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Real-Time Incremental Segmentation and Tracking
of Vehicles at Low Camera Angles

Using Stable Features
Neeraj K. Kanhere and Stanley T. Birchfield, Senior Member, IEEE

Abstract—We present a method for segmenting and tracking
vehicles on highways using a camera that is relatively low to
the ground. At such low angles, 3-D perspective effects cause
significant changes in appearance over time, as well as severe oc-
clusions by vehicles in neighboring lanes. Traditional approaches
to occlusion reasoning assume that the vehicles initially appear
well separated in the image; however, in our sequences, it is not
uncommon for vehicles to enter the scene partially occluded and
remain so throughout. By utilizing a 3-D perspective mapping
from the scene to the image, along with a plumb line projection, we
are able to distinguish a subset of features whose 3-D coordinates
can be accurately estimated. These features are then grouped
to yield the number and locations of the vehicles, and standard
feature tracking is used to maintain the locations of the vehicles
over time. Additional features are then assigned to these groups
and used to classify vehicles as cars or trucks. Our technique uses
a single grayscale camera beside the road, incrementally processes
image frames, works in real time, and produces vehicle counts with
over 90% accuracy on challenging sequences.

Index Terms—Feature tracking, occlusion, perspective projec-
tion, spillover, vehicle tracking.

I. INTRODUCTION

T
RAFFIC COUNTS, speeds, and vehicle classification are

fundamental parameters for a variety of transportation

projects, ranging from transportation planning to modern intel-

ligent transportation systems. Among the many technologies,

vision-based systems are emerging as an attractive alternative

due to their ease of installation, inexpensive maintenance,

and ability to capture a rich description of the scene [1]. In

principle, videos provide not only aggregate information such

as the average speed, vehicle counts, and queue lengths but

individual parameters such as trajectories, individual speeds,

and classification as well.

Existing vision systems typically place cameras high above

the ground, anywhere from 15 to 100 m, to provide a bird’s

eye view of the road [2]–[4]. At such a high vantage point,

the appearance of a vehicle does not significantly change over
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Fig. 1. (Left) When the camera is high above the ground, a homography is
sufficient to map the road plane to the image plane. (Right) At lower angles, a
homography may cause features on a vehicle to spill onto neighboring lanes.

time, and occlusion between vehicles is considerably reduced,

thus simplifying the problem. However, placing cameras at

such heights is not always possible. In nonurban areas, the re-

quired infrastructure is cost prohibitive, and for transient traffic

studies, the expensive mounting equipment and the strategic

placement of cameras are precluded by a lack of long-term

commitment. In particular, we are interested in developing

portable camera systems to gather data about current traffic

patterns to assist in planning and safety management.

Fig. 1 illustrates the difference between the two situations.

When the camera is high above the ground and near the center

of the road, a homography can be defined to map the road

surface to the image plane, and the height of vehicles can be

safely ignored because their appearance does not significantly

change over time. In contrast, when the camera is at a low angle

and/or off-centered from the road, the height of the vehicle

causes significant occlusion. A single homography (under the

flat-world assumption) will not suffice because feature points

on a vehicle will spill over into neighboring lanes. Moreover,

background subtraction will combine neighboring vehicles into

a single combined blob, from which it is not trivial to extract

the individual vehicles.

In this paper, we present an automatic method for segmenting

and tracking vehicles in video taken by a camera beside the

road at a height of approximately 9 m, where occlusion is a
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serious issue. The approach is based on sparse features that

are incrementally tracked throughout a video sequence using

local gradient-based search techniques. A calibration procedure

provides a full 3-D to 2-D mapping between the world co-

ordinate system and the image plane, enabling the estimation

of the 3-D coordinates of the preimages of the features using

a plumb line projection (PLP). Features are divided into two

categories—stable features that are grouped and tracked to pro-

vide the vehicle count, and unstable features that are assigned to

the stable groups to produce a more descriptive representation

of the vehicles. Because of its reliance on 3-D estimates, the

overall approach is able to follow vehicles even when they enter

the scene partially occluded and remain so throughout their

appearance in the video. The algorithm runs in real time (30 Hz)

on a standard computer, and it incrementally processes image

frames to allow for online operation.

This paper is organized as follows. After discussing the

previous literature in Section II, we present the algorithm in

Section III. Its performance on several image sequences of

straight and curved highways, with significant shadows and

occlusions, is presented in Section IV, followed by our con-

clusions in Section V.

II. PREVIOUS WORK

Background subtraction is a popular technique used by many

vehicle-tracking systems to detect and track vehicles when

they are well separated in the image [5]–[10]. Many advance-

ments have been made in recent years to the adaptation of

the background image to lighting changes [10]–[13] and to

the reduction of the effects of shadows [14], [15]. A well-

known challenge for background subtraction (as well as with

the closely related approach of frame differencing [16]–[20])

occurs when vehicles overlap in the image, causing them to

merge into a single foreground blob. Koller et al. [21] used

2-D splines to solve this occlusion problem, whereas other

researchers employ graph association or split-and-merge rules

to handle partial or complete occlusions [11], [12], [19], [22].

Although these solutions can disambiguate vehicles after an

occlusion occurs, they require the vehicle to either enter the

scene unoccluded or become unoccluded at some point during

its trajectory in the camera field of view. In congested traffic,

such may never be the case.

An alternative to using temporal information is to match

wireframe models to video images [23]–[26]. Ferryman et al.

[27] combined a 3-D wireframe model with an intensity model

of a vehicle to learn the appearance of the vehicle over time.

Kim and Malik [2] matched vehicle models with line features

from mosaic images captured from cameras on top of a 30-story

building next to the freeway to recover detailed trajectories

of the vehicles. Alessandretti et al. [28] employed a simpler

model, namely, the 2-D symmetry of the appearance of a

vehicle in an image. One of the major drawbacks to model-

based tracking is the large number of models needed due to

differing vehicle shapes and camera poses.

A third alternative that has been employed is the tracking of

point features. Beymer et al. [3] described a system that tracks

features throughout the video sequence and then groups the fea-

tures according to motion cues to segment the vehicles. Because

the camera is high above the ground, a single homography is

sufficient to map the image coordinates of the features to the

road plane, where the distances between pairs of features and

their velocities are compared. In another approach, Saunier and

Sayed [29] used feature points to track vehicles through short-

term occlusions, such as poles or trees. Like the background

subtraction systems mentioned above, their approach has diffi-

culty initializing and tracking partially occluded vehicles.

All of this previous work applies to cameras that are rela-

tively high above the ground. At such heights, the problems

of occlusion and vehicle overlap are mitigated, thus making

the problem easier. One exception to this rule is the work of

Kamijo et al. [30], in which a spatiotemporal Markov random

field is used to update an object map using the current and

previous images. Motion vectors for each image region are

calculated, and the object map is determined by minimizing

a functional combining the number of overlapping pixels, the

amount of texture correlation, and the neighborhood proximity.

To achieve accurate results, the algorithm is run on the image

sequence in reverse so that vehicles recede from the camera.

Extending the work of Beymer et al. [3] to the case of

low-angle cameras, this paper introduces a simple but effective

technique for estimating the 3-D coordinates of features in an

incremental fashion. Our contribution in this paper is an effec-

tive combination of background subtraction and feature track-

ing to handle occlusions, even when vehicles remain occluded

during their entire visible trajectory. Unlike their work, our

approach handles features that cannot be continually tracked

throughout the trajectory, which is a common occurrence in the

low-angle situation.

The approach presented in this paper extends our earlier work

[31], [32] in several significant ways. Whereas our earlier ap-

proach required a computationally intensive batch processing of

image frames, the new algorithm described in this paper incre-

mentally processes images in real time, thus making it applica-

ble to online processing of arbitrarily long video sequences. The

incremental approach arises from a simplified grouping proce-

dure and a novel technique for distinguishing stable features

using a single image. As a result, the algorithm described in

this paper exhibits improved accuracy and decreased sensitivity

to parameters compared with the earlier version.

III. ALGORITHM DESCRIPTION

An overview of the system is shown in Fig. 2. Feature

points are automatically detected and tracked through the video

sequence, and features lying on the background or on shadows

are removed by background subtraction, leaving only features

on the moving vehicles. These features are then separated into

two categories—stable and unstable. Using a PLP, the 3-D coor-

dinates of the stable features are computed, these stable features

are grouped together to provide a segmentation of the vehicles,

and the unstable features are then assigned to these groups.

The final step involves eliminating groups that do not appear

to be vehicles, establishing correspondence between groups

that are detected in different image frames to achieve long-

term tracking, and classifying vehicles based on the number of
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Fig. 2. System overview.

unstable features in the group. The details of these steps are

described in the following subsections.

A. Calibration

According to a pinhole camera model, a world point p =
[x y z ]T projects onto a point u = [u v ]T on an image

plane through the equation

ŭ = Cp̆ (1)

where C is a 3 × 4 camera calibration matrix, and ŭ =
[uw vw w ]T and p̆ = [x y z 1 ]T are homogeneous

coordinates of the image and world points, respectively [33].

Since w is an arbitrary nonzero scale factor, C has 11 unique

parameters. Thus, the correspondence of at least six points in a

nondegenerate configuration leads to an overdetermined system

that can be solved for these parameters.

To calibrate the system, the user manually draws two lines

along the edges of the road and one line perpendicular to

the direction of travel, as shown in Fig. 3. The latter line is

estimated by sequencing through the video and finding the

intensity edge between the windshield and the hood of a light-

colored vehicle. These three lines yield two vanishing points,

from which the internal and external camera parameters are

automatically computed using the mathematical formulation

described by Schoepflin and Dailey [17]. The remaining six

vertices of the cuboid defining the 3-D detection zone are then

computed from the user-specified lane width, the number of

lanes, and the desired length and height of the cuboid. For

the world coordinate system, we adopt the convention that the

y-axis points along the direction of travel along the road, the

z-axis is perpendicular to the road plane with the positive axis

Fig. 3. Camera calibration. (Left) User draws three lines—(solid) two along
the edges of the road and (dashed) one perpendicular to the direction of travel.
The lines can be of arbitrary length. (Right) Three-dimensional detection zone
is automatically computed.

pointing upward and z = 0 on the road surface, and the x-axis

is chosen to form a right-hand coordinate system.

Because the overall system is insensitive to small inaccura-

cies in the calibration (quantified in Section IV), this process is

widely applicable to prerecorded sequences that are captured

from unknown cameras. Note that the calibration procedure

recovers a full 3-D to 2-D perspective mapping, which is

necessary to handle the perspective effects encountered at low

camera angles, unlike previous 2-D to 2-D calibration tools that

recover only a planar mapping between the road surface and

the image plane [3]. Also, note that perspective projection leads

to more robust results than the multilayer homography used in

[31] due to the reduced number of free parameters.

B. Background Subtraction

The background of the scene is learned by storing the average

gray level of each pixel over a fixed period of time. With our

sequences, we found 20 s of video to be sufficient for this task;
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Fig. 4. (Left) Foreground mask resulting from background subtraction.
(Right) Features being tracked in this frame of video, divided into three kinds:
1) those that lie on the background (shown as small dots), 2) those that lie within
τs pixels of the background (shown as small squares), and 3) those on moving
vehicles (shown as large circles). Only the latter features are considered in
further processing, thus reducing the potential distraction from the background
or shadows.

however, a higher traffic density would require proportionally

more time to adequately remove the effects of the dynamic

foreground objects. Since this learning is performed only once,

it is applicable to any stretch of the road for which the traffic is

moderately dense for some period of time.

Once the background is learned offline, the technique of

background subtraction, including morphological operations

and thresholding, is applied to each image of the sequence to

yield a binary foreground mask that indicates whether each

pixel is foreground or background. To cope with lighting and

environmental changes, the background is adaptively updated

using this mask as the sequence is processed to preclude

inadvertently adapting to foreground intensities [11]. One of

the serious problems in using background subtraction for object

tracking is the distraction caused by moving shadows, which

mistakenly appear as foreground pixels. It is not uncommon

for shadows to cause multiple nearby vehicles to merge into

a single blob or for the shadows to be detected as separate

vehicles themselves. Although the problem of shadow detection

has been addressed by many researchers, a general solution

remains elusive [34]–[41].

We use background subtraction to perform a simple filtering

operation on the features, as shown in Fig. 4. Any feature

that lies in the background region is immediately discarded

from further processing, leaving only the features that lie on

foreground objects. To reduce the effects of shadows, we also

ignore any feature that lies within a small distance τs from a

background pixel. (We set τs = 2 pixels in all experiments.)

This simple procedure removes many of the features that are

due to shadow edges alone since the road surface tends to

be fairly untextured, while removing only a small fraction of

legitimate foreground features.

C. PLPs

Feature points are automatically selected and tracked using

the Lucas–Kanade feature tracker [42]. We use the OpenCV

implementation of the feature tracker, which uses the Sharr

gradient operator [43]. A coarse-to-fine pyramidal strategy

allows for large image motions, and features are automatically

selected, tracked, and replaced.

Because of the dimension loss in projecting the 3-D world

to a 2-D image, it is impossible to uniquely determine the

Fig. 5. Top (left) Image and (right) foreground mask F with a feature point
u and its PLP v = ψF (u). (Bottom) Three-dimensional coordinates of the
preimage p = Φ(u) of the feature can be computed under the assumption that
q = Φ(v) directly lies below p on the surface of the road. The points p0 and
pM are the intersections of the projection ray with the top and bottom of the
calibration box.

coordinates of the corresponding world point from the image

coordinates of a feature point. However, if one of the world co-

ordinates is known from some additional source of information,

then the other two coordinates can be computed. In this section,

we present a method for exploiting this capability.

Suppose we have a feature point u and a binary foreground

mask F from background subtraction, as shown in Fig. 5.

Projecting u downward in the image plane to the first encoun-

tered background pixel yields the point v that we call the PLP

of u. Let v = ψF (u) denote this transformation. In addition,

let p = Φ(u) denote the preimage of u (i.e., the world point

whose projection onto the image is u), and let q = Φ(v) be the

preimage of v. Under certain assumptions, whose validity we

shall examine in a moment, p and q have the same x and y
coordinates as each other, and q lies on the road surface, thus

providing us with the constraints that we need to compute the

world coordinates of p.

Let ϕz : R
2 → R

3 be the mapping from a 2-D image point

to its corresponding world point at height z. In other words,

an image point u could arise from any world point along the

projection ray passing through u and the camera focal point,

and p = ϕz(u) is the one whose third coordinate is z. Ex-

panding and rearranging (1) yield the following inhomogeneous

equation:

ϕz(u) = K−1(u)tz(u) (2)

where

K(u) =





c31u − c11 c32u − c12 0
c31v − c21 c32v − c22 0

0 0 1





tz(u) =





c14 − u + z(c13 − c33u)
c24 − v + z(c23 − c33v)

z



 .

u = [u v ]T is the projection of p, and cij is the ijth element

of C. (See [44] for the derivation.)
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Fig. 6. Three points on the surface of a vehicle viewed by a camera with their
estimated coordinates using PLP. The points lower to the ground yield less error.

Since the world coordinate system is oriented so that z = 0
is the road plane, we can compute the world coordinates of q

as ϕ0(v), which also yields the x and y coordinates of p. To

compute the 3-D coordinates of p, all we need is to compute

its z coordinate, which is done by solving (1) in a least squares

manner, i.e.,

ẑ =
hT

p hc

hT
p hp

(3)

where

hp =

[

u c33 − c13

v c33 − c23

]

hc =

[

c14 − u c34 + (c11 − uc31) x + (c12 − uc32) y
c24 − v c34 + (c21 − vc31) x + (c22 − vc32) y

]

and x and y are the first two coordinates of p and q. We use z̃
to denote the estimated height of p.

D. Identifying and Grouping Stable Features

The technique just presented for computing the 3-D coordi-

nates of the preimage of a feature point u from its PLP relies

on three assumptions:

1) The world points p = Φ(u) and q = Φ(v) lie on the

same vertical axis.

2) The zth coordinate of q is zero.

3) The foreground mask F perfectly labels the pixels di-

rectly under u (in the image).

In other words, the method assumes that the vehicle is shaped

like a box, that the features lie on one of the four surfaces

of the box orthogonal to the road plane, and that there are

no occluding vehicles or shadows in the vicinity. Let us now

examine the validity of these assumptions.

Fig. 6 shows the side view of a vehicle with three feature

points s, t, and u having preimages S, T, and U, respectively,

on the surface of the vehicle. Suppose that the third assumption

is satisfied so that v = ψF (s) = ψF (t) = ψF (u), i.e., all three

points share the same PLP, and the estimated point Ṽ = ϕ0(v)
is the actual point V. Using the coordinates Ṽ, the technique

previously described can be used to estimate the world coor-

dinates S̃, T̃, and Ũ. From the figure, it is evident that the

error in prediction of world coordinates is generally greater for

points that are higher above the road plane. More precisely, let

us define Ω as the set of vehicle shapes such that the slope of the

Fig. 7. Estimated coordinates of two points using PLP. Because the estimated
height is nearly always greater than the true height, the higher feature is more
likely to be assigned to the wrong vehicle.

contour at any point never exceeds the bound µmax(x, z) [44].

Then, we have the following observation.

Observation 1: For any two points S = (xS , yS , zS) and

U = (xU , yU , zU ) on the surface of a vehicle such that

zS > zU , the Euclidean error in the estimate S̃ will not be less

than that of Ũ, i.e., ‖S̃ − S‖ ≥ ‖Ũ − U‖, as long as the vehicle

shape is in Ω.

Thus, the Euclidean error in estimating the world coordinates

of a point on the vehicle is a monotonically nondecreasing

function of the height of the point. Keep in mind that the set

Ω encompasses nearly all actual vehicle shapes so that this

observation is widely applicable. Only a vehicle with severe

concavity would be outside the set Ω.

Another important observation regards the effect of the

height of the estimates on the maximum possible error.

Observation 2: For any two estimated points S̃ = (x̃S ,
ỹS , z̃S) and Ũ = (x̃U , ỹU , z̃U ) such that zS > zU , the maxi-

mum possible Euclidean error in the estimate S̃ is greater than

that of Ũ, i.e., max ‖S̃ − S‖ > max ‖Ũ − U‖.

To see the validity of this observation, notice from Fig. 6

that the estimated height z̃ of a point will always be greater

than or equal to its actual height (as long as the point does

not extend past the front of the vehicle). Now, consider two

vehicles traveling side by side, as shown in Fig. 7, where the

camera in 3-D is aimed toward the front of the vehicles at

an oblique angle. Let S̃ and Ũ be the 3-D estimates of two

preimages using the PLP procedure, with S̃ higher above the

road than Ũ. Using the upper bound ztrue ≤ z̃, the range of

possible locations for the actual preimage is much less for the

point lower to the ground, i.e., the maximum possible error eu is

less than the maximum possible error es. In the example shown,

even the maximum error would not cause the estimate point Ũ

to leave the vehicle, whereas with S̃, the point could be assigned

to the wrong vehicle. We see that both observations lead to the

conclusion that points that are close to the road plane generally

exhibit less error.

In addition to the height of a feature, it is also important

to consider the side of the vehicle on which the feature lies.

For each feature u = [u v ]T , we compute the PLP of the
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Fig. 8. Top (left) Image and (right) foreground mask, with two unrelated
feature points (u and v) and the PLPs (u+, u

−, v
+, and v

−) of their
perturbations. (Bottom) Points on the front of the vehicle yield a smaller slope
in the road plane than points on the side of the vehicle.

two points obtained by horizontally perturbing the feature in

the image plane (see Fig. 8): u+ = ψF ([u + δ v ]T ) and

u− = ψF ([u − δ v ]T ). The 3-D coordinates of the preim-

ages are given by p+
u = [x+, y+, z+] = ϕ0(u

+) and p−
u =

[x−, y−, z−] = ϕ0(u
−). If the absolute value of the slope in the

road plane ξ = |(y+ − y−)/(x+ − x−)| is small, then the point

is more likely to be on the front of the vehicle rather than on

the side. Since the shadows on the side tend to be more severe

than those on the front, the points on the front are less likely to

violate the third assumption and, hence, are more reliable.

Putting this analysis together, we distinguish between two

kinds of features, namely, stable and unstable. We classify

a feature point u as stable if it satisfies the following two

conditions:

z̃ < ǫz and ξ < ǫslope

where ǫz and ǫslope are positive constant parameters of the

system. In other words, features are stable if they lie on the

frontal face of the vehicle close to the road plane. Note that

these criteria require only a single image frame, are robust

with respect to shadows on the side of the vehicle, and are not

affected by errors in feature tracking, unlike the criteria used

in [31].

Once the stable features have been identified, they are

grouped in the road plane (xy-plane), as shown in Fig. 9.

Because of the criteria used in selecting stable features, points

belonging to the same vehicle generally have a small devia-

tion in their world coordinates along the y-axis (axis along

the length of the road). As a result, a simple region-growing

algorithm is sufficient to correctly segment the stable features.

The procedure iterates through the points, adding each

point to an existing group in the same lane if its predicted

y-coordinate is within ǫy of the mean of the y-coordinates of

all the features in the group. If no such group is found, then a

new group is created. To handle vehicles that straddle two lanes

(such as vehicles that are changing lanes), two groups whose

means in y differ by no more than ǫy are combined into a single

Fig. 9. Stable features are grouped in the road plane using a region-growing
algorithm that compares their y coordinates.

group if their combined width (along the x-axis) is no more

than the lane width wlane.

This approach is much more computationally efficient and

less sensitive to tracking errors than the technique used in

[31], and it operates on a single image frame, which facilitates

incremental processing of the video. It should be noted that

only one stable feature per vehicle is needed for the vehicle to

be correctly detected, although, in practice, we discard groups

with fewer than three features to reduce the number of spurious

false detections. We set ǫy = ǫz = 0.4wlane, ǫslope = 1.5, and

δ = 3 pixels, where wlane is the width of a lane that is computed

during the calibration step.

E. Grouping Unstable Features

After grouping the stable features, the unstable features are

assigned to these groups using a combination of PLP and

motion coherence. Suppose that we have two features that are

tracked from locations u and s in one image frame to u′ and

s′ in another (not necessarily consecutive) image frame. Let

pz = ϕz(u) and qz = ϕz(s) denote their possible preimages

in the first frame at height z, and let p′
z = ϕz(u

′) and q′
z =

ϕz(s
′) denote their possible preimages in the other frame. If

s is a stable feature, then we know the coordinates of the

preimages q = Φ(s) and q′ = Φ(s′), which can then be used

to estimate the preimages p = Φ(u) and p′ = Φ(u′) in the

following manner.

The scenario is shown in Fig. 10, where z = 0 is the road

plane, and z = M is the top of the calibration box. If we

assume that p and q are points on the same rigid vehicle that

is only translating, then the motion vectors of the two points

are the same: p′ − p = q′ − q. This is the motion coherence

assumption. Now, each point can be parametrically represented

as follows:

p =p0 + α(pM − p0)

p′ =p′
0 + α′ (p′

M − p′
0) (4)
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Fig. 10. Features p and q on a vehicle travel to p
′ and q

′ at a different time. If
the vehicle travels parallel to the road plane, then the coordinates of the unstable
feature p can be computed from the coordinates of the stable feature q.

where α, α′ ∈ R are the fractional distances along the ray. If

we further assume that the road is horizontally flat, then the z
components of p and p′ are equal, from which it can be easily

shown that α = α′. Substituting these parametric equations into

p′ − p = q′ − q and solving for α in a least squares manner

yields

α =
(∆pM − ∆p0)

T (∆q − ∆p0)

(∆pM − ∆p0)T (∆pM − ∆p0)
(5)

where ∆pM =p′
M − pM , ∆p0 =p′

0 − p0, and ∆q=q′ − q.

As a result, the estimated point is given by

p̂ = p0 +
(∆pM − ∆p0)

T (∆q − ∆p0)

(∆pM − ∆p0)T (∆pM − ∆p0)
(pM − p0) (6)

and similarly for p′. All of the quantities on the right-hand side

are known since p0 = ϕ0(u) and pM = ϕM (u).
Let qi = [xi

q yi
q zi

q ]T be the coordinates of the centroid

of the stable features in group i. For each unstable feature p,

we use the above procedure to estimate the world coordinates

of its preimage with respect to group i by assuming motion

coherence with qi to yield p̂i = [ x̂i
p ŷi

p ẑi
p ]T . In addition,

we estimate the world coordinates using the PLP procedure

described in Section III-D to yield p̃ = [ x̃p ỹp z̃p ]T . Using

these estimates, and assuming conditional independence along

the different dimensions, we then compute a score indicating

whether p belongs to group i, i.e.,

Li
p

= Li
xL

i
yL

i
zL

i
ℓL

i
h (7)

where

Li
x = exp

[

−
(

xi
q − x̂i

p

)2
/σ2

x

]

Li
y =















exp
[

−
(

yi
q − ŷi

p

)2
/σ2

y

]

, if ŷi
p > yi

q

exp
[

−
(

ŷi
p − yi

q + λℓ

)2
/σ2

y

]

, if ŷi
p <

(

yi
q − λℓ

)

1, otherwise

Li
z =















exp
[

−
(

ẑi
p

)2
/σ2

z

]

, if ẑi
p < 0

exp
[

−
(

z̃p − ẑi
p

)2
/σ2

z

]

, if ẑi
p > z̃p

1, otherwise

Li
ℓ = exp

[

−(1 − ℓi)2/σ2
ℓ

]

Li
h = exp

[

−(1 − hi)2/σ2
h

]

.

The first three factors compute a modified Mahalanobis

distance from the estimated coordinates to the centroid of the

ith vehicle. Li
x favors features that lie close to the centroid

along the x-axis. Since the stable features generally lie on the

front of the vehicle, Li
y assumes that the vehicle occupies a

portion of the road between y = yi
q and y = yi

q − λℓ, where λℓ

is the minimum truck length, and the positive y-axis points in

the direction of traffic flow. Points that are outside this region

are compared with the nearest edge. In the vertical direction,

the vehicle is assumed to occupy the space between z = 0
and z = z̃p, based on the upper bound of ztrue mentioned in

Section III-D.

The last two factors increase the score of larger vehicles,

ignoring the actual point p. Three points are considered:

the centroid qi = [xi
q yi

q zi
q ]T of the stable features in

the group, and two points that are shifted from the centroid

along the y- and z-axes, qi
ℓ = [xi

q yi
q − λℓ zi

q ]T and qi
h =

[xi
q yi

q zi
q + λh ]T . The values λℓ and λh are the minimum

length and height, respectively, for a vehicle to be considered

a truck. Let the projections of these points onto the image

be denoted by ui, ui
ℓ, and ui

h, respectively. Let the fraction

of pixels along a straight line between ui and ui
ℓ that are

foreground pixels (in the foreground mask) be ℓi, and let the

same fraction along the line between ui and ui
h be hi so that

0 ≤ ℓi, hi ≤ 1. In other words, ℓi and hi indicate the fractional

length and height of the vehicle compared with the minimum

truck length and height, respectively. As a result, the factors Li
ℓ

and Li
h encourage features that are high off the ground (i.e.,

unstable features) to be grouped with larger vehicles (i.e., those

with large values of ℓi and hi).

Let a and b be the groups that yield the highest and second

highest values, respectively, for the score of this feature. Then,

the feature is assigned to group a if La > Lmin and La/Lb >
Lratio. In other words, these conditions assign an unstable

feature to a stable group if the feature is likely to belong to

that group (controlled by Lmin) and, at the same time, unlikely

to belong to other groups (controlled by Lratio). We set σx =
σy = σz = 5 ft, σℓ = σh = 0.1 pixels, λℓ = 1.2wlane, λh =
0.8wlane, Lmin = 0.8, and Lratio = 2.

F. Correspondence, Validation, and Classification

The correspondence between the feature groups segmented

in the current frame and the vehicles (i.e., feature groups)

already being tracked is established by computing the number

of stable features that are shared between the groups. Each

vehicle is matched with the segmented feature groups in the

current frame and is associated with the group having the

maximum number of stable features in common. If a vehicle

has no features in common with any of the groups, then its

status is updated as “missing,” and its location in subsequent

frames is updated using its current velocity. For each vehicle,

we keep count of the total number of frames in which it was

successfully tracked (ηt) and the number of recent consecutive

frames where it has been missing (ηm).
After finding a match for all nonmissing vehicles, the

remaining unassociated feature groups in the current frame

are matched with the missing vehicles based on the closest

Euclidean distance between the centroids of the groups in world

coordinates. Each missing vehicle is associated, one at a time,
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Fig. 11. Sample image frames from the 11 sequences used in evaluating the algorithm, showing the variety of scenarios considered. S1 and S4 exhibit the same
conditions as L1 and L4, respectively. S9, which is omitted due to lack of space, closely resembles S8.

with the closest feature group if that group is within a distance

of τx and τy in the x- and y-axes, respectively. Then, the

remaining unassociated feature groups in the current frame are

initialized as new vehicles.

When a vehicle exits the detection zone, it is discarded if

it has not been tracked for a sufficient number of frames,

i.e., ηt < τη. This can be viewed as a simplified temporal

filtering to remove spurious and fragmented vehicle detections.

In addition, a vehicle is discarded if ηm > κηt, where κ ≥ 0,

at any time, which is important to prevent momentary false

detections from being retained.

To classify a vehicle as a car or truck,1 we simply sum

the number of unstable features that are associated with that

vehicle over all the frames that the vehicle is tracked. Vehicles

with more than ntruck unstable features are classified as trucks,

whereas the rest are considered cars. We only use unstable

features because they are rarely associated with cars due to

their low height, whereas the number of stable features for cars

and trucks tends to be about the same. The number of unstable

features that are associated with trucks is usually much greater

than that of cars (typically five to ten times higher). We set

τx = 0.3wlane, τy = 0.5wlane, τη = 4, κ = 2, and ntruck = 20.

IV. EXPERIMENTAL RESULTS

The algorithm was tested on 11 grayscale video sequences

captured by a 30-Hz camera placed on an approximately

9-m pole on the side of the road and digitized at 320 ×
240 resolution. No additional preprocessing was performed to

suppress shadows or to stabilize the occasional camera jitter.

For each sequence, an initial calibration step was used to

provide an approximate mapping between 2-D image coordi-

nates and 3-D world coordinates, as described in Section III-A.

After the calibration, the system is fully automatic, outputting

the lane counts, vehicle trajectories, and vehicle classification

(car/truck) in real time.

To convey the variety of conditions in the processed videos,

sample image frames from the sequences are shown in Fig. 11.

1We define a car as a vehicle with two axles and a truck as a vehicle with
more than two axles.

TABLE I
QUANTITATIVE RESULTS FOR ALL THE TEST SEQUENCES. FROM LEFT TO

RIGHT, THE COLUMNS INDICATE THE SEQUENCE NAME, THE TOTAL

NUMBER OF VEHICLES IN THE SEQUENCE (THE NUMBER OF TRUCKS IN

PARENTHESES), THE NUMBER OF VEHICLES CORRECTLY SEGMENTED

AND TRACKED, THE NUMBER OF FALSE POSITIVES, AND THE

CLASSIFICATION RATE. IN THE LAST COLUMN, THE NUMBERS

IN PARENTHESES INDICATE THE NUMBER OF CARS

MISCLASSIFIED AS TRUCKS, FOLLOWED BY THE

NUMBER OF TRUCKS MISCLASSIFIED AS CARS

As can be seen, these sequences differ by the camera placement,

field of view, direction of traffic flow, variations in lighting

conditions (including long shadows), curved roads, scale and

angle changes, and number of lanes. The “long” sequences

L1–L7 are 10 min each (18 000 image frames), whereas the

“short” sequences S8 and S9 are approximately 30 s each

(900 image frames). Sequences S1 and S4 were extracted from

the same video from which L1 and L4, respectively, were

extracted, with no overlap in image frames between the short

and long versions. Due to lack of space, S9 is not shown in the

figure but closely resembles S8 in terms of road shape, number

of lanes, and camera angle. As mentioned earlier, the same

parameter values were used in processing all the sequences.

A quantitative assessment of the algorithm’s performance

on these sequences is presented in Table I. The segmentation

and tracking performance exceeded 90% on all the sequences,

and the classification accuracy was more than 95%. The false-

positive rate exhibited variation, ranging from 1% to 7% of

the total vehicles in all the sequences except S9, where long

shadows caused the rate to reach 12%. The lower detection

rate in the L3 sequence is due to the vehicles receding from

the camera, which reduces the number of features successfully
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Fig. 12. Results of the algorithm on some image frames showing the ability of the algorithm to handle severe occlusions. The sequence name and the frame
number for each image is given as follows: (a) L1: 03 516. (b) L1: 10 302. (c) L1: 15 440. (d) L2: 00 134. (e) L2: 00 913. (f) L2: 11 960.

Fig. 13. Additional experimental results on sequences in which the vehicles are moving away from the camera or the road is curved. (a) L3: 08 860.
(b) L3: 17 522. (c) L5: 00 439. (d) L5: 02 618. (e) L6: 01 098. (f) L6: 01 190.

detected and tracked because of the relatively low texture on the

rear of the vehicles.

Figs. 12–14 show the results of the algorithm on some

example image frames from the sequences, with the images

slightly brightened to increase the contrast of the annotations.

Overlaid on each image are all the features (stable and unstable)

of that frame, with the convex hull of each group indicated by

a thin black line. The number next to each group indicates the

number of that vehicle, and the letter T is placed next to each

vehicle that is classified as a truck. The vehicles that are labeled

but have no features have already been successfully detected

and classified but have already left the detection zone, although

they have not yet left the image.

Fig. 12 demonstrates the ability of the system to segment

vehicles which are severely occluded, often by larger vehi-

cles traveling in adjacent lanes. In Fig. 12(a), the van (#135)

traveling in the middle lane is detected and tracked by the

algorithm, despite the fact that it is largely occluded by the truck
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Fig. 14. More experimental results demonstrating the performance of the algorithm when large tractor trailers occlude other vehicles. (a) L2: 03 204.
(b) L2: 03 260. (c) L4: 00 566. (d) L4: 14 654. (e) S8: 00 078. (f) S8: 00 506.

Fig. 15. Some instances in which the algorithm makes a mistake. (a) L2: 13 854. (b) L3: 06 216. (c) L3: 10 940. (d) L6: 07 240.

(#131) throughout the detection zone. In Fig. 12(c), the car

(#542) is detected in the frame shown as it is coming out from

being occluded by the truck, just as (#541) was detected in a

previous frame while it was still partially occluded by the truck.

Similarly, in Fig. 12(d), the vehicle (#5) is detected as it is being

disoccluded by the truck in front. In Fig. 12(e), all the vehicles

(#25–#28) appear as a single blob in the foreground mask,

and yet the algorithm correctly segments them. Traditionally,

separating vehicles in such scenarios has been impossible for

background subtraction approaches.

Fig. 13 shows sample results for vehicles traveling away from

the camera in Fig. 13(a)–(d) and for a curved road in Fig. 13(e)

and (f). In Fig. 13(a) and (b), the algorithm successfully detects

and tracks the vehicles traveling close to each other despite

the presence of long shadows. For Fig. 13(c) and (d), vehicles

are moving at a low speed and close to each other due to the

lane closure but are, nevertheless, correctly tracked. Notice in

Fig. 13(e) that the car (#14) is detected as it is coming out

of occlusion from the truck in front. In Fig. 13(f), the cars

that were not yet segmented in Fig. 13(e) (i.e., those behind

#13) are successfully detected, even though they are partially

occluded.

Some examples involving large tractor trailers are shown in

Fig. 14. In Fig. 14(a), both the vehicles (#103 and #105) that

are occluded by the white van (#101) are correctly detected and

tracked. Similarly, the dark-colored sport-utility vehicle (#107)

traveling adjacent to the truck (#106) in Fig. 14(b) is detected

after a few frames once a sufficient number of stable features is

found. In Fig. 14(c), (d), and (f), the ability of the algorithm to

correctly segment and track vehicles that enter the field of view

partially occluded and remain occluded throughout the detec-

tion zone is again demonstrated. In Fig. 14(e), the features of

a large tractor trailer are all correctly grouped into one vehicle,

despite the large extent to which they cover in the image. Note

that it is the algorithm’s identification of large vehicles (trucks)

that enables it to prevent declaring false positives in such cases

when the spillover of vehicles into neighboring lanes would

confuse traditional 2-D algorithms.

To convey a sense of the limitations of the algorithm, some

mistakes are shown in Fig. 15. In Fig. 15(a), the algorithm

fails to detect the car traveling in the first lane (indicated with

the letter M, for “missing”). Due to the heavy traffic and its

being in the far lane, the base of the car remains partially

occluded by the vehicle in front (#465) throughout the detection
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zone so that none of the features on the vehicle qualify as

stable features. In Fig. 15(b), the shadow of the tractor trailer

is mistakenly detected as a car (#165), thus yielding a false

positive. In Fig. 15(c), the algorithm fails to detect a car

traveling in isolation because of the lack of a sufficient number

of feature points on the vehicle arising from the poor contrast.

In Fig. 15(d), the algorithm misinterprets two motorcycles

traveling side by side as a single car, which is an error that could

be avoided by including a model for motorcycles and measuring

the foreground evidence to validate each vehicle.

In Fig. 16, the number of vehicles detected by the algorithm

is compared with the ground truth manually obtained for the

S2 sequence. Note that the accuracy in the two nearby lanes is

quite good, with accuracy in the farthest lane significantly lower

due to the increased amount of partial and complete occlusion

in that lane. The plot in the middle of the figure shows the

trajectories of some vehicles displayed in the road plane. In

addition, the mean speed of the vehicles in each lane (computed

over 1-min intervals) is plotted versus time, which corresponds

with the general trend evidence in the video sequence.

We have found the detection accuracy to be fairly insensitive

to the calibration parameters. To quantify this conclusion, each

of the endpoints of the lines corresponding to lane markings

was perturbed with additive Gaussian noise with a standard de-

viation of two pixels in a random direction. Additive Gaussian

noise having standard deviation of three pixels was added to

the endpoints of the line perpendicular to the direction of

traffic flow. For five different trials on each of the L1 and L4

sequences, the maximum drop in the detection rate was less

than 6% of the total number of vehicles (e.g., 97% detection

rate became 91%), and the maximum increase in false positives

(for L4) was found to be four vehicles. (Note that an average

user, with a little practice, is able to consistently click within

one pixel of the desired location.)

The algorithm was implemented in C++ using the Blepo

computer vision library2 and the OpenCV Lucas–Kanade

tracker.3 On a 2.8-GHz P4 laptop computer with 512 MB

of memory, the average processing time for a single image

frame was 32 ms, which is slightly faster than the frame

rate. To achieve this speed, the background was updated every

60 frames (2 s), new features were detected every five frames,

and binary morphological operations (dilation and erosion)

were performed on subsampled images (by a factor of two in

each direction).

V. CONCLUSION

Previous approaches to segmenting and tracking vehicles us-

ing video generally require the camera to be placed high above

the ground to minimize the effects of occlusion and spillover.

In this paper, we have presented a technique that overcomes

this limitation, working when the camera is relatively low to

the ground and beside the road. Our approach is based on

identifying and grouping feature points in each image frame

whose 3-D coordinates can be computed in a manner that is

2http://www.ces.clemson.edu/~stb/blepo.
3http://www.intel.com/research/mrl/research/opencv.

Fig. 16. Plots displaying the results of the algorithm. (Top) Total vehicles
detected in each lane versus time in the S2 sequence, with lanes 2 and 3 offset by
40 and 60 for viewing clarity. (Middle) Some of the vehicle trajectories for L1
as seen in a top-down view, with vehicles that are changing lanes clearly visible.
(Bottom) Mean speed (in miles per hour) for the vehicles in L1 computed over
1-min intervals.

relatively immune to the effects of perspective projection. The

novelty of this paper includes an incremental online real-time

algorithm to estimate the heights of features using a combi-

nation of background subtraction, perturbed PLPs, projective

transformation, and a region-based grouping procedure. Exper-

imental results on a variety of image sequences demonstrate

the ability of the algorithm to automatically segment, track, and

classify vehicles in low-angle sequences. These results include

situations involving severe occlusions in which the vehicle
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remains partially occluded throughout the sequence, which has

proved to be a particularly challenging scenario for previous

approaches.

The ability to track vehicles using low-angle cameras opens

several possibilities for highway monitoring, such as supporting

automated transient traffic studies in locations that are unable to

afford the infrastructure that is necessary for mounting cameras

high above the ground. In addition, by addressing the important

problem of occlusion, many of the concepts contained in this

paper are directly applicable to existing high-angle scenarios

with a large number of traffic lanes in which large trucks often

occlude neighboring vehicles. To further improve this paper

and enhance its applicability, future work should be aimed

at reducing the effects of shadows, incorporating appearance

models of vehicles to improve robustness, and supporting

continued operation in the presence of changing weather and

environmental conditions.
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