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Abstract— A real-time implementation of Model Predictive
Control (MPC) is presented in this paper. MPC, also known
as receding horizon control and moving horizon control, is
widely accepted as the controller of choice for multivariable
systems that have inequality constraints on system states,
inputs and outputs. For processes with slow dynamics and
low sampling rates, MPC is typically implemented on a
dedicated computer. For systems with fast dynamics such
as those in MEMS, a hardware embedded MPC would be
an appropriate controller implementation since the size and
the application precludes the use of a dedicated computer.
Recent manufacturing advances have opened the path for
the fabrication of micromechanical devices and electronic
subsystems under the same manufacturing and packaging
process, thereby opening the path for the use of advanced
control algorithms towards systems-on-chip applications.

I. INTRODUCTION

Micro-Electro-Mechanical Systems (MEMS) integrate
mechanical elements, sensors, actuators, and electronics,
commonly on silicon substrates through micro-fabrication
techniques. MEMS have enjoyed substantial growth in the
past decade. Recent studies have estimated the market
for intelligent micromachine based systems to be around
100$ Billion/year [1]. This is due to its wide application
range that includes medicine and bioengineering (DNA and
genetic code analysis and synthesis, drug delivery, diag-
nostics and imaging), automotive systems (transducers and
accelerometers), manufacturing and fabrication (microscale
smart robots), etc.

A major technological challenge is the combination of
micromechanical devices with an electronic sub-system in
the same manufacturing and packaging process; viz, the
realization of autonomous Systems-on-a-Chip (SoC) appli-
cations. The incorporation of new types of functionality
onto the chip will enable the creation of monolithic devices
able to sense, think (carry out advanced algorithms), act
and communicate as well. The goal is that these SoC
devices have improved performance and robustness but also
low manufacturing and packaging costs. In this direction
new manufacturing processes are investigated [2]. Some
applications that illustrate the viability and commercial
potential of this integration have been already reported.
An accelerometer [3] has been developed and marketed
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by Analog Devices. The fabrication was made by cus-
tomizing their manufacturing processes in order to produce
the micromechanical devices using the same processes that
produce the integrated electronics. In another approach,
researchers [4] have developed a modular integrated ap-
proach in which the aluminum metallization of CMOS
is replaced with tungsten to enable the CMOS to with-
stand subsequent micromechanical processing. Additionally,
a European IST project SiGeM is under way [5], where
an integrated gyroscope is developed by post-processing
thick poly-SiGe surface micro-machined structures on top
of CMOS circuitry. This integrated gyroscope is expected
to have a higher performance compared to the state-of-the-
art two-chip solutions due to a drastic reduction in parasitic
capacitance. This project should also open up opportunities
for using poly-SiGe for other MEMS. CMOS integration
of sensors is an important step towards system miniaturiza-
tion and improved performance. Post-CMOS integration of
MEMS allows the use of conventional CMOS processes and
fairly independent optimization of the CMOS and MEMS
processes. However, it dictates a lower thermal budget for
MEMS processing. Poly-SiGe provides properties required
for MEMS applications at significantly lower temperatures
compared to poly-Si (= 800oC ). In the past year some
processes have been developed for depositing poly-SiGe
films at CMOS-compatible temperatures (< 450oC and
even < 400oC for compatibility with low-permittivity
dielectrics) [6].

Parallel to these fabrication and integration research ef-
forts, modeling and control of MEMS has gained significant
importance, due to the direct connection to the functionality
of such devices. Given the ability to obtain mathematical
models of MEMS, often in the form of nonlinear differential
equations [7], [8], [9], a logical next step is applying feed-
back control. While an introduction to control of MEMS is
provided in [7](Chapter VII) the area is relatively new [10],
[11], [12].

Our research effort is centered on developing and embed-
ding model predictive control [13], [14] for microchemical
system applications. Microchemical systems are a new gen-
eration of miniature chemical systems that carry out chem-
ical reactions and separations in precisely fabricated three
dimensional microreactor configurations in the size range of
a few microns to a few hundred microns. Applying control
in a microchemical system may include efficient mixing
of different laminar streams, manipulating microflows and
adjusting the temperature distribution.

This paper is organized as follows. Section II contains a
literature review of real-time MPC implementations, a brief
theoretical introduction on MPC, and information on the
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general purpose processor we use for this implementation.
A case study is examined in Section III, where we include
the experimental results. In Section IV we provide the
results of profiling the performance of the embedded MPC.
We conclude the paper with remarks on our research results.

II. EMBEDDED MODEL PREDICTIVE CONTROL

Model predictive control originated in the chemical pro-
cess industries. The main advantages of MPC are the ability
to handle constraints and its applicability to multivariable
nonlinear processes. Because of the computational require-
ments of the optimizations associated with MPC, it has
primarily been applied to plants in the process industry,
with slow dynamics. Furthermore, existing implementations
of MPC typically perform numerical calculations using
workstations in 64-bit Floating Point (FP) arithmetic, which
is too expensive, power demanding and large in size.

The application of real-time embedded model predictive
control for microscale devices presents new technological
challenges, and some initial results have been reported
in this direction. A real-time multiprocessing system is
provided in [15], where the author proposes a programming
procedure that results in the fastest implementation of the
core calculations of model predictive control algorithms.
The combination of Field-Programmable Analog Arrays
(FPAAs) with Field-Programmable Gate Arrays (FPGAs)
was proposed in [16] for the development of dynamically
reconfigurable analog/digital hardware, capable of handling
MPC computation requirements. A feedback scheduling
strategy for multiple MPCs is proposed in [17], where
the scheduler allocates CPU time to the tasks according
to the current values of the cost functions. Since the
MPC algorithm is iterative, the feedback scheduler may
also abort a task prematurely to avoid excessive input-
output latency. Finally, a Multi-Parametric (MP) program-
ming method was proposed [18], [19] to solve off-line the
quadratic optimization problem associated with MPC. The
constrained quadratic optimization is shown to be piecewise
affine, using partitions of the state space determined by the
constraints. The feedback laws are precomputed and the
online calculations consist of a table-lookup in memory and
an affine transformation. However, for an input constrained
problem, increasing the number of controlled variables
(thus the number of constraints), yields prohibitive memory
requirements for multivariable constrained systems with fast
dynamics.

Alternatively, we have proposed [20], [13] a paramet-
ric methodology based on emulations, for reducing the
precision of the microprocessor to the minimum while
maintaining optimal control performance. By reducing the
precision we are increasing the optimization speed while
reducing the power consumption and the overall chip area.
A Logarithmic Number System (LNS) based micropro-
cessor architecture is used, providing further energy and
computational cost savings.

A. Theoretical background

Mathematical models of different complexity can be
developed for MEMS applications. Partial differential equa-
tions are commonly used to describe their dynamical behav-
ior. Nevertheless techniques of reduced order modeling can
be applied leading often to state-space formulations [7] of
the form:

x(k + 1) = Ax(k) + Bu(k) (1)

y(k) = Hx(k) (2)

where x represents the states, y the output, and u the actu-
ation. The problem can be with input or output constraints.
The matrices A, B and H depend upon the actual examined
MEMS. A schematic of the implementation of MPC is given
in the following Figure 1.

Model Predictive 
        Control

yref

 System
u(t+k|t)

u(t|t) y(t)

Fig. 1. Block diagram of MPC.

The steps for the application of MPC are described with
the following:

1. Initially the future outputs are calculated at each sam-
ple interval over a predetermined horizon N , the prediction
horizon, using the process model. These outputs y(t + k|t)
for k = 1...N depend up to the time t on the past inputs
and on the future signals u(t + k|t), k = 0...N − 1 which
are those to be sent to the system.

2. The next step is to calculate the set of future control
moves by optimizing a determined criterion in order to keep
the process as close as possible to a predefined reference
trajectory. This criterion is usually a quadratic function
of the difference between the predicted output signal and
the reference trajectory. In some cases the control moves
u(t+ k|t) are included in the objective function in order to
minimize the control effort:

JP (k) =
P∑

k=0

{[y(t + k|t) − yref ]2 + Ru(t + k|t)2} (3)

|u(t + k|t)| ≤ b , k ≥ 0 (4)

where y(t+k|t) are the predicted outputs, yref is the desired
set reference output, u(t+ k|t) the control sequence and R
is the weighting on the control moves, a design parameter.
This system is subject to input constraints given by the
vector b.

3. Finally, the first control move u(t|t) is sent to the
system while the rest are rejected. This is because at the
next sampling instant the output y(t+1) is measured by the
system and the procedure is repeated with the new values
so that we get an updated control sequence.
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B. Emulated Optimization

The optimization is a fundamental part of MPC since it
results in optimal control inputs for the process. The com-
putational effort required in an embedded real-time MPC
derives almost entirely from the optimization algorithm.
Logically the choice of the optimization technique [21] is
decisive to the performance of the controller. It has to be
noted that from the architecture perspective the operations
that are responsible for the majority of instructions that
are executed in the processor are matrix inversions and
abundant dot products. The algorithm that is implemented
for the minimization of the cost function is a direct appli-
cation of Newton’s method, incorporating the constraints in
the cost function, using barrier functions for the inequality
constraints, and penalty functions for equality constraints,
defined as:

di(u) = µi(aT
i u − bi)2 , i ∈ E (5)

di(u) = µi log(aT
i u − bi) , i ∈ I (6)

resulting in the unconstrained non-linear problem:

minimize
u

f(u) =
1
2
uT Gu + gT u +

∑
i

di(u) (7)

The problem of equation (7) can be solved numerically
approximating f(u) by a quadratic function around u, ob-
taining the gradient ∇f(u) and Hessian H(u), and iterating:

u(k+1) = u(k) − H−1(u(k)) · ∇f(u(k)) (8)

The predicted output can be computed explicitly, at each
sampling time, using u(t + k|t) and the state space model
of (4). The complexity of this algorithm is dominated by
the computation of H−1, which requires O(n3) operations,
where n is the number of variables in the optimization.
The advantage of formulating the on-line MPC problem in
this fashion is that it directly extends to other objective
functions, as opposed to the MP approach which applies to
QPs [18], [19].

C. Hardware implementation of MPC

For the real-time implementation of model predictive
control we use the high-performance single board computer
phyCORE-MPC555, illustrated in Figure 2. This boards
packs the power of Motorola’s embedded 32-bit MPC555
microcontroller within a miniature footprint. The MPC555
is a high-speed 32-bit Central Processing Unit that contains
a 64-bit floating point unit designed to accelerate the
advanced algorithms necessary to support complex appli-
cations. All signals and ports of the MPC555 extend to
two Molex high density (0.635 mm pitch) 160 pin header
connectors. These high density pins allow it to be plugged
like a “big chip” into user target hardware.

Fig. 2. PhyCORE-MPC555 board.

III. CASE STUDY

The problem examined has been adapted from [22]. It
is a state-space problem that describes the dynamics of a
rotating antenna at the origin of the plane (driven by an
electric motor). The control problem is to use the input
voltage to the motor (u V) to rotate the antenna so that it
always meets the a predefined objective (i.e. points towards
a moving object in the plane). We assume that the angular
positions of the antenna and the moving object (θ and θr

rad respectively) and the angular velocity of the antenna (θ̇
rad/sec) are measurable. The motion of the antenna can be
described by the following discrete-time equations obtained
from their continuous-time counterparts by discretization
using a sampling time of 0.1 s and Euler’s first-order
approximation for the derivative:

x(k + 1) =
[

1 0.1
0 1 − 0.1a(k)

]
x(k) +

[
0

0.1k

]
u(k)

y(k) =
[

1 0
]
x(k)

The parameter a(k) is proportional to the coefficient of
viscous friction in the rotating parts of the antenna and for
the simulations we assume that a(k) = 1.

In order to test the performance of MPC on the embedded
target we use Processor-In-the-Loop (PIL) techniques. As
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Fig. 3. The Motorola MPC555 processor on the top right. The size of
the chip is about 2cm×2cm.

illustrated in Figure 4, the board is connected to a host
workstation. In PIL mode, a plant model runs in non-
real-time on the host workstation in Simulink. Meanwhile,
generated code running on the MPC555 exchanges signals
via RS232 serial communication with the Simulink simula-
tion running on your workstation. At each sample interval,
Simulink performs model updates and sends output signal
data via RS232 to the MPC555. We currently examine
FEMLAB based MEMS model as the actual controlled
system by the embedded model predictive controller.

Fig. 4. Co-simulation setup

A. PIL Simulation Results

The main complexity of MPC arises from the underly-
ing optimization algorithm, and the size of the matrices
involved. Therefore these can be made arbitrarily large by
increasing the control and prediction horizons, allowing us
to test the proposed embedded controller performance in

different computational complexity levels. The embedded
controller behavior was tested for different cases, having
the set-point at 2. The controlled variables are constrained
between −2 < u < 2V.

In order to examine the performance of MPC running on
the embedded board we set the number of optimizations,
carried out at each sampling time, to a fixed number.
Using profiling techniques, and by requiring the number
of optimization to be fixed, we will be able to examine
the performance of MPC on the Motorola processor for
different control and prediction horizons. In Figure 5 we
illustrate the output and the actuation for prediction horizon
of 10 and control horizons of 3,4,6 and 8 (the output and
actuation for the different cases overlap).
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Fig. 5. Output and actuation for prediction horizon of 10 and control
horizons of 3,4,6 and 8.

The output and the actuation for prediction horizon 20
and control horizons of 3,4,8 and 12 are illustrated in
Figure 6. In this case, there is some deviation in the results
but the performance remains satisfactory.

B. Hybrid MPC

In order to decrease the computational requirements of
the optimizations associated with MPC a hybrid logic can
be incorporated in the algorithm. For example, when the
output reaches the set-point the MPC switches to a less
expensive control scheme (i.e. gain scheduling). In this
work we require that the optimizations are aborted when
the updates on the actuation remain within specific bounds.
In Figure 7 we illustrate the results for prediction horizon
of 10 and control horizon of 6, after incorporating this logic
to the algorithm. More specifically when the updates on the
actuation remain within the bounds of −0.00001 ≤ u ≤
0.00001 the optimizations are aborted.

IV. CODE PROFILING

A profiler can analyze the amount of time your code
spends performing various tasks of the optimization and
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Fig. 6. Output and actuation for prediction horizon of 20 and control
horizons of 3,4,8 and 12.
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Fig. 7. Output, actuation and number of optimizations for prediction
horizon of 10 and control horizon of 6.

detect bottlenecks (time consuming routines that data passes
through) that are just inordinately slow. Therefore pro-
filing should be used to improve the efficiency of core
routines and improve a subsequent SoC implementation.
Most of the profilers perform statistical sampling of the
runtime environment; these profilers are called passive or
sampling profilers. A passive profiler divides the program
being profiled into evenly-sized “buckets” in memory. It
then samples the processor’s program counter at regular
intervals to determine which bucket the counter is in. The
main advantage of a passive profiler is that it requires
no modification to the program under observation. You
just run the profiler and tell it what program to observe.
Also, passive profilers distribute the overhead that they
incur evenly over time, allowing the post-processing steps

to ignore it. On the other hand, they cannot sample too
frequently or the sampling interrupt will overwhelm the
program being sampled. In addition, because they rely on
a statistical sampling technique, the program must run for
a long enough period to collect a valid sample.
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Fig. 8. Profiling setup.

In order to profile the performance of the embedded
target we use the setup of Figure 8, under SIMULINK
environment. The block represents MPC running on the
Motorola board, and the states oscillate with the addition of
bandlimited white noise, thereby requiring new optimization
solutions at each sampling interval. The simulation results
are provided in Figure 9.

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

A
ct

ua
tio

n

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

F
irs

t s
ta

te

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

S
ec

on
d 

st
at

e

Fig. 9. Simulation results of the profiler

To examine the influence of the control horizon on
the computational performance of MPC running on the
MPC555 processor we set the number of optimizations at
a fixed number. The results are given in Figure 10 for fifty
and twenty optimizations. Additionally, in Figure 11 we
provide the performance of MPC for different number of
optimizations keeping a control horizon of 3 and prediction
horizon of 10. As expected the time grows linearly with
the optimizations for fixed prediction and control horizons.
An interpolation shows that for the particular problem and
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Fig. 10. Profiling results for different control horizons with 20 and 50
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MPC parameters, we spend approximately 15 milliseconds
for each optimization.
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Fig. 11. Profiling results for control horizon 3 and prediction horizon of
10, for different number of completed optimizations.

V. CONCLUDING REMARKS

Manufacturing advances have opened the path for the fab-
rication of micromechanical devices and electronic subsys-
tems under the same manufacturing and packaging process.
It is safe to assume that the cost of such manufacturing
process will decrease with time, thereby opening the path
for the use of advanced control algorithms towards systems-
on-chip applications. The advantages of MPC such as the
ability to handle constraints, the applicability to nonlinear
processes and to multivariable problems, will make this
control method a necessary choice for many MEMS ap-
plications.

In [20] we proposed a methodology for designing an
Application Specific Instructor Processor (ASIP) optimized
for the operations associated with model predictive control.
In this paper we presented an implementation of model
predictive control using a general purpose processor. With
the use of PIL simulations we were able to customize the
optimization algorithm used and choose the optimal design
parameters, improving the algorithm prior to proceeding to

fabrication. Furthermore, profiling results allow us to obtain
information on the performance of this processor, and make
the necessary comparisons with our proposed ASIP.
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