obtained using MRAS and
improved Ekf speed estimators, under no-load condition.

TABLE 6. Comparison of speed estimates obtained using improved EKF
SPEED estimator (Present work) with those reported by earlier
investigators, under no-load condition.

FIGURE 14. Experimental setup for vector control of IM in sensorless
mode.

that satisfactory speed estimation is got using improved EKF

developed in the present research work. Also, the advan-

tage of the improved EKF speed estimator lies because it

does not require ‘Change of algorithms’ or ‘Adjustments of

gains’ or ‘Changing parameter signals’ for convergence at a

steady state.

The arrived RC-GA-EKF speed estimation algorithm

offers a more generalized and effective solution for speed

estimation of speed sensorless IM in a wider speed zone.

C. EXPERIMENTATION RESULTS

The performance of improved EKF is tested using hardware

setup built as in Fig. 14 for different scenarios of variations in

load torque, changes in speed command, no-load conditions,

and the worst case of zero speed state [14]. Hardware-in-loop

is done by inserting the observer in the controller scheme in

the Simulink environment. A generic block diagram depict-

ing the implementation of sensorless vector control using

‘hardware co-simulation is shown in Fig. 15. It connects
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FIGURE 15. Block diagram representing implementation of co-simulation
technique for vector control of IM in sensorless mode.

FIGURE 16. Rotor speed estimate at 139 rad/s.

DSP TMS320F28335 to the Host PC through USB. Signals

from the current sensor of ‘Integrated Power State’ are pro-

vided to Analog-to-Digital Converter (ADC) block got from

Embedded coder R©Support package for Texas Instruments

TMSC2833x Processor. Connected the output of ADC to the

Simulink model developed for speed estimation and Sen-

sorless Vector Control of IM. The pulses generated from

the Simulink model of Sensorless Vector Control are used

to generate ePWM (Enhanced PWM) signals. The ePWM

signals provide pulses to drive the IGBT Module. The pulses

from the IGBTPowerModule further drives the IM to achieve

the required speed control. Set the reference phase signal

to zero and choose a natural sampling technique for vector

control operation. Discretize the induction motor at a sample

time of 10 µs.

Current sensors measure the 3-phase current. It transmits

all gained data of DSP TMS320F28335 to Host PC through

the Serial Communication Interface (SCI) module. The SCI

transmit module transfers speed, torque, and current values

of IM to the Host PC.

Obtained the data traces of motor currents and speed

responses of IM. Checked the suggested estimator under

step changes of speed and different load conditions. Results

obtained emphasize that when variations are introduced on

the parameters estimated, it is observed that the improved

EKF gives a good estimation for rotor speed at its rated value

of 139 rad/s as shown in Fig. 16. Fig. 17 shows the ability

of the improved EKF to sustain its performance at near-zero

speed with 80% of load applied to the drive system. From

FIGURE 17. Rotor speed estimate at near zero speed rad/s.

FIGURE 18. Rotor flux linkage obtained through experimental
investigation.

TABLE 7. Time response analysis of speed response under no-load and
loaded condition.

the experimental investigation’s values of speed at near-zero

speed (100 rpm) under load variations are recorded and the

corresponding speed error obtained is stated in Table 10.

Also, the rotor flux value recorded through the experiment

is shown in Fig. 18. The value of the rotor flux remains

unaffected even with load and parameter changes. The speed

response recorded exhibits good dynamic response both

under no-load and loaded conditions. The time response of

getting from the speed results is shown in Table 7. Further,

compared the time response values stated in Table 8 with

the time response got for speed characteristics using the V/f

control scheme.

We design both control schemes to operate in the RCP plat-

form for a speed of 1400 rpm under a load current of 1.8 A.
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TABLE 8. Time response analysis of speed response under no-load
condition for two different speed control techniques.

TABLE 9. Speed responses obtained through experimental studies for a
set speed of 600 Rpm and different load conditions.

TABLE 10. Speed responses obtained through experimental studies For
different speed ranges and load conditions.

From the responses tabulated; observed that the sensorless

vector control scheme provides a better response than the V/f

control scheme. Table 9 shows the speed recordingsmeasured

for a set speed of 600 rpm under No-load conditions and

different load conditions. The rated current of IM is 3.3 A,

loading the IM up to ∼80% of its rated value (i.e., 2.6 A).

We have carried similar investigations out for different set

speed values. Table 10 shows the speed recordings made

for different speed ranges and load conditions. From the

values stated in Table 10, we observe the IM can operate at

various speed ranges up to a near rated speed of 1400 rpm

with the sensorless vector control scheme. The average speed

control error is well within the tolerance band of ± 2%. This

shows better speed regulation. Observed that% error of speed

of response decreases as the motor speed increases and is

<1 at near rated speed. We have presented the comparison

of experimental results and simulation results to validate the

efficacy of the closed-loop control, and the same is stated

in Fig. 19. We record the simulation and experimental results

FIGURE 19. Comparison between experimental results and simulation
results at a load of 1.8 A.

TABLE 11. Comparison of speed recordings obtained though simulation
and experimental investigations in % Error.

for random speed demands of 600 rpm, 800 rpm, 1000 rpm,

and 1400 rpm under loaded conditions. The simulation results

stand validated upon the experimental results proving the

efficacy of the control system designed on the RCP plat-

form. Table 11 presents the percentage difference in speed

got between simulation results and experimental results for

different speed ranges under loaded conditions. Observed that

the % error in speed values well within the tolerance band

of ± 2%.

The results from simulation and experimentation find out

that the IM drive-in closed loop operates satisfactorily for

different speed and load torque zones. It also reduces the error

in speed with load changes and mismatches in parameters

of the IM. The transient and steady-state performance of a

drive control system is improved. It is observed that results

obtained from hardware show fluctuations when compared

with results of the simulation environment. This situation

depends on the value of the data size chosen. But the fluctu-

ation in the estimated parameter does not have any adverse

effect on the dynamic response which does not affect the

speed (Fig. 16), and rotor flux (Fig. 18). Neglecting the fluctu-

ations caused during the operation of the drive, results shown

in Fig. 17, reports the ability of improved EKF speed observer

to sustain its performance at very low speed. Tests validated

the proposed work for parameter variations concerning a

change in stator resistance and load conditions. We have

tested the performance of the algorithm through simulation

and experimental results for 50% variations in stator resis-

tance and 100% load variation (through simulation) and 80%

load variation through experimental investigations. Under
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these conditions, the proposed work has tracked speed at all

variations in parameters in the limit described above and has

proved less sensitive to any fluctuations in load or parameter

variations.

VI. CONCLUSION
In this work, a real-time investigation of a non-linear state

observer is done to improve the IM sensorless control in

motion control applications by properly estimating the speed

of the rotor under changing conditions. Unlike previous stud-

ies, where only one of the covariance matrices tuned, the pro-

posed strategy can tune both Q and R matrices and optimize

the components of speed and rotor flux. The real coded

genetic algorithm based EKF speed observer improves the

performance of the sensorless drive system and optimizes the

state estimate values the behavior of the system in different

zones of speed and load is observed. Results obtained are

promising and show that the algorithm has the potential to

provide optimal and accurate speed estimates in both low and

high-speed ranges.
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