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Abstract Robot motions typically originate from an uninformed path sampling
process such as random or low-dispersion sampling. We demonstrate an alternative
approach to path sampling that closes the loop on the expensive collision-testing
process. Although all necessary information for collision-testing a path is known
to the planner, that information is typically stored in a relatively unavailable form
in a costmap. By summarizing the most salient data in a more accessible form, our
process delivers a denser sampling of the free space per unit time than open-loop
sampling techniques. We obtain this result by probabilistically modeling—in real
time and with minimal information—the locations of obstacles, based on collision
test results. We demonstrate up to a 780% increase in paths surviving collision test.

1 Introduction

The motion planning problem is to find a path or trajectory that guides the robot
from a given start state to a given goal state while obeying constraints and avoiding
obstacles. The solution space is high dimensional, so motion planning algorithms
typically decompose the problem by searching for a sequence of shorter, local paths,
which solve the original motion planning problem when concatenated.

Each local path comprising this concatenated solution must obey motion con-
straints and avoid obstacles and hazards in the environment. Many alternate local
paths may be considered for each component, so planners select a combination of
paths that optimizes some objective function. In order to generate such a set of can-
didate paths, the planner must generate many more candidate paths, each of which
must be verified against motion constraints and collision-tested prior to consider-
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Fig. 1 Typical data flow
within a robot closes the loop
around the sense-plan-act
cycle, but the planner itself
runs open-loop. We close the
planning loop, informing path
sampling with the results of
collision-testing earlier paths.
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ation. Motion planners generate this large collection of paths by sampling—most
often at random or from a low-dispersion sequence.

All the information needed to find collision-free path samples exists within the
costmap, but the expensive collision test process prevents that information from be-
ing readily available to the planner. A negative collision-test result (i.e. no collision)
is retained for future consideration, but a positive collision-test result is typically
thrown away because the path is not viable for execution. Such planners may later
waste time sampling and testing similar paths that collide with the same obstacle.

This policy of discarding information about colliding paths highlights a major
inefficiency, which especially impacts realtime planning. Every detected collision
provides a known obstacle location. This observation may not seem significant at
first, as all detected collisions represent known obstacles in the costmap. However,
not all such obstacles are equally relevant to a given local planning problem, and so
we can benefit by storing relevant costmap obstacles in a form more immediately
available to the planner. We argue that the planner may derive increased performance
by feeding back the set of collision points, known from prior collision tests, to the
path sampling process, as in Fig. 1.

1.1 Path Sampling and Path Parametrization

The general path sampling problem is to supply a sequence of distinct paths
{p1, p2, . . .} = P ⊂X , the continuum space of paths. Often, these paths are not
parametrized directly by their geometry but instead are described by their means of
generation. For instance, some planners consider only straight-line paths. Given a
current robot state x0 ∈ X , the configuration space, a straight-line path is uniquely
specified by connecting x0 to an arbitrary sampled state x f ∈ X . In such planners,
it is expected that the robot is able to execute arbitrary paths, and so the boundary
value problem is easy to solve because it is under-constrained.

Definition 1. Given start and end states, the boundary value problem (BVP) is to
find any feasible path from the start to the goal (i.e. the local planning problem). A
variant of this problem is to find the shortest such path. �

Some classes of robotic systems possess velocity constraints that limit the di-
rection in which they may move instantaneously. The most well known example of
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these nonholonomic constraints is the difficulty of parallel parking a car. In such
highly constrained, underactuated systems, the set of feasible paths F is much
smaller than the space of all paths, X . Thus, an arbitrary path sample drawn from
X is unlikely to be in the feasible set F . In such cases, the BVP is difficult to solve.

For constrained systems, we may avoid solving the BVP by instead sampling in
U , the space of actions. Suppose we have a “black box” model of the robot’s re-
sponse to a control input, which is a mapping M : U →F . Sampling in the control
space offers several advantages: 1) all sampled paths trivially obey motion con-
straints; and 2) we may precompute a diverse set of such paths. For a mobile robot,
these paths are independent of initial position and heading, depending only on their
derivatives (we ignore external interference such as wind or wheel slip). Therefore, a
relatively small lookup table suffices to describe an expressive set of robot motions.

1.2 Prior Work

The motion planning community has invested considerable effort in the topic of non-
uniform and adaptive sampling. The literature on this topic largely concerns prob-
abilistic roadmaps (PRMs), which sample states rather than paths. Hsu, et al. [11]
provide a survey of recent work in non-uniform sampling for PRMs. We touch on a
few of the broad approaches here.

One approach employs a fixed strategy to bias configuration sampling towards
narrow corridors—parts of the C-space that are less likely to be sampled on their
own due to their small measure [1, 9, 17]. These works all restrict the sampling
consideration to points, whereas we sample directly in the space of paths, using a
distribution that varies in reaction to new collision test results.

The non-uniform sampling field has largely moved towards such adaptive strate-
gies. For instance, Jaillet, et al. [12] restrict sampling to size-varying balls around
nodes in an RRT to avoid testing paths that would go through obstacles. Yu and
Gupta [19] perform sensor-based planning in which a PRM is incrementally con-
structed based on the robot’s partial observations of obstacles. Exploratory motions
are selected by maximizing information gain. Another recent adaptive approach is
to construct a meta-planner with several tools at its disposal; such planners employ
multiple sampling strategies [10] or multiple randomized roadmap planners [16],
based on a prediction of which approach is most effective in a given setting.

One important feature of our work is the use of information from all collision
tests, including positive results, to minimize entropy in a model approximating ob-
stacle locations. The work of Burns and Brock [3–6] bears considerable resemblance
to ours in this regard. They describe an adaptive model of obstacle locations in C-
space based on previous collision test results. Their model utilizes locally weighted
learning to select state [4] or path [5] samples that reduce model uncertainty. We
likewise develop a model of obstacle location, although ours inhabits the workspace,
and its simplicity is better suited to realtime applications. Burns and Brock subse-
quently observe, as we do, that model refinement is not an end in itself, but merely a
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means to the end of finding collision-free paths [6]. We proceed from this observa-
tion to consider what level of refinement is appropriate, in the context of constrained
paths, based on the maximum width of corridor we are willing to miss discovering.

Separately, Burns and Brock describe an entropy-guided approach to the selec-
tion of configuration samples likely to unify two connected components of the PRM
graph [3]. In later work [6], they augment this approach with the notion of utility,
which combines information gain regarding obstacle locations with the value of a
resulting sample for solving the planning problem. Utility-guided sampling selects
the configuration expected to solve the eventual planning problem most efficiently.
We take a similar approach, in that we sample a combination of paths intended to
navigate the space and to refine our obstacle model.

2 Informed Path Sampling Approach

In closing the loop on path sampling, we must feed back knowledge of obstacles
reachable by the robot (in the form of collision-test results) into the sample space of
paths, be it X or U , so that we can suppress from the sampled path sequence future
paths intersecting those regions of the workspace.

A collision can be described as an ordered pair c = (p,s), with p∈F and s∈ I =
[0,1], a time/distance parameter describing where on the path the collision occurred.
A path is a mapping p : I→ X . Thus, c maps directly into a state x ∈ X , identifying
the location of an obstacle. However, this collision state is special because it is
known to be reachable by an action u ∈ U . In fact, x is probably reachable by a
continuum of other actions, of which we can easily precompute a sampled subset
for each possible collision point.

Our approach to path sampling feedback in highly constrained systems is to keep
the feedback entirely within the action space, by which such paths are parametrized.
We first collision test some paths drawn from a low-dispersion sequence [7]. After
finding the first collision point, its location biases future action samples. We may
construct, a priori, a list of correspondences between possible action samples to
accelerate this process.

Often, collision-test routines are able to identify the precise location where a
collision occurred. Knowing that workspace point w is part of an obstacle, we may
eliminate from our sampled sequence all paths passing through the set cs(w), the
set of robot configurations xi ∈ X in which the robot intersects the workspace point
w. To eliminate these paths, we must store the list of actions by which they are
parametrized.

In order to identify the set of paths passing unacceptably close to an obstacle
point w, we precompute a proximity look-up table (PLUT), as shown in Fig. 2.
Suppose our precomputed path set P contains N paths, each discretized into M
points. The PLUT stores, for every ordered pair of paths (pi, p j) in P , the shortest
distance to the kth discretized point on p j:
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Fig. 2 Given a path set of N
paths, each discretized into M
points, the proximity look-up
table (PLUT) stores for each
ordered pair of paths a list
of shortest distances to each
discrete point on the second
path. Thus, there are a total of
MN2 unique PLUT entries.

PLUT(pi, p j,k) = min
w∈pi

d
(

w, p j

(
k
M

))
, (1)

where d(w1,w2) gives the Euclidean distance between two points.
Now, given a collision c = (p j,s), we would like to find out if another path pi

would collide with the same obstacle. We simply query the PLUT as

PLUT(pi, p j,sM) < rr, (2)

where rr is the radius of the robot (or an inscribed circle of the robot). When this
condition holds, the collision test would fail. Knowing this, we may eliminate the
path without a test, and spend the CPU time considering other paths.

However, we may go beyond short-circuiting the collision-test to estimating the
probability distribution on obstacle locations using the principle of locality, which
states that points inside an obstacle tend to occur near other points inside an obstacle.
We propose a series of models of locality and two path sampling problems, which
we address using our models. The key to success of this approach is that the final
evaluation be less costly than the collision tests it replaces.

3 Probabilistic Foundations

In this paper, we develop a series of probabilistic models that enable us to rapidly
select paths for collision test that maximize one of two properties. First, in order to
find valid robot motions, we must sample a selection of collision-free paths for exe-
cution. Second, we wish to sample broadly within the free space of paths, including
in proximity to obstacles. The precision with which we know the obstacle/free-space
boundaries directly relates to the size of narrow corridor we expect to find.

The workspace comprises a set of points divided into two categories: obstacle
and free. The function

obs : W → β , (3)

where β = {true, false}, reveals the outcome that a particular workspace point w is
either inside (true) or outside of an obstacle. Building on such outcomes, we then
describe an event of interest. A path collision-test takes the form
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pct : P → β , (4)

which returns the disjunction of obs(w) for all w within the swept volume (or swath)
of the path. A result of true indicates that this path intersects an obstacle.

Using these concepts as a basis, we pose two problems:

1. Exploitation. We are given a set of workspace points inside obstacles, C =
{w1, . . .wm} and a set of untested paths Punknown = {p1, . . . pn}. Knowing only
a finite subset of the continuum of obstacle-points, find the path that minimizes
the probability of collision:

pnext = argmin
pi∈P

Pr(pct(pi,C)). (5)

2. Exploration. Suppose we have a model of uncertainty U(Psa f e,C) over the col-
lision status of a set of untested paths, Punknown, in terms of a set of tested paths
and known obstacle-points. Find the path pnext ∈Punknown giving the greatest
reduction in expected uncertainty:

Uexp(pi) = U
(
Psa f e∪{pi},C

)
Pr(¬pct(pi,C))

+U
(
Psa f e,C∪{ci}

)
Pr(pct(pi,C)) (6)

pnext = argmax
pi∈Punknown

U(Psa f e,C)−Uexp(pi). (7)

These two considerations are essentially the same as those encapsulated in the utility
function of Burns and Brock [6] (see Section 1.2).

4 Locality

Thus far, we have demonstrated how a single failed collision test may serve to elim-
inate an entire set of untested paths from consideration because they pass through
the same obstacle point. We may extend this approach one step further using the
principle of locality.

Definition 2. The principle of locality states that if a robot state is in collision with
an obstacle, then that state is contained in a neighborhood ball of obstacle points. �

Two contributing factors combine to produce the locality effect. First, the non-
zero volume of the robot means that even a point obstacle results in a set of robot
states cs(t) in collision with that point. The second factor is that real-world obstacles
occupy some volume in space.

Given a known collision point, we employ the principle of locality to define a
function expressing the probability that a new path under test is in collision with the
same obstacle. A locality model takes the following general form:

loc(pi |C) = Pr(pct(pi) |C) (8)
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Fig. 3 The robot (red disc at
left) considers two paths. The
bottom path fails its collision
test. The locality model does
not know the full extent of
the obstacle (gray), but it can
approximate the obstacle us-
ing a probability distribution
(concentric circles) and can
estimate the likelihood of the
top path colliding.

Here, C may be a single point collision outcome or a set of collisions. If omitted, it
is assumed to be the set of all known collisions.

This function depends on many factors, including the size and shape of the robot
as well as the distribution on size and shape of obstacles in the environment. The
most important parameter, however, is the distance between the new path and the
known collision site. Thus, we may establish a rapidly computable first-order local-
ity model in which we abstract away the size and shape of obstacles using a single
distribution on radius, as in Fig. 3. We discsuss several intermediate locality model
formulations before coming to the final form.

4.1 General Locality Model

By explicitly modeling locality, we may reason about which paths are more or less
likely to be in collision with any known obstacle, even with only partial information
about its location. A path sampling algorithm, when informed by a locality model,
provides a path sequence ordered by likelihood of collision, given currently known
collision sites. We propose here a general model of locality that can be expected to
produce collision-free path samples with high probability.

In constructing a general locality model, we abstract away many parameters; we
consider both the robot and obstacles to be balls (in R2 or R3), and the obstacles
are assumed uniform in radius. We relax some of these assumptions later, in Sec-
tion 4.4. For now, these restrictions permit us to simplify the model by removing
bearing from consideration. Thus, the general model’s prediction of future colli-
sions is purely a function of range from the known collision site to the path. The
fixed radii of both the obstacles (ro) and the robot (rr) result in the intuitive notion
of locality: that its influence is over a limited range only.

The precise formulation of the general locality model, as depicted in Fig. 4, is
based on maintaining a probability distribution on possible locations of the obstacle
centroid, given a known collision site. In this naive model, the location of the cen-
troid is described by a uniform distribution over B(ro), a ball of radius ro centered
at the colliding position of the robot. A path pi sweeps out a swath S(pi) of width
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(a)

ro

(b)

rorr

Fig. 4 The general locality model: (a) Given a point known to be in collision with an obstacle
(center red dot), the blue inner circle of radius ro represents possible locations of the centroid
of the obstacle. The green outer circle comprises points possibly occupied by some part of the
obstacle. (b) The probability that a new candidate robot path is collision-free equals the fraction of
possible obstacle centroids outside a swath of width 2ro + 2rr . The blue region represents the set
of possible centroids, while the green region depicts possible obstacle extents.

2ro +2rr. Any non-empty set B(ro)∩S(pi) represents some probability of collision.
This general model then predicts that the probability of collision is

locgeneral(pi | c) =
|B(ro)∩S(pi)|
|B(ro)|

. (9)

If we regard pi as a straight line, then in 2D the probability of collision is the
ratio of the area of a circular segment to the area of the whole circle, which is [2]:

fsegment(r) =

{
1

πr2
e

(
r2

e cos−1 r−re
re
− (r− re)

√
2rer− r2

)
if 0≤ r ≤ 2re

0 otherwise,
(10)

where r is the range between the path and the collision point. We call re the range
of effect, which we set equal to ro here.

Definition 3. The range of effect of a known collision point describes the radius
around that point at which paths are regarded to be at risk of collision with the
known obstacle. �

4.2 Simple Locality Model

We now propose an even simpler locality model, which closely approximates (10)
but makes use of the existing PLUT. Instead of path area, we consider only the
point on the new path most closely approaching the known collision point. This
new locality model employs the raised cosine distribution:
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frcd(r) =

{
1

2re

[
1+ cos

(
π

r
2re

)]
if 0≤ r ≤ 2re

0 otherwise.
(11)

For a stright or gently curving path, this approximation is very good. Then, the
probability that a new path pi will collide with the same obstacle represented by the
previous collision c = (p j,s) is simply

locsimple(pi | c) = frcd(PLUT(pi, p j,sM)− rr). (12)

Note that here we are no longer maintaining an explicit probability distribution
on the location of an obstacle but instead a heuristic estimate of the risk of a single
path relative to a single collision site.

4.3 Handling Multiple Collision Sites

Given a known collision site, both (9) and (12) provide a tool for selecting a
candidate path to minimize the probability of collision. However, we have not
yet addressed the issue of multiple known collision sites. The likelihood that two
workspace points have the same obstacle outcome correlates strongly with the dis-
tance between them, by virtue of describing the same obstacle. The estimate of
collision likelihood for an untested path depends on what statistical independence
assumptions we make among known collision points.

Fig. 5 depicts a situation in which two collision sites appear to be correlated.
However, many possible policies for estimating statistical independence among a
set of collision points, such as clustering, are complex to compute and implement.

In contrast, we may conservatively assume that all collisions are independent, in
which case basic probability theory states that

loc(p) = loc(p | {c1, . . . ,cn}) = 1− ∏
i∈{1,...,n}

(1− loc(p | ci)). (13)

If some collision sites are actually part of the same obstacle, then we are overesti-
mating the likelihood of collision for p. In the absence of any knowledge regarding
correlation, however, the most conservative policy is the safest. Thus, we now have
the means to address Problem 1, Exploitation:

pnext = argmin
pi∈P

loc(pi). (14)

In the next section, we explore an information theoretic approach to safely adjusting
this pessimistic model.
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Fig. 5 Two collision sites c1
and c2 are located in close
proximity. Intuition suggests
that c2 should be ignored
when computing the risk of
collision of path ptest . Either
the two sites belong to the
same obstacle, or else the
obstacle at c2 is “blocked” by
the obstacle at c1.

c2
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test

(a)

2ro

p
safep

test

c

(b)

p
safe

c

(c)

2ro

p
safe

c

Fig. 6 (a) Given a collision point c and neighboring collision-free path psa f e, the blue circle repre-
sents a distribution on obstacle locations, some of which are invalidated by psa f e. The more distant
candidate path ptest is not at risk of collision with the obstacle represented by c.
(b) and (c) Two simple hypotheses on obstacle scale and position explain these two results. The
distribution shown in Fig. 4(b) is simpler to represent during online path sampling.

4.4 Adaptive Locality Model

The locality models presented in Sections 4.1–4.2 incorporate only positive collision
test outcomes. Those static models conservatively estimate an obstacle distribution
spread over a large but finite range of effect. We now construct an adaptive locality
model capable of incorporating both positive and negative collision-test outcomes.

If we should happen to discover a safe path psa f e passing within collision site
c’s range of effect, then we may use this new information to refine the obstacle
model of c. In effect, we adjust the locality function to act over a smaller range in
the direction of psa f e. As Fig. 6a shows, no path ptest that is separated from c by
psa f e can possibly be at risk of collision with this obstacle. This adaptive model
effectively relaxes the earlier, rigid assumptions on obstacle size and independence
of collision sites. In modeling such geometric relations, we depart from prior work
addressing locality.

Following an update to the model, all future probability estimates involving c
incorporate this new information. Although the independence assumption may ini-
tially make nearby paths like ptest appear riskier than they should (Fig. 5), the adap-
tive model rapidly cancels out this effect after finding a safe path to shrink each
collision point’s range of effect.

In addressing the problem of how to adaptively adjust obstacle distributions in
reaction to a collision-free path, a variety of approaches present themselves. One
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Fig. 7 The range of effect on
each side of collision site c
is maintained separately. The
left range began at 2ro, but it
was reduced after successfully
collision-testing path psa f e.

2ro

p
safec

Fig. 8 In three dimensions,
the adaptive locality model’s
range of effect is split into
four sides. The robot’s up
vector, u, and the vector
pointing toward the collision
point, a, are used to define
which of four sides the path
ptest is on. As illustrated, the
path is on the top-left side.

u

a

p

p
test

c

t

possible approach is to shrink the range of effect for the obstacle at c, as in Fig 6b,
which supposes that the obstacle is smaller than initially thought. Another approach,
to shift the entire distribution away from the safe path as in Fig. 6c, assumes that the
obstacle size was correctly estimated, but its position was off.

We adopt a compromise position. We prefer that the collision site remains the
center of a distribution in order to keep range checks efficient via look-up table.
However, we also prefer to avoid altering the range of effect of the opposing side,
about which we have no new data. We therefore split the range of effect into several
regions of influence (“sides”) centered around each collision site. In 2D, we have
left and right sides of the obstacle, as in Fig. 7. In 3D, the division is topologically
more arbitrary, although we split the obstacle into four sides.

In splitting the locality model into several directions, we require a rule to con-
sistently associate each path with a particular side of the collision point. The sides
are defined relative to the pose of the robot before executing the path. The sides
meet at the line a, an axis running through the start pose and the collision point. We
assign names to the sides describing their position relative to the robot’s frame of
reference. Sides are determined by

left = sgn(t×p ·u) (15)
top = sgn(t×p ·a×u), (16)

where u denotes the robot’s up vector, p the projection of c onto the path, and t the
tangent vector of the path at this point, as in Fig. 8. These sides may be precomputed
for each path. In 2D, it is particularly convenient to augment the PLUT with a sign
indicating on which side of the path each possible collision point lies.

Fig. 9 shows a family of paths on the left side of an obstacle. We deem each path
equally likely to collide with the obstacle because they each approach equally near
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Fig. 9 A family of paths, all
of which pass to the left of the
collision site, c. Despite the
variety of shapes, each path
intrudes equally into the left
range of effect of c, and thus
they would each reduce its
left range of effect equally.

c

to the collision point, c. This assignment of paths to a single side of an obstacle
places assumptions on the path’s shape. We assume here that curvature is bounded
and that paths are reasonably short. Previous work by Knepper, et al. [15] thoroughly
discusses these assumptions.

5 Path Entropy

Having established an adaptive locality model, we now consider a means to reap
maximal advantage from its predictive capabilities in order to solve Problem 2, Ex-
ploration. It is important to select paths for collision test that cause the model to
rapidly converge to an accurate description of obstacles, while simultaneously min-
imizing failed collision tests. Given a set of collision sites, the best path to collision
test is that path with maximum entropy according to the current model parameters.

Definition 4. An untested path’s entropy (sometimes called Shannon entropy) refers
to the expected amount of information about the safety of other untested paths that
would be gained from collision-testing it. A path’s entropy is

H(pct(p)) =−Pr(pct(p)) logPr(pct(p))−Pr(¬pct(p)) logPr(¬pct(p)).� (17)

In order to maximize our understanding of the true distribution of obstacles with
the fewest possible samples, we choose to sample the maximum entropy path:

ptest = argmax
pi∈P

H(pct(pi)). (18)

Based on current information, the maximum entropy path has maximal uncertainty
with regard to its collision with obstacles; its probability of collision is nearest to
50%. Testing this particular path will therefore increase total knowledge more than
any other. The result will be either a path that significantly reduces the range of
effect for some known collision point(s) or a new collision point that is far from
known collisions. In either case, model accuracy increases with maximal utility.

The policy of maximizing entropy was proposed by Jaynes [13] for the purpose
of estimating an unknown distribution. Maximum entropy has been specifically ap-
plied to decision theory [8], as we employ it here. The decision that maximizes
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entropy is the one that minimizes the worst case possible outcome. In our case, the
worst outcome is rediscovering a known result because it wastes computation time
for no gain. This outcome takes two forms: testing a path passing through a known
collision site, or retesting a known-safe path. This Γ -minimax approach [18] is capa-
ble of reasoning simultaneously about an entire family of probability distributions,
called Γ —in our case, a range of theories about obstacle extent.

If the maximum entropy policy is pursued repeatedly, path selection proceeds to
discover a sequence of safe paths and collision sites that are progressively nearer to
each other, thus establishing precisely the boundaries separating the obstacles from
free space. Knowing these boundaries may accelerate the process of sampling and
testing paths more densely within the free space. In prior work [15], we provide one
possible approach to this process.

Refining these boundaries is a process of diminishing returns, however. As we
discover safe paths progressively closer to obstacles, the margin of uncertainty be-
comes so low that additional maximum entropy path samples provide negligible
advantage for a variety of reasons: 1) the cost of collision testing a path often in-
creases with greater obstacle proximity; 2) there is a computational cost associated
with path sampling that is proportional to the number of known collision sites; and
3) paths close to obstacles are poor choices for execution. These factors could be
incorporated into a utility function [6], but this remains as future work. Thus, we
should not exclusively pursue the maximum entropy sampling policy, but also se-
lect path samples far from obstacles to maximize safety and path diversity.

We utilize several strategies to combine exploration and exploitation in a hybrid
approach. In the absence of any uncertainty from our locality model (such as be-
fore the first collision site has been discovered), we sample from a low-dispersion
sequence. In the presence of uncertainty, we compute the fraction f of the total al-
lowed plan time that has already elapsed (recall that we assume realtime planning).
With probability f we pursue an exploitation (obstacle avoidance) sampling strat-
egy, whereas with probability 1− f we instead pursue an exploration (boundary
finding) strategy to refine our locality model. Sampled paths very near to known
obstacles are set aside without testing for later use, since they make poor candidates
for traversal. This threshold distance reflects a willingness to overlook very narrow
corridors while other options avail themselves. We search these risky paths if there
is time at the end of the plan cycle, after exhausting other paths for test.

6 Experimental Results

We conducted a set of experiments in simulation in order to obtain a sufficient quan-
tity of trials to recognize statistically meaningful trends. Experimental setup is as in
our earlier work [14], in which trials comprise sets of one-hundred planning prob-
lems; in each one, the curvature-constrained robot attempts to navigate through ran-
domly generated 2D point-obstacle environments, each based on a query comprising
start and goal poses. The robot moves continuously while replanning at a fixed rate.
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Fig. 10 Simulator depiction
of locality model, showing:
collision-free paths (blue),
known collision sites (red
dots), and their ranges of ef-
fect (concentric semicircles).
Note that the dots correspond
to the nearest edge of each
C-space obstacle—the point
most relevant from the robot’s
current pose. Not all obstacles
(black) are relevant to the
current local plan.

A heuristic function selects goal-directed local paths from a set of 2,401 paths. A
low-fideltiy global planner helps guide the robot to the goal. In order to assess the
effect of various path sampling strategies, we varied replan cycle time. Fig. 10 shows
a screen capture of our simulator, indicating known collision sites (in C-space) and
ranges of effect. We consider four path sampling strategies:

• Low dispersion—sequence generated by the Green-Kelly algorithm [7]
• Avoid obstacles—pure exploitation; sample as far as possible from obstacles
• Find boundaries—pure exploration; selects maximum entropy path
• Hybrid approach—combines “avoid obstacles” and “find boundaries” strategies.

We present results on three of the strategies in Fig. 11. We see an increase in safe
paths produced per unit time for both pure obstacle avoidance (up to 7.8x) and the
hybrid approach (up to 3x), compared to a fixed low dispersion sequence. However,
pure obstacle avoidance sampling suffers a drop in performance at solving planning
queries, which the hybrid approach overcomes. Note that the low-dispersion sampler
actually declines slightly in performance as more samples are allowed, which is
consistent with earlier results [14]. The hybrid planner shows a trend of increasing
performance as it improves its locality model.

7 Discussion

In real time planning, performance is sensitive to the computational cost associated
with collision testing. Alternatives that alleviate some of that computation can be
beneficial, provided that such alternatives are computationally efficient themselves.
In this paper, we present a strategy for informed path sampling that guides the search
away from obstacles and towards safe or unexplored parts of the workspace. Al-
though obstacle information is already available to the planner in costmap form, we
obtain a significant increase in performance by representing the most salient subset
of those obstacles in a more immediately accessible form.

We utilize a proximity look-up table to accelerate this process. Even so, our sta-
tistical model describing nearby obstacles and their relationship is necessarily sim-
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Fig. 11 All tests in these plots were run at an obstacle density of 2%. (a) The locality model
provides up to a 7.8x increase in the fraction of paths collision-free per replan cycle. As replan
cycle time increases, we see regression toward the mean, as a larger total fraction of available
paths are collision tested. (b) In success rate at solving planning queries, we see that the “avoid
obstacles” strategy suffers in performance, whereas the hybrid approach, which strikes a balance
between exploration and exploitation of the locality model, performs increasingly well as it has
more time to gather information.

ple. This model makes use of the principle of locality to search appropriately far
from obstacle locations already discovered in prior collision tests to maximally re-
duce uncertainty. Using our probabilistic locality model, we trade off between ex-
ploration and exploitation in order to discover a variety of safe paths while largely
avoiding searching colliding paths.
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