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Abstract

A simple inverse kinematics procedure is proposed for a seven degree of freedom model of the human
arm. Two schemes are used to provide an additional constraint leading to closed-form analytical
equations with an upper bound of two or four solutions. Multiple solutions can be evaluated on the basis
of their proximity from the rest angles or the previous configuration of the arm. Empirical results
demonstrate that the procedure is well suited for real-time applications.
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Real-Time Inverse Kinematics
of the Human Arm

Abstract

A simple inverse kinematics procedure is proposed for a seven degree of freedom
model of the human arm. Two schemes are used to provide an additional constraint
leading to closed-form analytical equations with an upper bound of two or four solu-
tions. Muttiple solutions can be evaluated on the basis of their proximity from the rest
angles or the previous configuration of the arm. Empirical results demonstrate that the
procedure is well suited for real-time applications,

| Iintroduction

Real-time inverse kinematics is a key component of a human modeling
system. For example, in interactive figure manipulation it is convenient for the
user to specify the desired location of the hand instead of explicitly manipulat-
ing the arm joints. Another important application of inverse kinematics occurs
in the playback of motion capture data where joint angle trajectories must be
inferred from the movement of sensors positioned on the body.

Mechanisms with more than six degrees of freedom, such as the human arm,
are said to be redundant because they have more flexibility than required to
achieve a given end-effector position and orientation. In robotics applications
redundancy is often exploited to satisty additional objectives such as torque op-
timization, and singularity and obstacle avoidance. It is generally impossible to
solve for these additional criteria analytically so a numerical procedure must be
used. For example, Klein (1984) used a generalized pseudoinverse technique to
avoid joint limits and obstacles. Suh and Hollerbach (1987) also used the pseu-
doinverse to minimize torque utilization. In the computer graphics commu-
nity, Maciejewski (1990) used a generalization of the pseudoinverse to generate
smooth trajectories for articulated figures. Zhao and Badler (1994) imple-
mented a flexible inverse kinematics technique that allows the user to specify
multiple positioning and aiming goals for high degree of freedom figures. In
their scheme, the inverse kinematics task is cast into a constrained nonlinear
programming problem that is solved using a modified quasi-Newton algo-
rithm. Koga, Kondo, Kuffner, and Latombe (1994) developed a two-phase
inverse kinematics procedure for generating “natural” looking arm postures.
They use a sensorimotor transformation model, proposed by Soechting and
Flanders (1989a, b) to obtain an initial guess for an arm posture that matches
physiological observations of human subjects. Because the solution is not exact,
the joint angles are then refined by an optimization procedure until a precise
solution is achieved.

The chief advantages of a numerical method are flexibility and generality: a
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Figure 1. A simplified mode! of the human arm.

single procedure can be used for a variety of manipula-
tors, optimization criteria and constraints can be incor-
porated, and solutions for redundant manipulators can
be obtained. However, numerical algorithms are compu-
tationally expensive and often fall short of real-time re-
quirements. Moreover, most numerical methods furnish
only a single answer even though multiple solutions ex-
ist. Finally, stability and convergence problems often
occur near a singularity of the Jacobian. For these rea-
sons, an analytical solution is often preferable.

Because the human arm is redundant there are an infi-
nite number of solutions for a given wrist position. We

propose two simple schemes for reducing the degrees of
freedom to yield a system of equations with closed-form
solutions. The two methods are combined to construct a
simple but effective inverse kinematics procedure for the
human arm.

2  ASimple Model of the Human Arm

The human arm, particularly the shoulder-clavicle
complex, is a complicated mechanical structure that is
challenging to model accurately. Badler, Phillips, and
Webber (1993) discuss a sophisticated model for the
human arm and the implementation of its inverse kine-
matics for interactive tasks. However, in our application
real-time performance is the chief concern so we are will-
ing to use a simpler model that permits fast closed-form
solutions to the inverse kinematics equations. The hu-
man arm can be crudely modeled as a seven degree of
freedom mechanism consisting of a spherical joint for
the shoulder, a revolute joint for the elbow, and a spheri-
cal joint for the wrist. This admittedly simple model ne-
glects scapula movement and forearm pronation but is
visually adequate for many applications. Placing a fixed
coordinate system {0} at the shoulder and moving coor-
dinate systems [i} (i = 1..7) at each joint, define A, as the
4 X 4 homogeneous coordinate transformation from
frame {i — 1} to frame {#} as a function of joint variable
0,. In the model shown in Figure 1, the values for A; are

(¢l —-s1 0 O
s1 ¢l 00
0 0 o0 1]
D 0 0 0]
0 ¢2 -2 0
M=REI=1 o 2 o
0 0 o0 1]
3 -3 0 0
3. ¢3 0 0
A3 = Rz(63)T(05 OaLI) = 0 0 1 L1
0 0 0 1
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4 0 s4 5412
‘ 0 1 0 0
Ae=ROITO 0L =1 o4 car2
0 0 0 1
"5 0 5 0
0 1 0 0
As = Ry(95> - -5 0 5 0
0 0 0 1
1 0 0 0]
0 6 —s6 0
Ac=Rebe) =1y 6 6 0
00 0 1

[e7 =7 0 0
s7 7 0 0
A7 = Rz(67) = 0 0 1 0

0 0 0 1]

where ¢z and sz are used to denote cos (8;) and sin (6;)
and L1 and L2 are constants representing the lengths of
the upper and lower arm.

Given A, the desired position and orientation of
the wrist frame relative to the shoulder frame, the in-
verse kinematics problem is to find a set of angles
81, . . ., 07 that satisfies the following equation:

A A AALAAA; = Ay (1)
If the components of Ay are denoted as
g11 512 g13 414
J21 522 g23 g24
g31 g32 g33 g34
0 0 0 1

Awrist =

the vector p = [g14, g24, 434]7 is the position of the
wrist measured in the fixed coordinate system. Given p,
the elbow angle 6, is uniquely determined by the distance of
the wrist from the shoulder according to the formula

L1 +12% - le]z)

b, =7= arccos( [0 (3)

Although there are two solutions for 8, only one answer is
physically realizable because of joint limits. Equation (1) is

underconstrained as Ay Specifies six, rather than seven,
independent quantities so there are an infinite number of
values for 81, 8,, 83, 85, 66, and 8; that sadsfy (1). To obtain a
finite set of solutions an additional constraint must be pro-
vided. We propose two schemes that lead to simple closed-
form analytic solutions.

3 Scheme |: Specifying the Elbow Position

Korein (1985) first noted that a natural parameter-
ization for the extra degree of freedom of the arm can be
based on the observation that if the position of the wrist
is fixed the elbow is still free to swivel about an axis from
the wrist to the shoulder. Consider the diagram shown
in figure two, where s, e, and w define the positions of
the shoulder, elbow, and wrist, respectively. As the
swivel angle ¢ varies, the elbow traces the arc of a circle
lying on a plane whose normal is parallel to the wrist-to-
shoulder axis. To mathematically describe the circle and
¢ we first define the normal vector of the plane by the
unit vector in the direction of the wrist to the shoulder

X WS 4
v s @
Additionally, we need two unit vectors & and ¥ that
form a local coordinate system for the plane containing
the circle. Setting 1 to be the projection of the —z axis
onto the plane gives
-z + (z-A)h

8= v e mal )

and ¥ is obtained by taking the crossproduct v = i X 4.
The center of the circle ¢, and its radius # can be derived
by simple trigonometry

c=s+ cos (a)L1ir

r = L1 sin (o)
L22—L1% - |jw —s}|?
cos (@) = T iw — 5] (6)
) L2 sin ()
sin (o) = ————Hw By
=m0
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Figure 2. The elbow position is parameterized by the swivel angle.

and the elbow position can be parameterized as a func-
tion of ¢ (Fig. 2) abour the 4 axis

e = r[cos (d)0 + sin (b)¥] + c. (7)

Defining i as the projection of the —z axis allows ¢ to
be interpreted as a variable that controls the elbow
height. It is easy to verify that the elbow is at its lowest
point when ¢ = 0 and that increasing the magnitude ¢
of will elevate the elbow.

For the time being assume that a suitable value of ¢ is
known. Once the elbow position e has been calculated,
the inverse kinematics problem can be solved analyti-
cally. First note that the elbow position is only a func-

~ tion of the first three joints

0 ex
0 &y
A1A2A3 O = ez
1 1

Expanding the matrix equation above yields the follow-
ing unique solutions for 8, and 6,

8, = arctan2(ex, —ey)

ez
0, = arctan2(52 -—-)

L1
(8)
—ey
L1 cl=0
2 =
e
I otherwise

where arctan2 is the two argument arctangent function.

To solve 83, we make use of the fact that the position
of the wrist depends only upon the first four joints. For
known values of 8;, 6,, and 8,4 the value of 8; can be ob-
tained by solving the equation

0 g14
0 424

MAAA o= [, ©)
1 1

Premultiplying both sides by (A;1A;)~! and using the
first two components of the vector equation leads to

0; = arctan2(—slc2g14 + clc2g24 + 52434,

clgld + slg24). (10)

3.1 Solving for the Wrist Angles

Once the values of 84, 8,, 83, and 8, have been cal-
culated the wrist angles can be isolated by rearranging
(1) as

AsAcA; = (A1A2A:A4)  Agie (11)

Denoting the elements of the right hand matrix by rij
(¢ = 1.3, j = 1..3) and expanding the rotational com-
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ponents of both sides give the following nine equations:

€5¢7 + 555657 —c557 + s556¢7  $5¢6
c6s7 c6c7 —s6
—=s5c7 + c556s7 5857 + (5567 c5¢6
r11 712 »13
= |#2]1 ¥22 423 (12)
¥31 »32 33
Two possible values for 84 are determined by
arcsin (—#23)
6= 1_ s (13)
[7 + arcsin (-723)]

and the values of 65 and 6, are obtained by taking the
appropriate arctangents

713 »33

6 = arctanZ('C‘g , ‘5)

=0 21 22
0, = arctanZ(-ﬁ'g , ”5)

85 = arctan2(-»31, r11)
6 =0 (14)

97=O.

Since each set of shoulder and elbow angles leads to two
sets of solutions for the wrist joints there are a total of
two possible solutions to the inverse kinematics cquation
for a specified value of ¢.

3.2 Special Cases

There are two special cases that occur in the
scheme described above. If the shoulder—wrist axis is
parallel to the z axis the W vector is undefined. When this
occurs the possible elbow positions lie on a circle paralle]
to the x-y plane and the swivel angle has lost its inter-
pretation as an elbow clevation parameter. The elbow
equation also degenerates when the arm is completely
outstretched. In this case, there is only one possible posi-
tion for the elbow irrespective of the value of ¢.

4  Scheme 2: Fixing a Shoulder or Wrist Joint

An even simpler scheme for resolving the extra
degree of redundancy is to forfeit one degree of freedom

by fixing one of the wrist or shoulder joints to a suitable
value and solving for the remaining joint variables. In
this scheme, Eq. (1) becomes an inverse kinematics
problem for a six degree of freedom manipulator with a
spherical joint at either the shoulder or the wrist. It is a
well known result in robotics that any six degree of free-
dom manipulator with a spherical joint has a closed-
form solution (Craig, 1989). The derivation of the solu-
tions for each of the six cases are given in the following
sections.

4.1 Solving for a Fixed Shoulder Angle

4.1.1 Case I: Joint I Is Fixed. It 8; is known we
can premultiply both sides of (9) by A;~! to give

$4L2c3 = clgl4 + 51524

s4L263c2 + (—c4L2 — L1)52 (15)
= —slgl4 + 1524
(c4L2 + L1)c2 + 54125352 = g34
which yields two solutions for 8,
clgl4 + 514524

0; = *arccos (__ZZ__SZLTL) (16)
For a given value of 8;, 6, is computed from

8, = arctan 2(ad — be, ac + bd)

a = 541253

b=c4L2 + L1 (17)

¢ = ~slgl4 + clg24
d =434,

4.1.2 Case 2: Joint 2 Is Fixed. If 8, is fixed, the
last equation of ( 15) is used to solve for two values of 03

arcsin (n)
3 =

—[m — arcsin (n)]

J34 = (c4L2 + L1)c2
- s4L2s2

(18)
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and 0, is given by
8, = arctan2(ad — bc, ac + bd)
a = g24
b =g14 (19)
¢ = 5s4L2s3c2 + (—c4L2 — L])s2
A = s4L23.
4.1.3 Case 3: Joint 3 Is Fixed. Premultiplying
Eq. (9) by (A1A;) ! gives
s4L.2¢3 = clgl4 + 51524

$4L2c3 = (—slgl4 + clg24)c2 + 52934
(20)

c4l2 + L1 = c2934 + (slgl4 — clgl4)s2
which leads to the following solutions for 6, and 6,

8, = arctan2(g24, g14) * arctan2

(Vg14% + g24* — (s4c3L2)2, s4c3L2)
0, = arctan2(ad — be, ac + bd)

a=g34 1)

b = (—slgld + clg24)
c=c4L2 + L1
d = s4L2s3.

Finally, once the values of 8,, 8,, 83, and 6, have been
calculated the wrist angles can be determined as previ-
ously discussed. In each of the first three cases, fixing a
joint gives two sets of solutions for the other two shoul-
der angles. For each set of shoulder angles there are up
to two possible solutions for the wrist joints. Therefore,
fixing one of the shoulder joints leads to an upper bound
of four distinct solutions to Eq. (1).

4.2 Solving for a Constant Wrist Angie

Let us now consider the case where one of the
wrist angles is fixed. Since the position of the shoulder
joint expressed in coordinate system six is a function of

only the elbow and wrist joints, it is possible to obtain
three equations that involve just 8y, 85, 8¢, and 6;:

0 0
0 0
Ar(Buna) ™| | = (MA2AAAAG | o
1 1 (22)
a7 — Bs7 s4L1
as7 + Be7 . 0
y | TBAT - 1o
1 1
where

a = —{gllgl4 + 421924 + g31534)
B = —(g12914 + 522924 + 433434)
v = ~(g13914 + 523524 + g33534).

4.2.1 Case 4: Joint Angle 7 Is Constant. Moving
Ag and Ag to the left hand side of (22) and expanding
gives
(ac7 — Bs7)e5 + (o57 + Be7)5556 + yebsS = s4L1
(o7 + B£7)c6 — ys6 = 0 (23)
—(ac7 — Bs7)s5 + (as7 + Be7)e5c6
+ y¢5¢6 = —c4L] — L2.

If 8 is constant the only unknowns in (4) are 65 and 6.
The second equation gives two values for

8, = arctan2(—v, as7 + Be7) + g (24)

Substituting a value for 8¢ into the first and last equa-
tions of (23) gives two values for 65

0; = arctan2(ad — bc, ac + bd)

acd — bs5 =¢
a5 + b5 =4
a = (as7 + Be7)s6 + ycb (25)
b = (ac7 — Bs7)
c=—c4ll - L2
d=s4L].
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4.2.2 Case 5: Joint Angle 5 Is Constant. If 9; is
constant it is convenient to write (22) as

0 0
0 0
AsA7(Awrist) ™! ol = (A1A2A3A4A5)7! 0 (26)
1 1
which expands into the scalar equations
ac7 — Bs7 = ¢554L1 + s5(c4L1 + L2)
ac6s7 + Bcbe7 — 56 = 0 (27)

as6s7 + Bs6c7 + ye6 = s554L1 + ¢5(—L2 — c4L1).
The first equation of (27) gives two solutions for 6
8; = arctan2(—B, o) * arctan2(\/&5TBT~_cz, %)
¢ = c5s4L1 + s5(c4L1 + L2). (28)
For a given value of 9, the corresponding value of 8 is
8¢ = arctan2(ad, vd)
a=os7 + 7 (29)
d = s554L1 + ¢5(—L2 — c4L1).
4.2.3 Case 6: Joint Angle 6 Is Constant. 1f 6, is

constant, the only unknowns in (27) are 85 and 8-. The
second equation gives two values for 6,

6, = arctan2(Bc6, acb)

+ arctan2(y/(ac6)? + (Be6)? — (y56)2, vs6)  (30)
and 65 is determined by

b5 = arctan2(ad — bc, ac + bd)

a =s4L1
b= —c4ll - L2 (31)
c =7 — Bs7

A = as6s7 + Bs6e7 + vyeb.

4.2.4 Solving for the Shoulder Angles. Finally,
once the values of the wrist joints have been determined
the values of 8y, 6, 8; can be extracted from the rota-

tional components of Aqyi(AgAsAgA7 )L Rearranging

(1)as

AL A2A; = A (AsAsAGA,) ! (32)

isolates all the known quantities on the right-hand side.
Denoting the rotational component of the right hand
side by 77/ yields the equations

cle3 — s1e2s3  —cls3 — 51c2¢3 5152
s1e3 +¢1e2s3  —5163 + c1c2c3  ~c1s52
5253 523 c2

rl11 12 r13

= {721 22 #23

r3l 732 #33

Casual inspection reveals two sets of values for 6y, 0,, 8;

0, = *arccos (33)

r13 —»23
6, = s2=0 arctanZ(—Sz— R —5-2—)
s2=0 arctan2(r21, r11) (33)
r3l  —r32
6, = s2=0 arctanZ(—sz— R T)
s2=0 0

As with the case of fixing a shoulder joint, fixing a wrist
angle produces an upper bound of four distinct solutions
to Eq. (1).

5 Joint Limits and Incomplete Solutions

Because of joint limits and holes in the workspace,
it is not always possible to find a solution. There are sev-
eral compromise strategies that can be used under these
circumstances. If a single joint exceeds its limit by a small
margin, the swivel angle can be incremented or decre-
mented and the inverse kinematics equations recom-
puted. If the new angle is closer to the joint limit the
process is repeated iteratively until a solution is found or
no further improvement is possible. Alternatively, the
offending joint can be fixed to its limit and scheme two
can be used to compute for the other joint angles in the
hope that they will remain feasible. Additionally, if the
orientation of the hand is not critical it only becomes
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necessary to find a solution for the shoulder and elbow
joint variables.

6 A Real-Time Inverse Kinematics Tracking
Procedure

The inverse kinematics equations derived in the
previous sections can be used to construct a real-time
tracking procedure for following an end-effector trajec-
tory. Initially, a solution is obtained by using scheme
one and selecting a suitable value for the swivel angle .
Ideally the value selected for & should produce a “realis-
tic” looking arm posture for the starting hand configura-
tion. In our applications, the user interactively adjusts &
until the solution looks visually acceptable. If user inter-
vention is not possible a heuristic must be used instead.
A naive but often satisfactory rule of thumb is to select a
small positive value for ¢; this has the effect of keeping

the elbow down and spread slightly away from the torso.

A more sophisticated scheme would be to use a biome-
chanical model to guess a “natural™ looking placement
for the elbow position. For example, Soechting and
Flanders (1989a, b) conducted a set of experiments
where subjects pointed in the dark to remembered tar-
gets using a stylus. Based on their observations, the au-
thors developed a set of equations that predict the fore-
arm and upper arm postures as a function of the hand
position. Another possibility is to use data recorded
from human subjects to build a table of swivel angles for
a variety of hand positions. The table entries could then
be used by the inverse kinematics procedure to interpo-
late a suitable value for ¢.

After an initial solution has been determined, the
tracking procedure switches to scheme two. When the
goal position changes the inverse kinematics equations
are then solved six times, once for each individual wrist
and shoulder joint fixed at its previous value. This pro-
duces a maximum number of 24 possible solutions. To
keep the arm motion smooth the procedure chooses the
set of angles that is closest to the previous solution as
measured by 2, (6; — 87)% where 8/ denotes the previ-
ous value of the 7th joint variable. Finally if a solution
cannot be found the procedure solves for position only,
leaving the wrist angles unchanged.

\

Although the inverse kinematics equations are evalu-
ated six times with each iteration, our experimental re-
sults indicate that the performance is more than ad-
equate for computer animation requirements. For
example, on a 200-MHz SGI workstation, the inverse
kinematics equations can be computed at rates exceeding
20,000 Hz. Smooth arm motions are achieved through
the combined strategy of using the previous joint angles
as the fixed values for the next iteration and by selecting
the solution that is closest to the previous joint configu-
ration. On occasion, an abrupt change in joint angles can
occur. This usually happens when the arm is at the
boundary of a joint limit and a change in end-effector
position requires a sudden flip in the orientation of the
arm. In this case, the tracking procedure interpelates the
joint angles to produce a smooth motion.

7 Conclusions and Limitations

We have presented an analytical approach for com-
puting the inverse kinematics of a simple model of the
human arm. Using two different schemes we reduced
the number of degrees of freedom of the arm by one to
obtain closed-form equations that solve the inverse kine-
matics problem. These equations form the basis of a pro-
cedure for tracking the motion of an end-effector in real-
time. The method is efficient, accurate, robust, and
produces smooth-looking motions, but it suffers from
some imperfections. In particular, the method does not
have a well-founded theory for generating and evaluat-
ing realistic looking postures. Additionally, fixing a joint
reduces the reachable workspace and also produces mo-
tions where only six of the seven joint variables change
between successive time steps. Usually these limitations
are not noticeable, but an ideal scheme would utilize an
analytical solution that exploits the full redundancy of
the manipulator.
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