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Real-time Imprecise Computation Tasks Mapping for

DVFS-Enabled Networked Systems
Lei Mo∗, Member, IEEE, Angeliki Kritikakou†, Member, IEEE, Olivier Sentieys†, Member, IEEE and

Xianghui Cao∗, Senior Member, IEEE

Abstract—Networked systems are useful for a wide range of
applications, many of which require distributed and collaborative
data processing to satisfy real-time requirements. On the one
hand, networked systems are usually resource constrained, mainly
regarding the energy supply of the nodes and their computation
and communication abilities. On the other hand, many real-
time applications can be executed in an imprecise way, where
an approximate result is acceptable as long as the baseline
Quality-of-Service (QoS) is satisfied. Such applications can be
modeled through Imprecise Computation (IC) tasks. To achieve a
better trade-off between QoS and limited system resources, while
meeting application requirements, the IC-tasks must be efficiently
mapped to the system nodes. To tackle this problem, we firstly
construct an IC-tasks mapping problem that aims to maximize
system QoS subject to real-time and energy constraints. Dynamic
Voltage and Frequency Scaling (DVFS) and multi-path routing
are explored to further enhance real-time performance and reduce
energy consumption. Secondly, based on the problem structure, we
propose an optimal approach to perform IC-tasks mapping and
prove its optimality. Furthermore, to enhance the scalability of
the proposed approach, we present a heuristic IC-tasks mapping
method with low computation time. Finally, the simulation results
demonstrate the effectiveness of the proposed methods in terms of
the solution quality and the computation time.

Index Terms—Networked Systems, Task Mapping, Imprecise
Computation, Quality-of-Service.

I. INTRODUCTION

W IRELESS Sensor and Actuator Networks are networked

systems that cannot only measure the physical environ-

ment through the sensor nodes, but can also modify it, through

the actions performed by the actuator nodes. This characteristic

is one of the key elements of the Internet of Things (IoT) [1],

[2]. Typical application requirements in such networked systems

are low energy consumption, low task execution delay, and high

system Quality of Service (QoS) [3]. However, enhancing sys-

tem QoS often requires more energy consumption and execution

time. To balance these contradictory requirements, an efficient

mapping of the application tasks on the nodes is required. By

properly mapping the tasks on the nodes, we can avoid sending

all the data to a central controller that executes the tasks. Part

of task execution can be done on-site, on the nodes that have

computation and communication capabilities. As a result, only

a small part of data is required to be sent, reducing the network
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traffic and the node workload. This model of computation is

also known as “Fog/Edge-computing” [4].

In many application domains [5], such as multimedia process-

ing, mobile target tracking, real-time heuristic search, informa-

tion gathering and control engineering, an approximate result,

obtained before the deadline, is usually acceptable. For example,

in video streaming, frames with a lower quality are better

than totally missing frames. In target tracking, an approximate

estimation of target’s location in time is better than an accurate

location, obtained too late. In these domains, the applications are

usually modeled as Imprecise Computation (IC) tasks [6], where

a task is logically decomposed into a mandatory subtask and

an optional subtask. The mandatory subtask must be completed

before the task deadline to generate the minimum acceptable

QoS. Then, the optional subtask is executed, if there are enough

free resources in the system. With the IC-tasks model, the longer

the optional subtasks are executed, the better the QoS of the

result. Dynamic Voltage and Frequency Scaling (DVFS) [7] is

an efficient technique that controls both voltage and frequency,

thus, the energy and the time required to execute the tasks.

By properly mapping IC-tasks on DVFS-enabled nodes of

networked systems, the QoS can be further improved, under

the limited system sources and the application requirements.

Task mapping is a well-known problem in embedded sys-

tems [7]–[16]. However, there are few works that deal with task

mapping on the nodes of networked systems [17]–[23]. The

majority of these approaches focuses on precise computation

tasks (i.e., the tasks without optional subtasks) and systems

without DVFS capabilities, see Table I. When both IC-tasks and

DVFS are considered, the way to execute IC-tasks is decided by

1) the task mapping, which refers to both the task allocation (on

which node a task is executed) and the task scheduling (when

each task starts to execute and how long its optional subtask

is executed), and 2) the voltage and frequency of the node,

which executes the task. In this context, there are three main

differences between our work and the existing works:

1) Compared with the task mapping on embedded systems [7]–

[16], the task mapping on networked systems is constrained,

since some tasks (e.g., sensing and control) have one-to-one

allocation on the nodes, whereas the allocation constraints

of other tasks (e.g., data processing) may not be restricted.

2) In embedded systems, the task communication cost (time

and energy) is usually very small, compared with the task

execution cost. Therefore, the impact, that the task mapping

decisions have on the task communication cost, is limited.

However, in networked systems, the task communication
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TABLE I
TASK MAPPING METHOD

Embedded systems Networked systems

[7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] Ours

Tasks

Precise
√ √ √ √ √ √ √ √ √ √ √

Imprecise
√ √ √ √ √ √ √

Dependent
√ √ √ √ √ √ √ √ √ √ √ √ √ √

Independent
√ √ √ √

Platform

DVFS
√ √ √ √ √ √ √ √ √ √

Multi-path
√ √

Comm. cost
√ √ √ √ √ √ √ √

Objective
Max. QoS

√ √ √ √ √ √ √
Min. Energy

√ √ √ √ √ √ √ √ √ √ √

Constraint
Real-timeliness

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Energy

√ √ √ √ √ √

Solution
Optimal

√ √ √ √ √ √
Heuristic

√ √ √ √ √ √ √ √ √ √ √ √ √

cost must be taken into account, and this cost highly depends

on the task mapping decision. When tasks are allocated to

different nodes, communication delay is introduced, while

the nodes consume energy for transmitting the data.

3) In networked systems, the task mapping approaches usually

assume that the tasks are precise [17]–[22]. However, since

our work considers IC-tasks, a set of new variables (relevant

to the execution of optional subtasks) has to be introduced

into the task mapping problem. The objective is to maximize

the QoS by increasing the execution cycles of the optional

subtasks. The longer the optional subtasks are executed, the

more energy and time are spent. Hence, the adjustment of

optional subtasks affects the objective function as well as the

energy and the time constraints of the task mapping problem.

A. Related Work

Existing task mapping approaches focus either on energy-

aware mapping or QoS-aware mapping. The majority of energy-

aware task mapping approaches usually aim at minimizing

energy consumption, under system resource and application

constraints [7]–[11]. In order to enhance energy efficiency,

DVFS is used. An example considering independent real-time

tasks is the work of [8], where the task allocation problem

with DVFS is formulated as an Integer Linear Programming

(ILP) and solved by a relaxation method based on Linear

Programming (LP). When dependent real-time tasks are con-

sidered, Mixed Integer Programming (MIP) is usually used to

formulate the task mapping problem [7], [9]–[11]. In order to

solve an ILP-based task mapping problem, a hybrid Genetic

Algorithm (GA) is designed in [9], and an optimal method

based on Benders Decomposition (BD) [24] is presented in [10].

Combining DVFS and Dynamic Power Management (DPM),

a Mixed-Integer Linear Programming (MILP)-based task map-

ping problem is formulated in [7]. The number of variables is

further reduced by problem refinement, and then, the refined

MILP problem is optimally solved by the CPLEX solver. The

Mixed-Integer Non-Linear Programming (MINLP)-based task

mapping problem in [11] is first relaxed to a MILP by linear

approximation, and then, is optimally solved by the Branch and

Bound (B&B) method [25].

Existing QoS-aware task mapping approaches usually con-

sider the IC-task model [12]–[16]. Their aim is to maximize

system QoS, under real-time and/or energy constraints. In [13],

the problem of mapping independent tasks is solved, but the

frequency of each processor is decided upfront, whereas task

allocation and optional subtasks adjustment are solved one

after the other. A similar task mapping problem is studied

in [14], where an optimal approach is proposed based on

problem decomposition. The work in [15] focuses on task

scheduling and optional subtasks adjustment of dependent tasks,

whereas task allocation is fixed and given in advance. Other

existing approaches focus on bi-objective optimization, e.g.,

increasing the QoS while reducing the frequency changes under

real-time constraints for independent tasks [16]. Dependent

tasks are mapped on a DVFS-enabled uni-processor platform

in [12]. This problem is first formulated as an Integer Non-

Linear Programming (INLP), and then, is relaxed to a convex

problem. However, the aforementioned approaches mainly focus

on embedded systems, thus, the communication cost is not taken

into account. In the networked systems, the nodes also consume

energy and time for data transmission.

In networked systems, approaches exist that map precise

dependent tasks on the nodes of Wireless Sensor Networks

(WSNs) [17]–[22]. For instance, the work of [17] minimizes

the overall energy consumption and balances the workload of

the system while meeting task deadline through a three-phase

heuristic. The task allocation problem with metric – balance

the energy consumption of the nodes – is considered in [19].

This problem is first formulated as an INLP, and then, it is

transformed to an ILP. Finally, the transformed problem is

solved by a greedy algorithm. In [20], [21], the lifetime of

system is maximized (i.e., minimize the energy consumption of

the node with the lowest energy level) by allocating dependent

tasks on the nodes. On this basis, a heuristic method [20] and

a game theory method [21] are designed to solve task alloca-

tion problems, respectively. However, DVFS is not taken into

account in the above approaches. The mapping of dependent

tasks and DVFS are jointly addressed in [18], where a two-

phase heuristic is proposed. In [22], the energy consumption for

communication and task execution is minimized, by allocating

the tasks to DVFS-enabled nodes through the ant colony and

the bee colony algorithms. However, since the aforementioned

approaches mainly focus on the precise computation tasks, the

improvement of system QoS is limited. In [23], the dependent

IC-tasks mapping problem is formulated as a MILP with the

goal of maximizing system QoS and optimally solved by a
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BD-based approach. Compared with our preliminary results

in [23], the current work takes DVFS and multi-path routing

into account and proposes a novel heuristic method to further

reduce the computation time. By using DVFS and multi-path

routing, we can achieve a better trade-off between real-time

performance and energy efficiency.

B. Contributions

Complementary to the state-of-the-art, this work solves the

following mapping problem: given a networked system with

DVFS-enabled wireless nodes and a set dependent IC-tasks, we

aim to determine: 1) which node should the task be executed on;

2) what voltage/frequency level should be used for each task;

3) what is the execution sequence of the tasks on each node; 4)

which paths transmit the data required for the task execution; 5)

when should a task start its execution; and 6) how many cycles

of the optional subtasks are needed to be executed, such that the

system QoS is maximized. while meeting the energy supply and

the task deadline constraints. In this context, the task mapping

decides task allocation, frequency assignment, task sequence,

multi-path routing, task start time and task adjustment. Our main

contributions are summarized as follows:

1) We formulate the IC-tasks mapping problem that simulta-

neously optimizes task allocation, frequency assignment,

task sequence, multi-path routing, task start time and task

adjustment as a MINLP. The objective is to maximize QoS

without violating the real-time and energy constraints.

2) We prove that, by replacing the nonlinear items with some

auxiliary variables and adding additional linear constraints

into the optimization problem, the MINLP problem can be

equivalently transformed to a MILP.

3) Based on the BD framework and the idea of closed-loop

control, we propose an Optimal Task Mapping (OTM)

algorithm to efficiently solve the transformed problem.

This method decomposes the transformed problem into two

subproblems, each with fewer constraints and variables.

The first subproblem is an ILP, which is responsible

for task allocation, frequency assignment, task sequence

and multi-path routing. The second subproblem is an LP,

which determines the start time and the optional cycles

of each task. The proposed OTM algorithm iterates using

the solutions of these two subproblems. We prove that

OTM converges to the optimal solution of the transformed

problem.

4) In order to enhance the scalability of the proposed ap-

proach, we present a Heuristic Task Mapping (HTM)

algorithm, which reduces the computation time of OTM

algorithm by solving the subproblems in a sequence.

5) Finally, we provide extensive experimental results to eval-

uate the performance of the proposed optimal and heuris-

tic task mapping algorithms. The obtained results show

significant performance improvements compared with the

state-of-the-art task mapping methods in terms of solution

quality and computation time.

The rest of this paper is organized as follows. Section II

presents the system model and formulates the problem under

study. Section III, Section IV and Section V describe the

problem linearization method, the optimal and the heuristic task

mapping algorithms, respectively. Finally, Section VI shows the

simulation results and Section VII concludes this work.

II. SYSTEM MODELS AND PROBLEM FORMULATION

A. Motivational Example

Let’s consider a Heating, Ventilation, and Air Conditioning

(HVAC) system [26] as an example. This system includes eight

wireless nodes {θ1, . . . , θ8}, as shown in Fig. 1. The nodes

θ1 and θ8 equipped with temperature sensors. They monitor

the average temperature within their sensing range and use this

information to determine if a fire has occurred. The nodes θ3
and θ7 are equipped with the humidity sensors, able to measure

the humidity in the air. The node θ4 is connected to a sprinkler,

capable of extinguishing a fire within its acting range. The node

θ5 is connected to a fan, capable of reducing the humidity in

the air. The nodes equipped with temperature sensor, humidity

sensor, sprinkler and fan are marked with St, Sh, As and Af ,

respectively.

Node Graph

𝜏3

𝜏2

𝜏1

𝜏5

𝜏6

𝜏7

𝜏8

Task Graph
s35

s25

s15

s45

s56

s67

𝜃1

𝜃2

𝜃3

𝜃4

𝜃5

𝜃6
Af

St

𝜏4

s68

𝜃7

𝜃8

St

Sh

Sh

As

Fig. 1. HVAC system.

The HVAC system periodically measures the temperature and

the humidity of the environment, compare the measured values

with given thresholds, and decide the corresponding actions.

When a fire has been detected, the sprinkler must be activated

first, and then, the fan. If these actuators are activated in the

opposite order, it will cause serious problems. In the HVAC

system, a task can be of sensing, processing, or acting type.

For example, τ1 and τ2 are the temperature measurement tasks,

while τ3 and τ4 are the humidity measurement tasks. These

sensing tasks generate a set of data, with sizes s15, s25, s35,

and s45, that have to be processed by task τ5. After processing,

task τ5 transmits the result to task τ6, which determines the

control action to be taken. Finally, tasks τ7 and τ8 act upon

the decision generated by task τ6 and control the actions of the

actuators. The example of Fig. 1 illustrates the task mapping

problem addressed in this work.

• Firstly, the allocations of sensing tasks {τ1, τ2, τ3, τ4} and

acting tasks {τ7, τ8} are restricted only to the nodes that have

the corresponding capabilities. However, the data processing

tasks {τ5, τ6} can be allocated on any node. The dependencies

between the tasks define the task graph. Considering that the
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communication range of each node is limited, the communica-

tion between the nodes is modeled by a node graph. Both task

graph and node graph influence the task allocation decision.

• Secondly, each task τi is composed of a mandatory subtask

and an optional subtask. The optional subtask is executed

immediately after its corresponding mandatory subtask. The

QoS of the result highly depends on the number of execution

cycles of optional subtask. When deciding the task allocation

and the task scheduling (i.e., the start time and the end time of

each task), the following goals must be achieved at the same

time: 1) meet the deadline of the tasks (i.e., each task must be

completed within a predefined deadline to generate a result in

time), 2) the energy consumption of the nodes (i.e., the energy

spent for computation, communication, sensing and acting)

should not exceed their energy supply, and 3) increase the

execution cycles of optional subtasks to maximize the QoS.

These three goals are important, but they contradict with each

other, since the real-time and energy constraints may require

to sacrifice the system QoS.

B. System Model

1) Task Model: We consider a task set T of N periodic real-

time IC-tasks {τ1, . . . , τN}. Each task τi is described by a tuple

{oi,Mi, Oi, t
s
i , di, li}. oi, Mi and Oi are measured in Worst

Case Execution Cycles (WCEC). oi is the actual WCEC of the

optional subtask, Mi is the WCEC of the mandatory subtask,

and Oi is the maximum WCEC of the optional subtask oi (i.e.,

0 ≤ oi ≤ Oi). tsi and di are the start time and the deadline

of task τi, respectively. li is the period of task τi, which is

also equal to the scheduling horizon H . We introduce a linear

QoS function fi(oi) for each task τi, where the generated QoS

increases uniformly with the number of optional cycles, decided

for actual execution [5].

We assume that the tasks are dependent and non-preemptive.

They are released at the same time 0 and share a common

scheduling horizon H . The task set T is modeled by a Directed

Acyclic Graph (DAG) Gt(Vt, Et), where the vertexes Vt and the

edges Et represent the set of tasks to be executed and the data

dependencies between the tasks, respectively. We consider that

the system operates in rounds, which means in each round (i.e.,

scheduling horizon H) all the tasks in task set T are executed

once. Based on the dependency between the tasks, we introduce

a task execution order matrix p = [pij ]N×N . If pij = 1, task

τi precedes task τj and τj is the closest task of τi, otherwise,

pij = 0. As the task graph shown in Fig. 1, we have p15 =
p25 = p35 = p45 = p56 = p67 = p68 = 1.

2) Energy Model: We consider a networked system that

contains M wireless DVFS-enabled nodes {θ1, . . . , θM}, where

Ms nodes {θ1, . . . , θMs
} equipped with sensors and Ma nodes

{θMs+1, . . . , θMs+Ma
} connected to actuators (Ms+Ma ≤M ).

The processor of each node has L different Voltage/Frequency

(V/F) levels {(v1, f1), . . . , (vL, fL)}. The power consumption

of the processor under the lth V/F level is computed as

P c
l = P s

l + P d
l , (1)

where P s
l = vlK1e

K2vleK3vbs + |vbs|Ij is the static power, and

P d
l = Ceffv

2
l fl is the dynamic power [7]. The constants K1,

K2 and K3 are technology dependent. Ij is the approximately

constant junction leakage current. vbs is the reverse bias voltage

used to reduce the leakage power and can be treated as constant.

Ceff is the average effective switching capacitance.

We assume that the processor of node θk can operate in two

modes: active mode with the power consumption P c
k and idle

mode with the power consumption P 0
k [8]. The processor goes

into idle mode immediately when it has no task to execute.

The transition time and energy is incorporated into the task

execution time and energy, since they are very small compared

to those required to execute a task [8]. For each task τi, τi
starts and ends its execution on the same processor (i.e., no

task migration), and the frequency cannot be changed during

the execution of the task (i.e., inter-task DVFS).

3) Data Routing Model: Since each node can only commu-

nicate directly with the nodes that are within its communica-

tion range, we introduce a node graph Gn(Vn, En), where the

vertexes Vn represent the nodes, while the edges En represent

the communication cost between the nodes. In this paper, we

consider multi-path data routing, which means a pair of nodes

can communicate with each other through several paths. Specif-

ically, we consider two routing options: the 1st routing path

is energy-oriented, while the 2nd routing path is time-oriented,

since the system under study is energy and time constrained. For

the energy (time)-oriented path, an edge represents the energy

(time) required for transmitting and receiving a unit of data

between the corresponding two nodes. Therefore, the aim of

energy (time)-oriented routing is to find the shortest path. The

shortest path can be easily found through the existing methods,

such as Dijkstra’s algorithm [27].

e14

𝜃1

𝜃2

𝜃3

𝜃4

e13

e23

e24e34

(a)

t14

𝜃1

𝜃2

𝜃3

𝜃4

t13

t23

t24t34

(b)

Fig. 2. (a) Energy-oriented data path. (b) Time-oriented data path.

As the examples illustrated in Fig. 2, eij and tij is the weight

of the edge between the nodes θi and θj in the energy-oriented

and time-oriented graph, respectively. If a data is required to

be transmitted from θ1 to θ2, we have θ1 → θ3 → θ2 for

the energy-oriented path, and θ1 → θ4 → θ2 for the time-

oriented path. To describe the time and the energy related

to path selection, we introduce 1) a routing energy matrix

r = [rβγkh]N×N×N×2, where rβγkh represents the energy

consumed per unit of data at node θk, when routing the

messages from θβ to θγ through the hth path, and 2) a routing

time matrix t = [tβγh]N×N×2, where tβγh denotes the time

required to transmit unit of data from θβ to θγ through the hth

path. Note that during the data transmission between θβ to θγ ,

if θk is not included in the hth path, we have rβγkh = +∞,

e.g., r1241 = +∞ in Fig. 2(a).
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C. Problem Formulation

The IC-tasks mapping problem has the objective of maxi-

mizing system QoS subject to real-time and energy constraints,

by determining task allocation, frequency assignment, task se-

quence, multi-path routing, task start time and task adjustment.

In order to formulate this problem, we introduce the following

variables: 1) binary variable qik = 1 if task τi is allocated to

node θk, otherwise, qik = 0; 2) binary variable cil = 1 if task

τi is executed with frequency fl, otherwise, cil = 0; 3) binary

variable uij = 1 if task τi proceeds τj , otherwise, uij = 0;

4) binary variable xeh = 1 if data over edge e in Et is routed

along the hth path, otherwise, xeh = 0; 5) continuous variable

tsi denotes the start time of task τi; 6) continuous variable oi
represents the optional subtask of task τi.

We assume that the following matrices are known: 1) task ex-

ecution order matrix p, 2) data size matrix s, 3) routing energy

matrix r, and 4) routing time matrix t. The parameters and the

variables used in the problem formulation are summarized in

Table II. For tractability reasons, during the problem formula-

tion, we consider oi as continuous variables. When the problem

is solved, we round the result down. Since the tasks are typically

executed in hundreds of thousands of cycles, one cycle is a very

fine-grained unit [12]. Let N = {1, . . . , N},M = {1, . . . ,M},
Ms = {1, . . . ,Ms}, Ma = {Ms + 1, . . . ,Ms + Ma} and

H = {1, 2}. The constraints involved in the task mapping

problem can be explained as follows.

1) Task Allocation Constraint: Since each task τi is assigned

to only one node and the task allocation decisions related to the

sensors and the actuators are restricted, we have
∑

k∈K
qik = 1, ∀i ∈ N , (2)

qik = 1, ∀(i, k) ∈Mm, (3)

where Mm denote the set of index pairs (tasks and nodes) that

have fixed matching. As the example shown in Fig. 1, since

q11 = q28 = q33 = q47 = q75 = q84 = 1, we have Mm =
{(1, 1), (2, 8), (3, 3), (4, 7), (7, 5), (8, 4)}.

2) Frequency Assignment Constraint: Since each task τi is

executed with only one V/F level, we get
∑

l∈L
cil = 1, ∀i ∈ N . (4)

3) Data Routing Constraint: Since the data over edge e in

Et is routed through one path, we obtain
∑

h∈H
xeh = 1, ∀e = (i, j) ∈ Et. (5)

4) Task Sequence Constraints: Before executing a task τj ,

we need to collect all the data generated from its previous

dependent tasks. If pij = pkj = 1, tasks τi and τk precede

τj and they are the tasks closest to τj . When these tasks

are allocated to different nodes, the node that executes τj
should collect the data from the other nodes. In order to avoid

communication collision [28], the data are received in sequence,

since one node cannot receive the data from multiple nodes

simultaneously. For the dependent tasks, e.g., τi and τj in Fig. 3

(pij = 1), if we allocate these tasks to different nodes θβ

TABLE II
SYMBOLS USED IN THE PROBLEM FORMULATION

Parameters

Ma number of actuator nodes

Ms number of sensor nodes

M number of nodes

N number of tasks

L number of voltage/frequency levels

H scheduling horizon

θk the kth node

τi the ith task

(vl, fl) the lth voltage/frequency level

P s
k static power of node θk

P d
k dynamic power of node θk

P c
k active power of node θk

P 0
k idle power of node θk

El
k available energy of node θk at the lth round

Mi mandatory cycles of task τi
Oi maximum optional cycles of task τi
di deadline of task τi

pij =











1 if task τi proceeds τj and τj is the

nearest task of τi

0 else

sij size of data that task τi produces for task τj
rβγkh energy consumed of node θk when routing unit

of data from θβ to θγ through the hth path

tβγh time required to transmit unit of data from

θβ to θγ through the hth path

Binary Variables

qik =

{

1 if task τi is allocated to node θk

0 else

cil =

{

1 if task τi is executed with frequency fl

0 else

uij =

{

1 if task τi proceeds task τj

0 else

xeh =











1 if data over edge e in Et is routed along

with the hth path

0 else

Continuous Variables

oi optional cycles of task τi
tsi start time of task τi

and θγ (i.e., qiβ = qjγ = 1) and choose the hth path (i.e.,

xeh = 1, e = (i, j) ∈ Et) to transmit the data from θβ to

θγ , the time required for θγ to receive the data from θβ is

sijpijqiβqjγxehtβγh. Therefore, the time spent for receiving the

data required by the execution of task τj is

trj =
∑

e∈Et

∑

β∈M

∑

γ∈M

∑

h∈H
sijpijqiβqjγxehtβγh, ∀j ∈ N . (6)

For the dependent tasks, e.g., τi and τj in Fig. 3 (pij = 1),

no matter if they are allocated to the same node or to different
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nodes, the execution sequence between these tasks is fixed.

Therefore, the start and end time of the tasks is bounded by

tsj ≥ pijt
e
i + trj , ∀i, j ∈ N , i 6= j, (7)

where tci =
∑

l∈L cil
Mi+oi

fl
and tei = tsi + tci are the execution

time and the end time of task τi, respectively. If pij = 1, we

have tsj ≥ tei + trj , else, (7) is always satisfied.

𝜏j

𝜏k

𝜏l𝜏i

Fig. 3. Task dependency.

On the other hand, for the independent tasks, e.g., τj and τk
in Fig. 3 (pjk = 0), if they are allocated to different nodes, the

execution of τj doesn’t affect the execution of τk. However, if τj
and τk are allocated to the same node, we need to schedule these

tasks so as to make sure that their executions do not overlap

with each other, since one processor executes no more than one

task at the same time. To this end, we introduce the following

constraint:

tei + trj ≤ tsj + (2− qik − qjk)H + (1− uij)H,

∀i, j ∈ N , i 6= j, ∀k ∈M. (8)

If τi and τj are executed on the different nodes (i.e., qik +
qjk ≤ 1), (8) is always satisfied, else, (8) is meaningful: with

the task allocation decision qik = qjk = 1, if uij = 1 (i.e., τi
precedes τj), we have tei + trj ≤ tsj ; if uij = 0, we get uji = 1
due to uji+uij = 1. Note that (8) can be rewritten as tej+ tri ≤
tsi+(2−qjk−qik)H+(1−uji)H = tsi+(2−qjk−qik)H+uijH .

Therefore, we have tej + tri ≤ tsi .

5) Task Deadline Constraint: Since each task τi must be

finished within a given time threshold di, we have

tei ≤ di, ∀i ∈ N . (9)

6) Energy Supply Constraint: With the task allocation deci-

sion qik, the time required to execute all the tasks assigned to

node θk is
∑

i∈N qikt
c
i , and the idle time of node θk being in

the scheduling horizon H is H −
∑

i∈N qikt
c
i . Based on the

energy model (1), the computation energy of node θk in each

round is

Ec
k =

∑

i∈N
qike

c
i +

(

H −
∑

i∈N
qikt

c
i

)

P 0
k , ∀k ∈M. (10)

where eci =
∑

l∈L cil
Mi+oi

fl
P c
l is the energy required to execute

task τi. On the other hand, the energy consumed for node θk
to transmit data in each round is

Et
k =

∑

e∈Et

∑

β∈M

∑

γ∈M

∑

h∈H
sijqiβqiγxehrβγkh, ∀k ∈M. (11)

Since the total energy consumed by node θk during the schedul-

ing horizon H cannot exceed the energy supply El
k, we have

Ec
k + Et

k + Es
k ≤ El

k, ∀k ∈Ms, (12)

Ec
k + Et

k + Ea
k ≤ El

k, ∀k ∈Ma, (13)

Ec
k + Et

k ≤ El
k, ∀k ∈M, ∀k /∈Ms,Ma, (14)

where Es
k is the sensing energy consumption and Ea

k is the

acting energy consumption.

Taking the objective (maximize QoS function
∑

i∈N fi(oi))
and all the constraints mentioned above into account, the Primal

Problem (PP) can be formulated as

PP : min
q,c,u,x,

ts,o

−
∑

i∈N
fi(oi) (15)

s.t.











(2)− (14),

qik, cil, uij , xeh ∈ {0, 1},

0 ≤ tsi ≤ H, 0 ≤ oi ≤ Oi.

III. PROBLEM LINEARIZATION

Since the products qikcil, qiβqjγxeh, ciloi and qikciloi are

included in the constraints (6)–(14), (15) is a MINLP problem,

which is hard to solve directly. Note that qik, cil and xeh are

binary variables, while oi is a continuous variable. In order

to linearize above nonlinear terms, we introduce the following

lemmas.

Lemma 3.1: Let b1, b2 and g denote the binary variables. The

nonlinear constraint g = b1b2 can be equivalently replaced by

the linear constraints: g ≤ b1, g ≤ b2 and g ≥ b1 + b2 − 1.

All the proofs of lemmas and theorems are presented in the

Appendices for better readability of the main manuscript.

Based on Lemma 3.1, we first introduce an auxiliary (binary)

variable gikl to replace the nonlinear term qikcil. Then, we add

the following constraints into the PP:

{gikl ≤ qik, gikl ≤ cil, gikl ≥ qik + cil − 1},

∀i ∈ N , ∀k ∈M, ∀l ∈ L. (16)

Similarly, the nonlinear term qiβqjγ in qiβqjγxeh is first

replaced by the auxiliary variable biβjγ and the following

constraints:

{biβjγ ≤ qiβ , biβjγ ≤ qjγ , biβjγ ≥ qiβ + qjγ − 1},

∀e ∈ Et, ∀β, γ ∈M. (17)

Then, the nonlinear term biβjγxeh is replaced by the auxiliary

variable wiβjγh and the following constraints:

{wiβjγh ≤ biβjγ , wiβjγh ≤ xeh, wiβjγh ≥ biβjγ+xeh−1},

∀e ∈ Et, ∀β, γ ∈M, ∀h ∈ H. (18)

Note that qikciloi = gikloi, where gikl is a binary variable,

while oi is a continuous variable bounded by 0 ≤ oi ≤ Oi. To

deal with the nonlinear terms ciloi and gikloi, we introduce the

following lemma.

Lemma 3.2: The spaces S1 = {[y, b, x]|y = bx,−s1 ≤ x ≤
s2} and S2 = {[y, b, x]| − bs1 ≤ y ≤ bs2, y + bs1 − x − s1 ≤
0, y−bs2−x+s2 ≥ 0} are equivalent, where x is a continuous

variable, b is a binary variable, and s1, s2 > 0 are constants.

Based on Lemma 3.2, the nonlinear terms ciloi and gikloi are

replaced by the auxiliary (continuous) variables yil and zikl, and

the following constraints:

{yil ≤ cilOi, yil − oi ≤ 0, yil − cilOi − oi +Oi ≥ 0},
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∀i ∈ N , ∀l ∈ L, (19)

{zikl ≤ giklOi, zikl− oi ≤ 0, zikl− giklOi− oi +Oi ≥ 0},

∀i ∈ N , ∀k ∈M, ∀l ∈ L. (20)

Therefore, with the auxiliary variable wiβjγh, (6) and (11)

are rewritten as follows:

trj =
∑

e∈Et

∑

β∈M

∑

γ∈M

∑

h∈H
sijpijwiβjγhtβγh, ∀j ∈ N , (21)

Et
k =

∑

e∈Et

∑

β∈M

∑

γ∈M

∑

h∈H
sijwiβjγhrβγkh, ∀k ∈M. (22)

On this basis, with the auxiliary variables gikl, yil and zikl,
(7)–(10) are reformulated as follows:

tsj ≥ pij

(

tsi +
∑

l∈L

cilMi + yil
fl

)

+trj , ∀i, j ∈ N , i 6= j, (23)

tsi+
∑

l∈L

cilMi + yil
fl

+trj ≤ tsj+(2−qik−qjk)H+(1−uij)H,

∀i, j ∈ N , i 6= j, ∀k ∈M, (24)

tsi +
∑

l∈L

cilMi + yil
fl

≤ di, ∀i ∈ N , (25)

Ec
k = HP 0

k+
∑

i∈N

∑

l∈L

giklMi + zikl
fl

(P c
l −P

0
k ), ∀k ∈M. (26)

Finally, (15) is transformed to the following MILP problem:

PP1 : min
q,c,u,x,g,b,w,

o,ts,y,z

−
∑

i∈N
fi(oi) (27)

s.t.











(2)− (5), (12)− (14), (16)− (26),

qik, cil, uij , xeh, gikl, biβjγ , wiβjγh ∈ {0, 1},

0 ≤ oi, yil, zikl ≤ Oi, 0 ≤ tsi ≤ H.

Remark 3.1: Lemma 3.1 and Lemma 3.2 show that the lin-

earization does not change the feasible region and the objective

function of the problem. Therefore, solving PP and solving PP1

are equivalent.

IV. OPTIMAL TASK MAPPING ALGORITHM

In this section, we present an OTM algorithm to optimally

solve the PP1. Our method decomposes the PP1 into two smaller

subproblems with less variables: a Master Problem (MP) for

task allocation q, frequency assignment c, task sequence u, and

data routing x, and a Slave Problem (SP) for task start time ts

and optional cycles adjustment o. Then, the optimal solution of

PP1 is found by solving the subproblems iteratively. With this

decomposition structure, the computational complexity can be

greatly reduced.

For the sake of presentation, (27) is reformulated as follows:

PP2 : min
x,y

Φ = fTy (28)

s.t.

{

Ax � b1,

Cx+Dy � b2,

where x and y represent the vector of binary and continuous

variables, respectively. The vector f represents the coefficients

in the objective function. The matrices A, C, D and the vectors

b1, b2 represent the coefficients in the constraints.

A. MP and SP formulation

According to the structure of PP2, at the kth iteration, the

MP and the SP have the forms:

MP : Φl(k) =min
x,Φ̂

Φ̂ (29)

s.t. Ax � b1, C1, C2,

SP : Φu(k) =min
y�0

fTy (30)

s.t. Cx(k) +Dy � b2,

where x(k) is the MP solution at the kth iteration, C1 : Φ̂ ≥
µ(i)T (Cx− b2), ∀i ∈ A, C2 : 0 ≥ µ̂(j)T (Cx− b2), ∀j ∈ B.

Lemma 4.1: Φl(k) and Φu(k) are the lower and upper bounds

on Φ∗, respectively, where Φ∗ is the optimal value of Φ.

The MP considers all the binary variables x, and the asso-

ciated part of the constraints (i.e., Ax � b1). It also includes

the information regarding the SP through a set of constraints

(i.e., C1 and C2) called Benders cuts. Note that the objective

function of the PP2 only considers the continuous variables

y. To facilitate the iterations between the MP and the SP, an

auxiliary (continuous) variable Φ̂ is introduced into the MP as

the objective function, where Φ̂ and Φ have the same physical

meaning. At each iteration, based on the SP solution, a new

constraint is added into C1 or C2 to reduce the gap between

the upper and the lower bounds. The problem iterations stop

when Φu(k)−Φl(k) ≤ ǫ, where ǫ is a small positive tolerance.

B. Iterations Between MP and SP

Initially, we set the iteration counter k = 0 and the MP

solution x(0) that satisfies Ax(0) � b1. In addition, we assume

that the constraint sets C1 and C2 are null, the lower bound

Φl(0) = −∞ and the upper bound Φu(0) = +∞.

Since the SP is a LP problem, the strong duality [29] exists

between the SP and its dual problem (DSP), i.e., solving SP and

solving DSP are equivalent. Instead of solving the SP directly,

we solve its dual problem:

max
µ�0

µT (Cx(k)− b2) (31)

s.t. f +DTµ � 0,

where µ = [µi]v×1 are the dual variables. According to the

solution of DSP, we can construct the constraints in C1 and

C2. Specifically, if (31) has a bounded solution µ(k), (30) is

feasible under given x(k). Therefore, A ← {k}∪A and a new

constraint:

Φ̂ ≥ µ(k)T (Cx− b2), (32)

is added into C1. On the other hand, if (31) has an unbounded

solution, i.e., µ(k)T (Cx(k) − b2) = +∞, (30) is infeasible

under given x(k). Therefore, B ← {k}∪B and a new constraint:

0 ≥ µ̂(k)T (Cx− b2), (33)
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is added into C2, where µ̂(k) is the optimal solution to (45)

at the kth iteration. Based on the solution of (31), at the kth

iteration, the upper bound is updated by

Φu(k) = min{Φu(k − 1),µ(k)T (Cx(k)− b2)}. (34)

Finally, with the updated constraint sets C1 and C2, (29) is

solved again to obtain a solution x(k + 1) for the next round

iteration.

Theorem 4.1: Constraints (32) and (33) exclude the non-

optimal and infeasible solutions of the binary variables x,

respectively.

Lemma 4.2: With updating the constraints in C1 and C2, the

lower bound sequence {Φl(0), . . . ,Φl(k)} is increasing while

the upper bound sequence {Φu(0), . . . ,Φu(k)} is decreasing.

Theorem 4.2: The solution found by OTM converges to the

global optimal one within a finite number of iterations.

V. HEURISTIC TASK MAPPING ALGORITHM

At each iteration, a new constraint is generated and added into

the MP. Therefore, with an increasing number of iterations, the

computational complexity and the size of MP both increase.

In order to enhance the scalability of the proposed approach,

we provide a novel heuristic approach HTM to efficiently solve

the PP1. The basic idea of HTM is similar to OTM: both of

them are based on problem decomposition. However, the HTM

solves the master and the slave problems in sequence (without

iteration), thus, the HTM contains two steps. During the first

step, we only consider the mandatory subtasks. By balancing

the energy consumption of the nodes, while meeting deadline

constraints, we obtain the feasible task allocation, frequency

assignment, task sequence, and data routing decisions. Under

these decisions, in the second step, we determine the start

time of the tasks and the cycles of optional subtasks so as to

maximize QoS function.

A. Task Allocation Problem

Since the mandatory subtasks must be executed, we initially

only consider the allocation, the frequency, the sequence and the

routing of the mandatory subtasks (i.e., oi = 0, ∀i ∈ N ). The

difficulty during the problem formulation is how to deal with

the continuous variables {ts1, . . . , t
s
N} (i.e., the start time of the

tasks). If the task start time is determined, the PP1 reduces to

an ILP problem, since oi = 0. (9) shows that the task deadline

constraint must be satisfied (i.e., tei ≤ di). In the worst case,

we have tei = di. Thus, the start time of task τi is

tsi = di −
∑

l∈L

cilMi

fl
, ∀i ∈ N . (35)

On the other hand, under different optional cycles oi, task

τi generates a set of data with size sij for task τj . Therefore,

the time required to collect the data for the execution of task

τj is given by (21), and the energy consumed for node θk to

transmit the task data is calculated as (22). With oi = 0 and

gikl = qikcil, (7), (8) and (10) have the forms:

tsj ≥ pij

(

tsi +
∑

l∈L

cilMi

fl

)

+ trj , ∀i, j ∈ N , i 6= j, (36)

tsi +
∑

l∈L

cilMi

fl
+ trj ≤ tsj + (2− qik − qjk)H + (1− uij)H,

∀i, j ∈ N , i 6= j, ∀k ∈M, (37)

Ec
k = HP 0

k +
∑

i∈N

∑

l∈L

giklMi

fl
(P c

l − P 0
k ), ∀k ∈M. (38)

Hence, the total energy consumption of node θk is

Eall
k =











Ec
k + Et

k + Es
k, ∀k ∈Ms,

Ec
k + Et

k + Ea
k , ∀k ∈Ma,

Ec
k + Et

k, ∀k ∈M, ∀k /∈Ms,Ma.

In order to make sure that we have enough energy to enhance

the QoS in the next step, the aim of the first step is to balance

the energy consumption of the nodes. Therefore, the Task

Allocation Problem (TAP) can be formulated as the following

ILP:

TAP : min
q,c,u,x,

g,b,w

{

max
∀k∈M

Eall
k

El
k

}

(39)

s.t.

{

(2)− (5), (12)− (14), (16)− (18), (21), (22), (35)− (38),

qik, cil, uij , xeh, gikl, biβjγ , wiβjγh ∈ {0, 1}.

When solving the TAP, the polynomial-time method such

as the Feasibility Pump (FP) method [30] can be used to

reduce the computational complexity. In particular, we introduce

a set of auxiliary (continuous) variables {q̂, ĉ, û, x̂, ĝ, b̂, ŵ},
which are assumed to be within the range [0, 1], to replace the

original integer variables {q, c,u,x, g, b,w}. Then, we solve

the relaxed TAP (LP) and round the solution to the nearest

binary matrix that is feasible to the TAP.

B. Task Scheduling Problem

Based on the solution of TAP, we obtain the decisions for

the allocation, the frequency, the sequence and the routing of

the mandatory subtasks (i.e., q, c, u and x). When the values

of binary variables are determined, the PP1 reduces to a LP

problem. Note that the continuous variables, i.e., the task start

time tsi and the optional subtask cycles oi, affect the constraints

(7)-(14). With the aim to maximize QoS under real-time and

energy constraints, the Task Scheduling Problem (TSP) can be

formulated as

TSP : min
o,ts

−
∑

i∈N
gi(oi) (40)

s.t.



























































tsj ≥ pijt
e
i + trj , ∀i, j ∈ N , i 6= j,

tei + trj ≤ tsj + (2− qik − qjk)H + (1− uij)H,

∀i, j ∈ N , i 6= j, ∀k ∈M,

tei ≤ di, ∀i ∈ N ,

Ec
k + Et

k + Es
k ≤ El

k, ∀k ∈Ms,

Ec
k + Et

k + Ea
k ≤ El

k, ∀k ∈Ma,

Ec
k + Et

k ≤ El
k, ∀k ∈M, ∀k /∈Ms,Ma,

0 ≤ oi ≤ Oi, 0 ≤ tsi ≤ H.

where tci =
∑

l∈L cil
Mi+oi

fl
and tei = tsi + tci . Ec

k and Et
k are

given by (10) and (11), respectively.
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For the HTM algorithm, the binary variables {q, c,u,x} and

the continuous variables {o, ts} are solved in the TAP and the

TSP separately. Therefore, we can avoid adding the auxiliary

variables {y, z} and the additional constraints (19) and (20) into

the problem to linearize the nonlinear items ciloi and qikciloi.
In addition, the problem sizes of TAP and TSP are fixed and

these problems are solved only once. Therefore, compared with

OTM algorithm, the computation time of HTM algorithm can

be greatly reduced.

Remark 5.1: The structure of PP1 shows that the feasibility

of this problem is mainly determined by the real-time and the

energy related constraints, but these constraints are relaxed in

the TAP (i.e., tei = di and oi = 0). Therefore, if the PP1 is

feasible, the TAP is also feasible, and further, if the TAP is

feasible, the TSP is also feasible. This is because in the worst

case, we have tsi = di− tci and oi = 0, which is consistent with

the assumption of the TAP.

VI. SIMULATION RESULTS

For evaluating our approach, we consider a HVAC system

with 25 nodes, where 10 nodes equipped with sensors and 5

nodes equipped with actuators. The values and the tuned pa-

rameters of the experimental set-up are summarized in Table III.

The processor of the node is based on 70 nm technology [7],

and the WCECs of the mandatory subtask Mi and the maximum

optional subtask Oi are calculated from the MiBench and

the MediaBench benchmarks [31]. We consider a linear QoS

function gi(oi) = oi [13] and assume that all data items are

unit size (i.e., sij = 1) [19].

In order to set a deadline di of task τi, we introduce a

temporary data receiving time t̂ri and a relative deadline d̂i.
If pij = 1, τi precedes τj and τj is the closest task of

τi, dj = max∀i,pij 6=1{di + t̂ri + d̂i}. If τj is an entry task,

dj = d̂j . Let min∀β,γ,h{tβγh} and max∀β,γ,h{tβγh} denote

the minimum and the maximum time required to transmit the

data between the nodes. Since the number of tasks precede task

τi is
∑

j∈N pji, the temporary data receiving time t̂ri is assumed

to be within the range [t̂ri,min, t̂
r
i,max], where t̂ri,min and t̂ri,max

are the minimum and the maximum time required to transmit

the data related to τj’s previous dependent tasks, respectively.

The relative deadline d̂i is assumed to be within the range

[d̂i,min, d̂i,max], where d̂i,min and d̂i,max are the minimum and

the maximum time required to execute a task with Mi + Oi

cycles, respectively.

We assume that the scheduling horizon H = max∀i{di}
and Eh

k = Et
k,min

+ Ec
k,min

, where Et
k,min

and Ec
k,min

are the

minimum energy required for the node θk to transmit all the task

data and execute all the mandatory subtasks, respectively. The

energy supply of node θk is set to El
k = ηEh

k , where η ∈ [0, 1]
is an energy efficiency factor. For the sensor and the actuator

nodes, we set El
k = 2ηEh

k and El
k = 3ηEh

k , respectively,

since these nodes consume more energy for sensing and acting

tasks. Note that different processor and task parameters lead to

different values in the parameters {A,C,D,f , b1, b2} for the

PP1. However, the problem structures under different values of

parameters are the same. Therefore, the proposed methods are

still applicative.

TABLE III
SIMULATION PARAMETERS

Processor θk characteristics

vl (V) 0.65 0.7 0.75 0.8 0.85
fl (GHz) 1.01 1.26 1.53 1.81 2.10

P d
l (mW) 184.9 266.7 370.4 498.9 655.5

P s
l (mW) 246 290.1 340.3 397.6 462.7

P s
0 (µW) 80

M = 25 Ms = 10 Ma = 5
Task τi characteristics

Mi, Oi ∈ [4× 107, 6× 108]
Objective function∑

i∈N gi(oi) =
∑

i∈N oi
Constraints

t̂ri,min =
∑

j∈N pji min∀β,γ,h{tβγh}

t̂ri,max =
∑

j∈N pji max∀β,γ,h{tβγh}

d̂i,min = min∀l{
Mi+Oi

fl
} d̂i,max = max∀l{

Mi+Oi

fl
}

t̂ri ∈ [t̂ri,min, t̂
r
i,max] d̂i ∈ [d̂i,min, d̂i,max]

dj = max∀i,pij 6=1{di + t̂ri + d̂i} H = max∀i{di}
Et

k,min = N min∀β,γ,h{rβγkh}

Ec
k,min = HP 0

k +
∑

i∈N [min∀l{
Mi

fl
(P s

l + P d
l − P 0

k )}]

El
k = ηEh

k

Tuned parameters

Min/Max/Step N : 25/50/5 η : 0.8/0.9/0.1

Firstly, we compare the system performance (i.e., the system

energy consumption and the system QoS) with the proposed task

mapping method (i.e., PP) and other task mapping methods [18],

[19], [23]. Secondly, we explore the algorithm performance (i.e.,

the computation time and the system QoS) of the proposed OTM

and HTM methods with: Branch and Bound (B&B) [25] and

Branch and Cut (B&C) [32], which are known to provide the

optimal solution for the MILP problem. The simulations are

performed on a PC with quad-core 2.5 GHz Intel i7 processor

and 16 GB RAM, and the algorithms are implemented in Matlab

2016a with CPLEX solver.

Let QoS-WDM, QoS-NDM, EE-ND and EE-WD denote the

methods proposed in this paper, [23], [19] and [18], respectively.

Specifically, QoS-WDM and QoS-NDM are QoS-aware task

mapping methods, while EE-ND and EE-WD are energy-aware

task mapping methods. Compared with QoS-NDM, DVFS and

multi-path routing are considered in our QoS-WDM method.

In addition, compared with EE-ND, DVFS is considered in EE-

WD. Fig. 4 and Fig. 5 show the system performance under these

task mapping methods. From Fig. 4, we observe that the QoS

increases with the values of N and η in QoS-WDM and QoS-

NDM, while the QoS is always equal to 0 in EE-ND and EE-

WD. This is because the aims of QoS-WDM and QoS-NDM

are to maximize QoS under energy and real-time constraints,

while the aims of EE-ND and EE-WD are to minimize energy

under real-time constraints. Therefore, with values of N and η
increasing, more optional subtasks are executed in QoS-WDM

and QoS-NDM, thus, a higher QoS is achieved. The cycles of

mandatory subtasks are fixed and they must be always executed.

However, the less optional subtask cycles are executed, the

less is the energy consumed to execute the tasks. Thus, the

execution cycles of the optional subtasks are 0 in EE-ND and

EE-WD. Fig. 4 also shows that the QoS achieved by QoS-
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WDM is higher than QoS-NDM. This is because DVFS and

multi-path routing are used in QoS-WDM. Compared with QoS-

NDM, where the frequency assignment and the routing path

selection are fixed, QoS-WDM is able to find better decisions

for frequency assignment and routing path selection, increasing

QoS under time and energy constraints.
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(a) η = 0.8
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(b) η = 0.9

Fig. 4. QoS under different task mapping methods with η and N varying.

The consumed energy under the different task mapping

methods is compared in Fig. 5. Although QoS-WDM and

QoS-NDM require more energy than EE-ND and EE-WD, the

consumed energy is always smaller than the supplied energy, as

the energy related constraints (12)–(14) must be satisfied. From

Fig. 4 and Fig. 5, we observe that QoS-aware task mapping

method provides a better usage of system resources to enhance

QoS. Fig. 5 also shows that the energy efficiency factor η
doesn’t affect the energy consumption of EE-ND and EE-WD,

under the same number of tasks N , since EE-ND and EE-WD

aim to minimize the energy consumption. In addition, EE-WD

consumed less energy than EE-ND. Typically, for the energy-

aware task mapping problem, as long as the constraints (e.g.,

deadline and energy) allow it, methods applying DVFS is able to

achieve a better energy efficiency compared to methods without

DVFS.
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Fig. 5. Energy consumption of the nodes under different task mapping methods
with η and N varying.

In order to further evaluate the behavior of the proposed QoS-

aware task mapping QoS-WDM, we compare the schedulability

of QoS-WDM and QoS-NDM, using the problem feasible ratio

as a metric. We set the number of tasks N = 30 and change

the value of energy efficiency factor η. Under a given η, we

independently construct and solve the task mapping problems

30 times (i.e., Nf = 30) for QoS-WDM and QoS-NDM. For

each experiment the parameters are randomly generated and

same values are used for QoS-WDM and QoS-NDM. Let Nw

and Nn denote the times that the task mapping problems in

QoS-WDM and QoS-NDM are feasible, respectively. Therefore,

the problem feasible ratios for QoS-WDM and QoS-NDM are

defined as Nw/Nf and Nn/Nf , respectively. From Fig. 6(a),

we observe that with the value of η increasing, the problem

feasible ratios of QoS-WDM and QoS-NDM increase as well.

This is because with a higher energy supply, a processor can use

a higher frequency to execute faster an assigned task. Therefore,

the time and the energy related constraints are easier to be

satisfied. Fig. 6(a) shows that the problem feasible ratio of QoS-

WDM is always higher than that of QoS-NDM. This is due to

fact that, by considering DVFS and multi-path routing in QoS-

WDM, the explored design space is larger, allowing QoS-WDM

to find solutions, even for cases where QoS-NDM is not able

to. Similar are the results when we compare the methods with

and without DVFS for the energy-aware task mapping problem,

as shown in Fig. 6(b).
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Fig. 6. Problem feasible ratio under different task mapping methods with η

varying.

The QoS and the computation time of using OTM, HTM,

B&B and B&C to solve task mapping problem PP1 under

different number of tasks N and energy efficiency factor η are

compared in Fig. 7 and Fig. 8. Fig. 7 shows that the solutions

found by OTM, B&B and B&C are the same. This means that

OTM is able to find the optimal solution, verifying our analysis

about the convergence of OTM. In addition, the achieved QoS

increases with the value of η, since more optional subtasks

are executed. On the other hand, since HTM just provides a

feasible solution, OTM achieves higher QoS than HTM. As

shown in Fig. 8(a), with the value of N increasing, more

variables and constraints are involved into the problem, thus, the

algorithm computation time increases. However, compared with

OTM, HTM has a negligible computation time, since HTM only

needs to solve two polynomial-time problems in sequence. In

addition, OTM has a shorter computation time than that of B&B

and B&C. B&C combines the benefits of B&B and Gomory

cutting scheme and can better balance optimality, efficiency and

stability. Usually, B&C has a faster convergence speed than

that of B&B [32]. Note that the computational complexity of

an optimization problem is highly related to the number of

variables and constraints. Solving smaller problems with less

variables and constraints (i.e., MP and SP) iteratively is more

efficient than solving a single large problem [33]. Fig. 8(b)

shows that the influence of the energy efficiency factor η on the

computation time of OTM is limited, since η doesn’t change the

problem size (i.e., the number of variables and constraints).
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Fig. 7. QoS under different algorithms with η and N varying.
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Fig. 8. Computation time under different algorithms with η and N varying.

VII. CONCLUSION

In this paper, we study the IC-tasks mapping problem for the

networked system. We consider dependent IC-tasks executed

on the wireless DVFS-enabled nodes with real-time and energy

constraints. The design objective is to assign the IC-tasks to

the nodes and adjust the start and the end time of the tasks

so as to maximize QoS without violating the real-time and

the energy constraints. By introducing DVFS and multi-path

routing, we are able to achieve a better trade-off between real-

time performance and energy efficiency. We first develop a

MINLP model to describe this task mapping problem. Then, we

propose a MILP description of this model without performance

degradation. Through the problem transformation, the problem

structure can be simplified, thus, the optimal solution is easier

to find. This problem is optimally solved by the proposed OTM

algorithm. A novel algorithm, HTM, is proposed to reduce the

computation time. Our numerical results show that OTM is

guaranteed to converge to the optimal solution, while HTM is

able to find a feasible solution within a negligible computation

time compared with OTM. Moreover, the proposed QoS-aware

task mapping strategy outperforms other task mapping strategies

in term of QoS-enhancing and energy-utilizing.
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APPENDIX A

PROOF OF LEMMA 3.1

Proof: The inequalities g ≤ b1 and g ≤ b2 ensure that

g = 0 if either b1 = 0 or b2 = 0. On the other hand, the

inequality g ≥ b1+b2−1 guarantees that g = 1 if both variables

b1 and b2 are set to 1.

APPENDIX B

PROOF OF LEMMA 3.2

Proof: Since y = bx and −s1 ≤ x ≤ s2, we have −bs1 ≤
y ≤ bs2. And further, we obtain (b − 1)(x + s1) ≤ 0 and

(b − 1)(x − s2) ≥ 0 due to −s1 ≤ x ≤ s2 and b ∈ {0, 1}.
Therefore, we have y+bs1−x−s1 ≤ 0 and y−bs2−x+s2 ≥ 0.

S1 → S2 holds.

If b = 0, since −bs1 ≤ y ≤ bs2, y + bs1 − x − s1 ≤ 0 and

y − bs2 − x + s2 ≥ 0, we have y = 0 and −s1 ≤ x ≤ s2. On

the other hand, if b = 1, we have −s1 ≤ y = x ≤ s2. S2 → S1

holds.

APPENDIX C

PROOF OF LEMMA 4.1

Proof: Note that the MP can be reformulated as follows

Φ̂(k) =min
x

{

max
∀i∈A

µ(i)T (Cx− b2)

}

(41)

s.t. Ax � b1, C2.

It can be solved by only considering the binary variables x.

Comparing (41) with the following problem

Φ̂′(i) =min
x

µ(i)T (Cx− b2)

s.t. Ax � b1, C2,

we have Φ̂(k) ≥ Φ̂′(i). Without loss of generality, we assume

that

Φ̂(k) = Φ̂′(l) = max
∀i∈A

{

Φ̂′(i)
}

.

Since

Φ̂(k) = min
x

µ(l)T (Cx− b2) ≤ µ(l)T (Cx∗ − b2)

≤ max
µ

µT (Cx∗ − b2) = Φ∗,

where x∗ is the optimal value of x, we get Φl(k) = Φ̂(k) is a

lower bound of Φ∗ and Φ̂ has the same physical meaning as Φ.

On the other hand, according to (34), we have

Φu(k) = min
1≤i≤k

{

µ(i)T (Cx(i)− b2)
}

. (42)

In addition, due to the strong duality between the SP and its

dual problem, we get

µ(i)T (Cx(i)− b2) = min
y�0

fTy|x(i) ≥ min
y�0

fTy|x∗ = Φ∗.

(43)

Based on (42) and (43), Φu(k) is an upper bound of Φ∗.
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APPENDIX D

PROOF OF LEMMA 4.2

Proof: Note that the MP is a minimization problem,

and the non-optimal values of binary variables x∗ have been

excluded by the constraints in the set C1. In addition, with

iteration number k increasing, more constraints are added into

the MP. Therefore, the feasible region of the MP will shrink.

Accordingly, Φl(k + 1) = Φ̂(k + 1) is larger than the previous

lower bounds {Φl(0), . . . ,Φl(k)}. On the other hand, based

on (34), Φu(k + 1) is smaller than the previous upper bounds

{Φu(0), . . . ,Φu(k)}.

APPENDIX E

PROOF OF THEOREM 4.1

Proof: If (31) has a bounded solution, the SP is feasible

under the given MP solution x(k). However, since x(k) is a

non-optimal solution, we have Φ̂(k) < µ(k)T (Cx(k) − b2).
Therefore, the non-optimal solution x(k) is excluded by Φ̂ ≥
µ(k)T (Cx− b2).

On the other hand, if (31) has an unbounded solution, the

SP is infeasible under the given MP solution x(k). However,

this problem is feasible if the positive variables ξ = [ξi]v×1 are

introduced to relax the constraints. In order to minimize ξ, we

construct the following problem:

min
y,ξ�0

1
T ξ (44)

s.t. Cx(k) +Dy � b2 + ξ.

Since (44) is a LP problem, we solve its dual problem:

max
µ̂�0

µ̂T (Cx(k)− b2) (45)

s.t. 1− µ̂ � 0, DT µ̂ � 0,

where µ̂ = [µ̂i]v×1 are the dual variables.

Let ξ(k) and µ̂(k) denote the solutions of (44) and (45),

respectively. Since the relaxation variables with respect to

infeasible constraints are non-zero, we have 1
T ξ(k) > 0. On

this basis, due to the strong duality between (44) and (45),

we get 1
T ξ(k) = µ̂(k)T (Cx(k) − b2) > 0. Therefore, the

infeasible solution x(k) is excluded by 0 ≥ µ̂(k)T (Cx− b2).

APPENDIX F

PROOF OF THEOREM 4.2

Proof: Note that the gap between the lower and upper

bounds gradually reduces. In addition, the dimension of binary

variables x is finite, and the non-optimal and infeasible values

are excluded. Therefore, the solution (x(k),y(k)) converges to

optimal one (x∗,y∗) within a finite number of iterations.
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