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Abstract

While rope is arguably a simpler system to simulate than cloth,
the real-time simulation of rope, and knot tying in particular, raise
unique and difficult issues in contact detection and management.
Some practical knots can only be achieved by complicated cross-
ings of the rope, yielding multiple simultaneous contacts, especially
when the rope is pulled tight. This paper describes a simulator
allowing a user to grasp and smoothly manipulate a virtual rope
and to tie arbitrary knots, including knots around other objects, in
real-time. One component of the simulator precisely detects self-
collisions in the rope, as well as collisions with other objects. An-
other component manages collisions to prevent penetration, while
making the rope slide with some friction along itself and other ob-
jects, so that knots can be pulled tight in believable manner. An
additional module uses recent results from knot theory to identify
which topological knots have been tied, also in real-time. This
work was motivated by surgical suturing, but simulation in other
domains, such as sailing and rock climbing, could benefit from it.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically Based
Modeling;

Keywords: rope simulation, knot tying, knot identification, self-
collision detection, collision management, friction modeling, surgi-
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1 Introduction

Today there is growing interest in real-time surgical simulation, es-
pecially as a tool for training surgeons [Dawson 2002]. Recent re-
search has focused on creating efficient computational models of
visco-elastic tissue structures [Delingette 1998]. But surgical simu-
lation involves many aspects other than tissue deformation. In par-
ticular, a key component of many surgical procedures is suturing.
It involves manipulating a non-elastic suture through tissue, pulling
the strands to bring tissue surfaces in contact with one another, and
tying knots. Figure 1 shows two snapshots during the simulation of
an anastomosis operation (suturing of a severed blood vessel). Su-
ture simulation is discussed in [Kühnapfel et al. 2000] and a method
is presented in [Brown et al. 2002], including the interaction be-
tween the suture and both deformable tissue and rigid surgical in-
struments. However, to our knowledge, there still exists no surgical
simulator addressing the issues that arise when the suture comes
into contact with itself (self-collision). In [Kühnapfel et al. 2000]
these issues are regarded as the most difficult part of collision man-
agement. Contacts must be detected and handled to enable the user
to naturally tie arbitrary knots. The task of knot-tying in surgical
simulation is identified in [Brown et al. 2002], but no solution is
offered. It is also mentioned in [Larsson 2001], where some ideas
for modeling a suture using masses and springs are sketched, with-
out providing an actual algorithm or results. Specific knots useful
in surgery are described in [Silverstein 1999].

Figure 1: Forceps pull a suture which (a) Pulls a vessel down,
(b) Pulls two vessels together

Figure 2: Two practical knots: (a) bowline (b) prusik knot

Other possible applications of knot-tying simulation include
learning to tie knots for sailing and rock-climbing. Many books de-
scribe knots used in these domains [Graydon 1992; Pawson 1998].
A system is presented in [Phillips et al. 2002] where a rope in a
loosely knotted configuration is pulled tight, and the knot is pre-
served, using an impulse model for collision handling. The rope
is modeled as a spline of linear springs, with spheres placed on
the control points to represent the rope volume. The spheres tend
to bunch up or stretch apart during the simulation, due to the
spring model, but collision handling prevents the rope from pass-
ing through itself. This system is not interactive, as it takes several
minutes of computation to tighten simple knots, like the overhand
or square knots. Moreover, most ropes, including surgical sutures,
only stretch by small amounts. Off-line motion planning techniques
to undo a knot are also presented in [Ladd and Kavraki 2002]. The
notion of knot energy and knot untangling by energy minimization
are discussed in [Kusner and Sullivan 1998].

Rope simulation is related to cloth simulation, an area that has re-
cently attracted much attention in Computer Graphics (e.g., [Baraff
and Witkin 1998; Bridson et al. 2002; House and Breen 2000;
Provot 1995; Volino and Magnenat-Thalmann 1995]). In many
ways, a rope is a much simpler system to simulate. While clothes
are 2-D objects embedded in 3-D space and can take many shapes,
ropes are essentially 1-D objects with relatively simple geometry.



But knot tying is quite specific to ropes and raises unique issues
in contact detection and management. Some very practical knots
can only be achieved by complicated crossings of the rope, yield-
ing multiple simultaneous contacts when the rope is pulled tight
(Figure 2). While collision detection between rigid objects is a
well studied problem, collision detection between deformable ob-
jects and self-collision detection within a deformable object are rel-
atively new topics (see Section 4). Changes of shape make it more
difficult to use precomputed data structures for expediting collision
tests during simulation. Moreover, collisions within a thin 1-D ob-
ject are easy to miss in discrete-step simulation, and missing any
would cause the object to unrealistically pass through itself.

In this paper, we describe a simulator allowing a user to grasp
and smoothly manipulate a virtual rope and to tie arbitrary knots,
including knots around other objects, in real-time. During simula-
tion, the rope’s length is kept approximately constant. Its configu-
ration is re-computed at rates up to 140Hz. One component of the
simulator precisely detects all self-collisions in the rope and colli-
sions with other objects. Another key component handles collisions
to prevent penetration, while making the rope slide against itself
and other objects at contact points with some frictional sticking, so
that knots can be pulled tight in realistic manner. We propose a
new collision response scheme that is based on coordinating local
micro-motions of the rope. This scheme creates a natural model
of friction, which provides a convenient and efficient alternative to
the classical Coulomb’s model. An additional module, independent
of the main simulator, identifies which topological knots have been
tied in the rope, also in real-time. This module is based on recent
results from knot theory.

Although our techniques are fairly general, we have created them
specifically for surgical suturing. In this application, the mechani-
cal properties of both the suture (very light weight relative to bend-
ing stiffness) and its environment (viscous solution) allow our sim-
ulator to ignore gravity. At first sight, this may be seen an over-
simplification for other applications. In fact, only a small compo-
nent of the simulator relies on this assumption, and this component
could be easily modified to handle gravity. The key components
– detection and management of self-collisions, and knot identifica-
tion – do not depend on it. Note also that many ropes have relatively
high bending stiffness, which limits the effect of gravity and actu-
ally facilitates knot making.

2 Overview of Rope Simulator

A rope is a cylinder of given length L and radius R, that bends
smoothly, while stretching minimally. Because the rope is not elas-
tic, we do not use springs and forces to model its motion. In-
stead, we preserve key properties of the rope by enforcing a set
of physically-motivated constraints that are dynamically updated at
each simulation cycle. The most important constraints derive from
the fact that the rope should not penetrate itself or other objects,
while contacts should allow frictional sliding.

To keep the rope’s appearance and motion smooth, while facil-
itating the algorithmic treatment of these constraints, in particular
the management of (self-)collisions, we model the rope’s axis as
a kinematic chain made of many straight rigid links connected at
their endpoints (nodes) by spherical joints. Each joint allows two
degrees of rotational freedom. The links all have the same short
length. To improve the rope’s graphic appearance (especially when
one zooms in on a small section of rope), we connect every two suc-
cessive links by a parabolic arc at rendering time. Figure 2 shows
configurations of a rope with 200 links of unit length. In the fol-
lowing, the term link will always refer to a straight piece of the rope
axis, while the term segment will designate the cylinder of radius R
around a link.

We move the rope by grasping one or several of its nodes and
displacing them. In our experimental system, this is done by means
of one or several devices, ranging from a simple mouse to 3-D ar-
ticulated linkages, allowing the user to position and move a graphic
cursor or any representation of grasping tools (e.g., surgical for-
ceps).

Events like rope grasping and self-collisions, as well as colli-
sions with other objects, result in creating new constraints. Un-
grasping and contact disappearance yield constraint removal. For
example, when a node is grasped, this creates a “grasp” constraint,
forcing the node’s position to agree with the position of the grasping
tool. Also, when a link of the rope comes into contact with another
link or with another object, “contact” constraints are created, whose
treatment will be described in Section 5.

The overall simulation algorithm is the following, where each
execution of the loop is called a cycle:

Algorithm Rope-Simulator

Loop:

1. Read the new positions of the grasped nodes
2. Compute the new rope configuration
3. Find all (self-)collisions in this configuration
4. Adjust the rope configuration to remove overlaps
5. Display the final configuration

The computation of the new rope configuration at Step 2 is done
by the FTL (Follow The Leader) algorithm presented in Section 3,
taking into account contact constraints established at the previous
cycle. Finding (self- )collisions at Step 3 is discussed in Section 4.

It is essential that the rope cannot pass through itself at any cycle.
This could happen if grasped nodes were moved too quickly. So, we
set a threshold δ on the distance that any grasped node may travel
between two successive executions of Step 1. As FTL will cause no
points in the rope to move by more than δ, we set δ to be slightly
smaller than the rope’s radius R. Therefore, if the simulator runs at
Q Hz, each grasped node can be moved by up to Q×R units/second
without noticeably lagging behind the grasping tool.

In the rest of this paper, without loss of generality, we set the
length of each link to one unit. We denote the number of links by n,
so that the length L of the rope is equal to n. We denote the nodes
by Ni, i = 1,2, . . . ,n+1, and the position of Ni in 3-D space by~vi .

3 Computation of Rope Configuration

The simplest rope motion occurs when one node of the rope is
grasped, and the rest of the rope (in general, two strands) follows
along without (self-)collision. To achieve realistic deformation,
each link must maintain its length while following in the direc-
tion of the grasped node. We compute the motion of the rope in
a “follow-the-leader” manner. Let Ni be the grasped node and as-
sume that it is moved from position ~vold

i to ~vnew
i within one cycle.

We compute the new position of its neighbor Ni+1, if i ≤ n, as the

point ~vnew
i+1 a unit distance along the line from ~vnew

i to ~vold
i+1. This

motion is propagated along the rope until the new position of node
Nn+1 has been computed. The computation proceeds in the same
way along the other strand, from node Ni−1 toward N1.

More formally, the algorithm propagating the motion of a
grasped node Ni toward another node N j is as follows:



Figure 3: (a) Grasped node 2 is moved. (b) Nodes 1 and 3 follow,
then 4, then 5.

Algorithm FTL1(i, j)

1. ε = sign( j− i)
2. a← i
3. b← a+ ε
4. while b 6= j + ε:

4.1 ~u← (~vb−~va)/‖(~vb−~va)‖
4.2 ~vb←~va +~u
4.3 a← b
4.4 b← a+ ε

The simulation of the entire rope is obtained by calling
FTL1(i,1) and FTL1(i,n+1). Figure 3 illustrates this simple tech-
nique for a 4-link rope, in which N2 is the grasped node. The motion
between the configurations of Figures 3(a) and (b) is thus achieved
by calling FTL1(2,1) and FTL1(2,5).

Often, the user may grasp two nodes and pull both of them, or
grasp one node while a second node is constrained by a contact
(as described later). In this case, the two constrained nodes Ni and
N j may suggest moving intermediate nodes in different directions,
so we average together the results of following the leader in each
direction, yielding the following algorithm:

Algorithm FTL2(i, j) (for i < j)

1. Save original positions~vi, . . . ,~v j in array O(i : j)
2. Call FTL1(i, j−1)
3. Save new positions~vi, . . . ,~v j in array C(i : j)
4. Restore original positions~vi, . . . ,~v j from O
5. Call FTL1( j, i+1)
6. For a = i+1, . . . , j−1, compute final position:

~va← (~va +C(a))/2

The averaging may result in changing slightly the length of some
links. However, as long as no section of the rope is fully extended,
variations in link lengths tend to self-correct over several consecu-
tive cycles, so that the total variation in the rope’s length between
two constrained nodes remains small. As nodes are not shown in the
graphic rendering, this variation is not visually noticeable, nor does
it affect such operations as knot tying. Similar averaging, known
as “strain limiting,” has previously been used in cloth simulation to
deal with conflicting forces [Bridson et al. 2002; Provot 1995]. To
prevent the user from stretching an already extended section of the
rope by pulling its endpoints apart, we could set a maximal aver-
age length h per link and freeze the graphic cursors when the user’s
inputs cause the distance between two constrained nodes to exceed
k×h, where k is the number of links between the two nodes. In our

current system, we rely on graphical feedback and the discipline of
the user not to keep stretching a rope section.

Using the above two algorithms, we create a final algorithm,
FTL, shown below. It computes the new configuration of the entire
rope at each simulation cycle, based on all the grasp and contact
constraints. Prior to calling FTL, the node index of each grasp and
contact node is placed into a sorted array A(1 : q).

Algorithm FTL

1. If A(1) > 1, then call FTL1(A(1),1)

2. If A(q) < n+1, then call FTL1(A(q),n+1)

3. For i = 1 . . .q−1, call FTL2(A(i),A(i+1))

Note that FTL cannot cause any point in the rope to move by
more than the maximum displacement of any grasped node. FTL
can handle large numbers of grasped and/or contact nodes without
significant slowdown.

Despite (or thanks to) its simplicity, experiments with FTL show
that it creates very believable rope motions under the assumption
that the rope is unaffected by gravity. In applications where gravity
affects rope motion, a simple mathematical expression of the state
of the rope at each cycle could be used to derive a more realistic
configuration of the rope. No other components of the simulator
would have to be modified.

4 Collision Detection

When tying knots, a rope often collides with itself and possibly with
other objects. All (self-)collisions must be detected at every cycle,
as each one of them will affect the rope’s motion at the next cycle.
Efficient but precise detection and management of collisions are the
keys to our knot-tying simulation.

Much research has been devoted to checking collisions between
rigid objects (e.g., [Gottschalk et al. 1996; Lin and Gottschalk
1998; Quinlan 1994], to cite only a few works). However, less
effort has been spent on collision detection between deformable
objects [Brown et al. 2002; Larsson and Akenine-Möller 2001;
Joukhadar et al. 1999; Smith et al. 1995; van den Bergen 1997;
Volino and Magnenat-Thalmann 1995], and even less on finding
self-collisions in a deformable object [Guibas et al. 2002; Lotan
et al. 2002; Volino and Magnenat-Thalmann 1995].

When a deformable object A is modeled as a large collection
of small rigid pieces a1,a2, . . . ,an – e.g., the segments in our rope
model – an approach to finding self-collisions, called the grid
method, is to define a uniform grid of cubes over the 3-D space,
compute the cubes intersected by each piece ai, and store the re-
sults in a hash-table [Halperin and Overmars 1998]. At each sim-
ulation cycle, this data structure is re-computed from scratch; self-
collisions are then found by considering every intersected cube and,
for each one, testing whether each pair of pieces ai and a j intersect-
ing this cube overlap. A is said to be well-behaved if all its pieces ai
have (approximately) the same size and the centers of the minimum
enclosing spheres of any two pieces cannot come closer than some
absolute constant. Under the assumption that A is well-behaved,
one can show that, on average, each piece overlaps at most O(1)
other pieces [Halperin and Overmars 1998]. So, the grid method
always takes Θ(n) time at each cycle, which is optimal in the worst
case. This approach can be used to detect self-collisions in our rope
model. Since displacements are short enough at each cycle and
we remove all overlaps when they occur, our rope model is well-
behaved.

Another approach to finding self-collisions in a deformable ob-
ject A is to build a bounding-volume hierarchy (BVH) represent-
ing the shape of A at successive levels of detail. In the past, BVH
techniques have been widely used to detect collisions between rigid



Figure 4: Bottom-up construction of the BVH of an 4-link rope.

objects [Gottschalk et al. 1996; Quinlan 1994]. These techniques
must be adapted to deal with deformable objects and self-collisions
(see [Brown et al. 2002; Guibas et al. 2002; Lotan et al. 2002;
van den Bergen 1997]). For our rope model, we build a BVH from
the bottom up (see Figure 4). We first bound each rope segment
by its minimal enclosing sphere. The spheres thus obtained are in-
stalled as the leaves of the BVH, in the same order as the segments
along the rope. Then, we bound pairs of successive spheres by new
spheres to form each next level of the hierarchy. Hence, the re-
sulting BVH is a balanced binary tree. Each intermediate sphere
bounds tightly its two children. So, it also encloses all the leaf
spheres below it, but in general this bounding is not tight. The root
sphere encloses the entire rope and all the other spheres. To find
the self-collisions in A, we explore two copies of the BVH from the
top down. Whenever two BVs (one from each copy) are found not
to overlap, we know that they cannot contain colliding segments
and hence we do not explore their contents. When two leaf spheres
overlap, the shortest distance between the two underlying links is
computed. If it is less than the rope diameter 2R, then the two seg-
ments are reported to collide. However, no segment is ever consid-
ered to be in collision with itself or its immediate neighbors along
the rope chain.

The topology of the BVH is computed once before any simula-
tion and then remains fixed. During simulation, only the positions
of the bounding spheres and the positions and radii of the higher
level spheres are re-computed at each cycle, and this computation
is done from the bottom up, so that no sphere is updated more than
once. Moreover, the update of each sphere takes constant time, so
that updating the BVH takes O(n) time. It is shown in [Guibas et al.
2002; Lotan et al. 2002] that at each cycle, finding all self-collisions

takes Θ(n4/3) in the worst case. (The proof of this result requires
the rope model to be well-behaved.)

While the BVH method is only slightly less efficient than the grid
method to detect self-collisions, it has a major advantage in envi-
ronments where the rope may interact with other rigid and non-rigid
objects. In such environments, we can efficiently detect collisions
between the rope and these objects by comparing their respective
BVHs. The grid method would not be as efficient for this purpose.
So, our simulator uses the BVH method. A separate BVH is com-
puted for every object in the rope’s environment.

At each simulation cycle, the maximum displacement allowed
for any grasped node is δ < R. Since FTL can cause no point in the
rope to move by more than δ, no link can possibly pass through an-
other link or through any fixed object, even a very thin one, without
the simulator detecting a collision.

(a) (b)

Figure 5: (a) Two rope segments are colliding. They are moved
away from each other out of collision. (b) The segment in the mid-
dle (red) collides with the other two segments (green). Displace-
ment vectors for the green segments are computed as in (a), but an
average is used for the red segment.

5 Collision Management

In this section, we focus primarily on the management of self-
collisions. Collisions between the rope and other objects are treated
in a similar way, as described briefly at the end of the section.

In a discrete simulation process like the one of Section 2, we
typically detect self-collisions after they have occurred. So, in the
new configuration computed by FTL, the rope may penetrate itself
by as much as δ. Since penetrations are physically impossible, we
remove them by adjusting the positions of some nodes. We also
create contact constraints to be enforced at the next simulation cy-
cle.

The most basic form of self-collision treatment is as follows.
When two links are detected to be at a distance d < 2R from each
other (i.e., the two corresponding segments are colliding), the pair
of closest points in the links is identified and ∆ is defined as the line
passing through them. Then, an equal (but opposite) displacement
vector is applied to each link along ∆. See Figure 5(a). This dis-
placement is just long enough to take the segments out of collision,
with a slight “safety margin” ε to allow for a sliding motion dis-
cussed below. Hence, each link is shifted away by R− d/2 + ε/2.
(This shift results in a slight change of the total length of the rope.)
Simultaneously, a contact constraint is created that requires the end-
points of the two links not to move at the next call of FTL.

This method of collision response creates a simple, but effec-
tive “algorithmic” model of friction. The fact that the contact con-
straints fix some nodes in place for one cycle gives the rope a
sticky behavior. But since the colliding segments have been pushed
slightly out of contact, they will not be in collision during the fol-
lowing cycle, allowing the rope to slide along itself if the local mo-
tion computed by FTL has a component tangential to the contact.
After this new motion step, a new collision between the two seg-
ments may, or may not, happen again. If it happens, then the con-
tact constraint is re-created for one cycle. In other words, this is
what happens over three consecutive cycles:

CYCLE k: - A collision is detected between two
segments of underlying links ℓ and ℓ′.

- A contact constraint C is created.
CYCLE k +1: - Because of C, FTL leaves the four

- endpoints of ℓ and ℓ′ fixed.
- The contact constraint C is removed.

CYCLE k +2: - FTL is free again to move the four nodes.

Over successive cycles, this treatment produces a frictional slid-
ing behavior, which allows knots to be pulled tight. A higher ε lets
the rope slide more easily along itself, but too large an ε leads to
unnatural jumps after collisions and a frictionless look, making it



Figure 6: Key steps in the tying of a trefoil (or overhand) knot.

easy for knots to pull themselves out after being tightened. Con-
versely, too small an ε causes rope segments in contact to slide
along each other very slowly (or to stick), making it difficult or im-
possible to tighten a knot. However, between these two extremes,
there is a range of values of ε that produce believable rope behav-
iors (see Section 6). Previous research in Robotics and Computer
Graphics has mainly used the Coulomb’s model of friction [Bridson
et al. 2002; Erdmann 1994; Mirtich and Canny 1995]. We believe
that our algorithmic model is a convenient and computationally ef-
ficient alternative to handle contacts between textured and slightly
deformable surfaces, such as those of ropes, which consist of many
interlaced fibers.

All collisions between segments can be processed concurrently.
However, a slight modification of the above treatment is necessary
to handle cases when the same segment collides with several other
segments. In that case, the multiple collisions suggest different dis-
placements of the same nodes. We then apply the average of these
displacements to each node, as illustrated in Figure 5(b). This av-
eraging no longer guarantees the removal of all segment overlaps.
For instance, in the situation of Figure 5(b), the average displace-
ment of the middle segment (in red) could be too small to move it
out of collision with the other two segments (in green). But any re-
maining overlap does not survive long, since it is re-detected at the
next simulation cycle, which leads the colliding segments (notably,
the green segments in Figure 5(b)) to be pushed further apart. In
fact, a situation like that of Figure 5(b), where a segment is being
squeezed between two other segments, occurs mainly when a knot
gets tight. The side-effect of any remaining overlap is to increase
friction inside the knot, which is exactly what is desirable. (Actu-
ally, some common knots draw their strength from the fact that a
piece of rope “bites” over another piece, when the outgoing strands
are pulled apart. This is in particular the case of the alpine butterfly
knot shown in Figure 10(a).) On the other hand, overlaps are too
small and/or short-lived to be visually noticeable. Moreover, they
cannot cause the rope to pass through itself, since the contact con-
straint prevents FTL from moving the corresponding nodes as long
as the overlap remains.

A final improvement is made to allow for knots to move prop-
erly in space over successive cycles. Indeed, as a knot becomes

Figure 7: A second knot (figure-8) is tied in the rope from Figure 6.

tight, the cluster of segments forming the knot will keep contain-
ing collisions and the contact constraints will leave several nodes
fixed at almost every iteration. The above techniques would then
cause the knot to always be constrained in place. To fix this, we
cluster together links as follows: colliding links are placed in the
same cluster, and if two adjacent links in the rope are in two dif-
ferent clusters, these clusters are merged. This merging is repeated
until the rope contains some number of disjoint clusters, with the
rest of the links not part of any cluster. After calling FTL (during
which the contact constraints keep nodes in place), we then rigidly
move each entire cluster based upon the motion of its adjacent, un-
clustered links. So, as a knot goes from loose to tight, its segments
both stick and slide on each other, but once it is tight, the whole
knot moves as a unit. If several distinct knots are tied, they move
as separate units. These clusters are conceptually similar to the
“impact zones” used for cloth simulation in [Bridson et al. 2002;
Provot 1997]: when cloth locally bunches together, friction tends to
prevent relative motion, which is modeled by collecting the mesh
nodes involved in neighboring collisions into impact zones treated
as rigid bodies. Figures 6 and 7 shows screenshots as a trefoil knot
is tied in the rope, followed by a figure-8 knot. Each knot behaves
as a cluster once it is pulled tight.

Collisions between the rope and other objects are handled in al-
most the same way as self-collisions. Assume that a link has been
detected to be at a distance d < R from a fixed rigid object. We
then shift the link away from the object by R− d + ε (the object
remaining fixed) and create a contact constraint that requires the
link’s endpoints not to move at the next call of FTL. Figure 8 shows
screenshots during the tying of a knot around a fixed ring.

6 Results

For our experiments, we model a length of rope with 200 unit-
length links. The rope’s radius R is .5 units. We tested safety
margins ε ranging from 0 to .5 units, and values between .1 to .2
provided the most natural “friction.”

Any of four devices are used to control cursors on the screen
with which to grasp and manipulate the rope. These devices are
the mouse (which requires a key to toggle between xy and xz mo-



Figure 8: Tying a knot (the Münter hitch) around a ring.

tion), surgical forceps equipped with electromagnetic trackers, a bi-
manual force-feeback laparoscope from Immersion, and a Phantom
Desktop from Sensable Technologies. The latter two are only used
as positioning devices, as the current version of the simulator does
not render forces. Even without stereo glasses, the texture and the
thickness of the rope provide fairly good depth cues to the user, so
that moving the grasping tools to tie knots is relatively easy.

Users of the system successfully tied many simple and compli-
cated knots, a few examples of which are shown in Figures 2 and
6-10. The rope motion is smooth and natural. In particular, fric-
tional sliding of one piece of rope against another is quite realistic.
The increase of friction in a knot as it is pulled tighter gives a feel
that is very similar to a real rope. At no time was the rope able
to pass through itself or other objects, despite swift motions of the
tools.

The software runs on a Sun Ultra 60 with two 450-MHz pro-
cessors. We use two threads to separate the simulation from the
graphic rendering. At all times, the frame rate of the graphical dis-
play remained above 30 Hz (50 Hz was our average frame rate, and
76 Hz the maximum, limited by the monitor’s refresh rate). The
simulation process can complete about 140 simulation cycles per
second for an untangled rope, 100 when the rope contains a tightly
knotted trefoil, and 50 when containing a 7-crossing knot. Moving
the grasping tools very fast does cause the rope to lag behind the
tool, due to the threshold δ imposed on the displacement of any
grasped node at each update. However, at 50 simulation cycles per
second, the maximal velocity without any lag – 25 units/second –
makes it possible to comfortably manipulate the rope.

7 Knot Identification

As the user manipulates the virtual rope and ties it into knots, it
is helpful for him/her to know which knots have been tied. Cer-
tain knots are very similar, and one false move can result in tying
the wrong one, or no knot at all (see Figure 11). In applications
like surgical training, knot identification is also useful to assess the
quality of an operation, since different knots have different proper-
ties. For example, the surgeon’s knot is more difficult to tie than
the similar square knot (see Figure 9), but the extra loop prevents

Figure 9: Top-down, left to right: Square knot (or composition of
two trefoil knots), Surgeon’s knot, Knot 8.1, Clove hitch around
pole + trefoil around ring.

Figure 10: Top-down, left to right: Alpine butterfly knot used in
climbing (actually isomorphic to the unknot), Daisy chain (to carry
rope conveniently), Shoelace knot (isomorphic to the trefoil).



Figure 11: This five crossing knot and unknot differ only by revers-
ing the over/under of the two bottom crossings.

slippage and loosening [Silverstein 1999].

There exist several texts providing a rigorous introduction to the
topic of knot theory (e.g., [Adams 1994; Crowell and Fox 1963;
Gilbert and Porter 1994]). A knot is topologically defined as a

homeomorphic embedding of the unit circle in R3 [Crowell and
Fox 1963], and two knots are said to be the same if there is an am-
bient isotopy between them. More simply put, if a piece of rope
is manipulated (excluding cutting), and the two ends are glued to-
gether, the result is a knot [Adams 1994]. Any further manipulation
of the rope (again excluding cutting) is an ambient isotopy which

preserves that knot. The unknot is ambiently isotopic to S1.

Knots are often represented by projecting them onto a plane, and
labeling the order of the crossings in the planar diagram. The labels
also indicate which strand in each crossing passes above the other.
A first level of classification for a knot is based on the minimum
number of crossings in a planar diagram. It can be shown that any
ambient isotopy can be represented as a sequence of three simple
manipulations of the planar diagram, known as the Reidemeister
moves [Adams 1994]. Two planar projections of the same knot
may be quite different, but can always be reached from one another
via these moves.

Determining whether a given knot is the unknot is in NP [Hass
et al. 1997], and a general algorithm given by Haken in 1961 has
never been implemented [Adams 1994], although more restrictive
algorithms have been successful [Ladd and Kavraki 2002]. A list of
all 10-crossing knots, given in 1899, was found to have an error as
recently as 1974 [Adams 1994]. More recently, a list has been com-
piled of all knots with up to 16 crossings, and a list of 17-crossing
knots is in progress [Hoste et al. 1998].

We have adapted the Knotscape software of Hoste and Thistleth-
waite [Hoste et al. 1998] to identify knots which are currently tied in
the rope. We compute the planar diagram of the current configura-
tion of the rope by projecting the links of the rope onto an arbitrary
plane P, adding an extra virtual link between the first and last nodes,
so that our rope is a closed loop. We then find all the link crossings
in P, keeping track of which link is on top in each crossing. These
crossings are ordered and translated into Dowker-Thistlethwaite no-
tation [Adams 1994]. The resulting list of crossings is sent to the
Knotscape module, which returns the knot name(s). This software
accepts as input a list of up to 50 crossings and outputs the identity
of any knot of up to 16 crossings. This module is called once per
second, in a separate thread of execution. Its output has no influence
on the rope’s motion, since our simulator computes this motion in a
separate thread, without ever knowing which knots are being tied.
The knot identities are displayed at the top of the screen while the
rope is being manipulated (see the screenshots of Figures 6-11).

There are two possible degenerate cases, neither of which is a
problem in practice:

1. The extra link we added to close the rope into a loop can create

spurious crossings.

2. Multiple crossings can project to the same point in P, either
exacly, or so close that floating-point roundoff causes the or-
der of the crossings to be wrong.

In these cases, the knot identification can return a wrong answer,
but as the rope continues to move, the answer is quickly updated
with the next call to Knotscape, so an incorrect name is rarely dis-
played for long. The case of multiple crossings projecting to al-
most the same point is extremely rare, and while this can be the-
oretically solved by an arbitrarily small rotation of the projection
plane [Crowell and Fox 1963], the practical solution is to simply
wait for the next simulation update. The case of spurious crossings
caused by the extra link is slightly more common, but can be pre-
vented by an informed user, simply by pulling the two ends of the
rope close to each other. Thus, the correct names of the knots in the
rope are almost always displayed on screen.

Note that the computed identity of a knot is only based on the
topology of the knot. However, friction allows creating complex
knots that are important in practice, but are isomorphic to much
simpler knots. A good example is the alpine butterfly knot used
in climbing, shown in Figure 10(a). In this figure, it is correctly
identified as the topological unknot, meaning that without friction,
one would easily undo this knot by pulling its two ends apart. The
shoelace knot in Figure 10(c) is correctly recognized as the much
simpler trefoil knot. To our knowledge, there exists no robust tech-
nique to identify more precisely such non-topological knots, whose
stability derives from friction at contacts.

8 Conclusion

This paper describes and demonstrates a computational model of
rope motion that enables fairly realistic interactive simulations of
complex knot-tying operations at real-time rates. The key com-
ponents of this model are the collision detection and management
modules. Our method of resolving (self-)collisions prevents the
rope from passing through itself or other thin objects. It also leads
to micro-displacements of rope nodes and the establishement of
contact constraints, which, together, create a very effective and be-
lievable model of friction allowing the rope to be tied into knots in
a natural way. We do not think that any prior system was able to
simulate knot tying in real-time. An additional module, based on
pre-existing software, identifies the topology of the knots tied.

We are close to extending this work to fully simulate knot tying
in surgical suturing. Actually, we have already demonstrated su-
ture interactions with deformable tissue, but, so far, we have only
tied knots around rigid objects. At this stage, we do not expect that
tying knots around deformable tissue will raise new major difficul-
ties, though it will require enough computational power to simulate
both the suture and deformable tissue concurrently. Providing force
feedback will be another useful addition to the integrated simulator.

Future work should seek to better assess the validity of our model
of friction. For example, there exist knots used in rock climbing that
are known to be very strong in some variants (due to friction) and
weak in other variants (due to less friction). In particular, a prusik
knot sticks if tied around a bigger piece of rope, but slides if tied
around a rope of smaller radius. Similarly, the strength of a Münter
hitch around another object depends on the relative directions along
which the two ends are pulled apart. Experimental tests with our
simulator on such knots could result in making our model of friction
more accurate. This might require modeling the fact that the cross-
section of a rope is slightly elastic, which, in the case of the prusik
knot, helps the knot to “bite” on the strand of rope around which it
is tied. Rope twisting is another aspect of the rope mechanics that
might have to be modeled to improve simulation realism.



Finally, an interesting problem for future research is the identi-
fication of complex knots that are topogically equivalent to simpler
knots, but derive their stability or strength from the friction at the
contacts they create.
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